
A simple NQS model in a discrete lattice 
AND 

Diagrammatic Monte Carlo for paired fermions

Many-Body Quantum Physics with Machine Learning 
ECT* Sept 4-8, 2023

Carlo Barbieri

Thesis work by: 

L. Lazzarino, G. Paravizzini, BSc 

S. Brolli, MPhys 

Outline: 

- Nuclear physics (motivations) 

- Electrons in a box 

- Richardson pairing model 

All preliminary work!



• 283 stable isotopes 
• ≈3,000 are known 
• ≈7,000 predicted to exist
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I) Understanding the nuclear force 
QCD-derived; 3-nucleon forces (3NFs) 
First principle (ab-iniBo) predicBons

Composite system of interac=ng fermions 
Binding and limits of stability 
Coexistence of individual and collecBve behaviors 
Self-organizaBon and emerging phenomena 
EOS of neutron star maKer

Experimental programs 

RIKEN, FAIR, FRIB, ISAC…

Stable nuclei

Extreme neutron-proton 

 asymmetry

Unstable nuclei

r-process path…

Nature 473, 25  (2011); 486, 509 (2012)

II) Ab Ini=o computa=ons of nuclear structure 
[FronBers in Physics 8, 626976 (2021)]  
CorrelaBons known beKer for stable isotopes 
[C. Barbieri and W. H. Dickhoff, Prog. Part. Nucl. Phys 52, 377 (2004)] 

Neutron-rich nuclei; Shell evoluBon (far from stability)

III) Interdisciplinary character 
Astrophysics 
Tests of the standard model 
Other fermionic systems: 
   ultracold gasses; molecules;



FRONTIERS topical review (doi: 10.3389/fphy.2020.626976) :  
 
Frontiers in Physics 8, 626976 (2021)  

Editors: L. Coraggio, S. Pastore, CB



Reach of ab initio methods across the nuclear chart

H. Hergert, Frontiers in Phys 8, 379 (2020) 
L. Coraggio, S. Pastore, CB, Frontiers in Phys 8, 626976 (2021)

P. Arthuis 2020 
PRL125, 182501   

Extension beyond few-nucleons thanks to: 

• Soft (nearly perturbative) effective nuclear forces 

• Diagrammatic many-body approaches

• 283 stable isotopes 
• ≈3,000 are known 
• ≈7,000 predicted to exist
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Wave Function-Based Methods

Early years

Open challenges: 

• Accuracy (better theory of nuclear forces) 

• Mass number limit (optimised model spaces) 

• Precision & scattering (high-order diag. resummations)

Legnaro Natl’ Lab Mid Term Plan; Eur. Phys. J. Plus 138, 709 (2023) 



Quest to predict exotic (unstable) isotopes

Nature 473, 25  (2011); 486, 509 (2012)

application of modern optimization and statistical methods, together
with high-performance computing, has revolutionized nuclear DFT
during recent years.
In our study, we use quasi-local Skyrme functionals15 in the

particle–hole channel augmented by the density-dependent, zero-
range pairing term. The commonly used Skyrme EDFs reproduce total
binding energies with a root mean square error of the order of
1–4MeV (refs 15, 16), and the agreement with the data can be signifi-
cantly improved by adding phenomenological correction terms17. The
Skyrme DFT approach has been successfully tested over the entire
chart of nuclides on a broad range of phenomena, and it usually per-
forms quite well when applied to energy differences (such as S2n), radii
and nuclear deformations. Other well-calibrated mass models include

the microscopic–macroscopic finite-range droplet model (FRDM)18,
the Brussels–Montreal Skyrme–HFB models based on the Hartree–
Fock–Bogoliubov (HFB) method17 and Gogny force models19,20.
Figure 2 illustrates the difficulties with theoretical extrapolations

towards drip lines. Shown are the S2n values for the isotopic chain of
even–even erbium isotopes predicted with different EDF, SLy421, SV-
min13, UNEDF015, UNEDF122, and with the FRDM18 and HFB-2117

models. In the region for which experimental data are available, all
models agree and well reproduce the data. However, the discrepancy
between various predictions steadily grows when moving away from
the region of known nuclei, because the dependence of the effective
force on the neutron-to-proton asymmetry (neutron excess) is poorly
determined. In the example considered, the neutron drip line is
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Figure 2 | Calculated and experimental two-neutron separation energies of
even–even erbium isotopes. Calculations performed in this work using SLy4,
SV-min, UNEDF0 andUNEDF1 functionals are compared to experiment2 and
FRDM18 andHFB-2117 models. The differences betweenmodel predictions are
small in the region where data exist (bracketed by vertical arrows) and grow

steadily when extrapolating towards the two-neutron drip line (S2n5 0). The
bars on the SV-min results indicate statistical errors due to uncertainty in the
coupling constants of the functional. Detailed predictions around S2n5 0 are
illustrated in the right inset. The left inset depicts the calculated and
experimental two-proton separation energies at N5 76.
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Figure 1 | Nuclear even–even landscape as of 2012. Mapof bound even–even
nuclei as a function of Z and N. There are 767 even–even isotopes known
experimentally,2,3 both stable (black squares) and radioactive (green squares).
Mean drip lines and their uncertainties (red) were obtained by averaging the
results of different models. The two-neutron drip line of SV-min (blue) is

shown together with the statistical uncertainties at Z5 12, 68 and 120 (blue
error bars). The S2n5 2MeV line is also shown (brown) together with its
systematic uncertainty (orange). The inset shows the irregular behaviour of the
two-neutron drip line around Z5 100.
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FISSION DYNAMICS OF 240Pu FROM SADDLE … PHYSICAL REVIEW C 100, 034615 (2019)

FIG. 4. The left three columns shows the induced fission of 240Pu with normal pairing strength, which lasts up to 14 000 fm/c (≈47 ×
10−21 s) from saddle to scission. The columns show sequential frames of the density (first column), the magnitude of the pairing field (second
column), and the phase of the corresponding pairing field (third column). The upper and lower parts of each frame show the neutron and proton
densities, the magnitudes of neutron and proton pairing fields, and the phase of the pairing field, respectively [62]. The right three columns
show the corresponding snapshots of the induced fission of 240Pu with enhanced pairing strength, which lasts about 1 400 fm/c.

variance of 7.9 and 1.7 MeV in the neighborhood of the outer
saddle point, which can be reached in low-energy neutron
induced fission. The other set of initial conditions (SeaLL1-2)
corresponds to a mean excitation energy and variance of 2.6
and 1.8 MeV, which can be reached either in spontaneous
fission or with photoexcitation excitation of 240Pu. The third
set of initial conditions (SkM*-1) is similar to SeaLL1-1, with
mean excitation energy and variance of 8.2 and 3.0 MeV, but
with an increased pairing strength. The fourth set (SkM*-
2) was characterized by a realistic pairing strength. In the
simulations with SLy4 NEDF [63] and SkM*, we neglected
the correction term 1/A for the center-of-mass kinetic energy
in the sp kinetic energy 1 − 1/A. Without this correction
term, these NEDFs satisfy local Galilean invariance. We have
checked that this term has a negligible influence on the profile
of the potential energy surface.

A. Fission fragments properties

The most surprising outcome of these simulations is that in
all these sets of initial conditions, which correspond to vastly
different initial values of Q20, Q30, we observed a very strong
focusing effect and the final states are remarkably similar; see
Fig. 5. The heavy fragments have neutron and proton numbers
between those of the double magic 132Sn (N = 82, Z = 50)
and of the octupole shaped 144Ba (Z = 56, N = 88), and has
a shape quite close to spherical. The lighter fragment has an

elongated shape (see also Table II). Simenel and Scamps [86]
have recently shown that the octupole shell stabilization of
nuclei close to 144Ba with Z = 56 drive the fission dynamics
toward proton numbers larger than 50, as we also appear to
confirm. As we show below, see Sec. V D and Fig. 10, at
scission both FFs have a significant octupole deformation,
which, however, relaxes after the FFs separate. The neutron
and proton numbers (and thus the mass) of the FFs match
pretty well to the mean values of the experimental systematics
but show a very small dispersion; see Table I.

The strong focusing effect we have establish in the present
study is in stark contrast with the results of Tanimura
et al. [49]. The authors of that study generated an ensemble
of initial conditions according to the stochastic mean field
model of Ayik [87]. In the stochastic mean-field model, the
nucleon single-particle wave functions (spwfs) are evolved
using the old-fashion TDHF method and the only difference
is in considering an ensemble of different initial conditions
for the one-body density matrix [49,87] and Appendix E,
which result in an ensemble of initial states with different
initial energies and quadrupole Q20 and octupole Q30 mo-
ments. In this respect, our choice of various initial conditions
spread over a significant area of the potential energy surface,
the choice chosen by Tanimura et al. [49], and the subse-
quent time-dependent evolution of the nucleonic spwfs are
qualitatively similar but the final results are qualitatively
different. We attribute these differences to the fact that the

034615-7

Bulgac et al., Phys Rev C 100, 034615 (2019)

Most isotopes are deformed (even tri-
axially) and change shape under external 
action  

Fission of 240Pu:  
- time dependent DFT inspired, in 3D 
- 30 x 30 x 60 fm3 box 
- 24 x 24 x 48 = 27,000 pts mesh

• 283 stable isotopes 
• ≈3,000 are known 
• ≈7,000 predicted to exist



NQS for  
fermions confined in a box



Confined fermions w/ a discrete coordinate space mesh
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- Discretise coordinate space

- Use occupation number to locate particles

- Use a Fock space basis to represent particle configurations:

�ŗʚʚǶƉƨ Ƕȳ ɼƨŗț ʌɱŗƉƨ

ɄƉƉʯɱŗʚǶɄȳ ȳʯȭſƨɼʌ

ƣ− ƣ−

˕
ࡱ �

⇐⇒ ,ࡱ) ,ࡹ ,ࡱ ,ࡱ ,ࡱ ,ࡹ ,ࡱ ,ࡱ (ࡱ

∆˕

İŗ˙ƨ ǑʯȳƉʚǶɄȳ ɼƨɱɼƨʌƨȳʚŗʚǶɄȳ

|ψ〉 = ∏
Ǯ

ψ†(˕Ǯ) 〈ࡱ| ࣱࡱࡹ࣯

〈˕|ψ〉 → 〈ç|ψ〉 ⇔






ƅ↑↑↑...
.
= 〈↑↑↑ . . .|ψ〉 = ψ(↑↑↑ . . . )

ƅ↓↑↑...
.
= 〈↓↑↑ . . .|ψ〉 = ψ(↓↑↑ . . . )

ࣖࣖ
ࣖ

ƅ↓↓↓...
.
= 〈↓↓↓ . . .|ψ〉 = ψ(↓↓↓ . . . )

ࣱࡹࡹ࣯

ࢅ

�ŗʚʚǶƉƨ Ƕȳ ɼƨŗț ʌɱŗƉƨ

ɄƉƉʯɱŗʚǶɄȳ ȳʯȭſƨɼʌ

ƣ− ƣ−

˕
ࡱ �

⇐⇒ ,ࡱ) ,ࡹ ,ࡱ ,ࡱ ,ࡱ ,ࡹ ,ࡱ ,ࡱ (ࡱ

∆˕

İŗ˙ƨ ǑʯȳƉʚǶɄȳ ɼƨɱɼƨʌƨȳʚŗʚǶɄȳ

|ψ〉 = ∏
Ǯ

ψ†(˕Ǯ) 〈ࡱ| ࣱࡱࡹ࣯

〈˕|ψ〉 → 〈ç|ψ〉 ⇔






ƅ↑↑↑...
.
= 〈↑↑↑ . . .|ψ〉 = ψ(↑↑↑ . . . )

ƅ↓↑↑...
.
= 〈↓↑↑ . . .|ψ〉 = ψ(↓↑↑ . . . )

ࣖࣖ
ࣖ

ƅ↓↓↓...
.
= 〈↓↓↓ . . .|ψ〉 = ψ(↓↓↓ . . . )

ࣱࡹࡹ࣯

ࢅ

- Can be mapped into a system of  
  spins (with fixed magnetisation): Can be solved as in 

Carleo and Troyer, 
Science 355, 602 (2017)

<latexit sha1_base64="wiDlHnsCJaVJJaJp379+2HhIkAM="></latexit>

= |n0=0, n1=1, n2=0, n3=0, n4=0, n5=1, . . . nL=0i

no need to worry about 
antisymmetrization!



NQS representation
- Use a Restricted Boltzmann Machine with complex parameter to represent the w.f.: 
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- Marginalize w.r.t. the hidden nodes:
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P(˙) = �ǣࡽ exp
(
ŗ(ࡱ)ᵀ˙

) �ǣ
∏
Ǯ=ࡹ

[
exp

(
�(Ǯ) + ŗ(Ǯ)ᵀ˙

)
cosh(ωǮ(˙))

]
. ࣱ࢙࣯

ࢁ

<latexit sha1_base64="nFUo/orppbFFiuBeQ7rBK3jx96U=">AAAB9HicbVBNSwMxEJ31s9avqkcvwSLUS9mVoh6LXjxWsB/QXUo2zbah2WxMsoWy9Hd48aCIV3+MN/+NabsHbX0w8Hhvhpl5oeRMG9f9dtbWNza3tgs7xd29/YPD0tFxSyepIrRJEp6oTog15UzQpmGG045UFMchp+1wdDfz22OqNEvEo5lIGsR4IFjECDZWCnypWSXzwwiNpxe9UtmtunOgVeLlpAw5Gr3Sl99PSBpTYQjHWnc9V5ogw8owwum06KeaSkxGeEC7lgocUx1k86On6NwqfRQlypYwaK7+nshwrPUkDm1njM1QL3sz8T+vm5roJsiYkKmhgiwWRSlHJkGzBFCfKUoMn1iCiWL2VkSGWGFibE5FG4K3/PIqaV1Wvatq7aFWrt/mcRTgFM6gAh5cQx3uoQFNIPAEz/AKb87YeXHenY9F65qTz5zAHzifPx+NkbA=</latexit>

 (v)

<—  Note that a(i) are site dependent 
and no hidden nodes are necessary for 
a single particle (Nh=0).



Energy minimization
- The Hamiltonian for Nv fermions fermions will be: 

- Sample Eloc from                                 using 
MCMC:

Eȳƨɼǖ˦ ƨ˙ŗțʯŗʚǶɄȳ

İƨ ˝ŗȳʚ ʚɄ ȭǶȳǶȭǶ˲ƨ ʚǫƨ ƨ˥ɱ ˙ŗț ɄǑ

H = ò+ Ğ = ∑
Ǯ

− ǣ̄ࡽ
ࡽ(˕∆)ȣǮࡽ ∑

ȃ

[
ψ†
ȃ+ࡹψȃ − †ψࡽ

ȃ ψȃ + ψ†
ȃ−ࡹψȃ

]
+ Ğ. ࣱࡽࡹ࣯

ÿǫɼɄʯǖǫ ŗȳ ŗʯ˥ǶțǶŗɼ˦ ɄɱƨɼŗʚɄɼ

BHQ+(˥) =
∫
Ɛ˥′ H˥˥′

ψ(˥′)
ψ(˥) ࣱࢁࡹ࣯

Eȳƨɼǖ˦ Ɖŗȳ ſƨ ʌŗȭɱțƨƕ ǑɼɄȭ |ψ(˕)|ࡽ ∼ _"Jࡽ ˙Ƕŗ ȭƨʚɼɄɱɄțǶʌ
ŗțǖɄɼǶʚǫȭ

〈ψ|H|ψ〉
〈ψ|ψ〉 = 〈BHQ+〉|ψ(˥)|ࡽ . ࣱࢅࡹ࣯

�ȳʚǶʌ˦ȭȭƨʚɼǶ˲ŗʚǶɄȳ Ƕʌ ǶȳʚɼǶȳʌǶƉ Ƕȳ |ψ〉 ƉɄȳʌʚɼʯƉʚǶɄȳ ࣯ʌǶǖȳ ɱɼɄſțƨȭࣱ

ࢍ

+ appropriate conditions at the walls.

Use gradient descent w/ SR:

óʚɄƉǫŗʌʚǶƉ eɼŗƕǶƨȳʚ 6ƨʌƉƨȳʚ

İƨ ƕƨ̇ȳƨ ʚǫƨ țɄǖŗɼǶʚǫȭǶƉ ƕƨɼǶ˙ŗʚǶ˙ƨʌ ɄǑ ʚǫƨ ȳƨʯɼŗț ȳƨʚ˝Ʉɼȕࣩ˝ŗ˙ƨ
ǑʯȳƉʚǶɄȳ ˝ɼʚ ȳƨʚ˝Ʉɼȕ ɱŗɼŗȭƨʚƨɼʌࣘ

3ȋ(˥; θ) =
∂θȋψθ(˥)

ψθ(˥) ࣱࢉࡹ࣯

˝ƨ Ɖŗȳ ƕƨȭɄȳʌʚɼŗʚƨ ʚǫŗʚ ʚǫƨ ǖɼŗƕǶƨȳʚ ɄǑ ʚǫƨ pŗȭǶțʚɄȳǶŗȳ

∂θȋ〈H〉ψ = 〈aȋ〉|ψ(˥)|ࡽ ࣱࢍࡹ࣯

Ɖŗȳ ſƨ ƨ˙ŗțʯŗʚƨƕ ˙Ƕŗ ¡ƨʚɼɄɱɄțǶʌ ʌŗȭɱțǶȳǖ ʚǫɼɄʯǖǫ ʚǫƨ ʌʚɄƉǫŗʌʚǶƉ
ǖɼŗƕǶƨȳʚ ƨʌʚǶȭŗʚɄɼ

aȋ(˥; θ) = 2_ࡽ
[
3∗ȋ(˥; θ)

(
BHQ+(˥)− 〈BHQ+〉|ψ(˥)|ࡽ

)]
. ࣱࡹ࣯

óʚɄƉǫŗʌʚǶƉ éƨƉɄȳ̇ǖʯɼŗʚǶɄȳ

θ(ʋ+ࡹ) = θ(ʋ) − η(ʋ) ç−ࡹ∇θ 〈H〉ψ, ࣱࡹ࣯

çǮȃ = 〈3∗Ǯ 〉〈3ȃ〉 − 〈3∗Ǯ 3ȃ〉, ࣱ࢙ࡹ࣯


óʚɄƉǫŗʌʚǶƉ eɼŗƕǶƨȳʚ 6ƨʌƉƨȳʚ

İƨ ƕƨ̇ȳƨ ʚǫƨ țɄǖŗɼǶʚǫȭǶƉ ƕƨɼǶ˙ŗʚǶ˙ƨʌ ɄǑ ʚǫƨ ȳƨʯɼŗț ȳƨʚ˝Ʉɼȕࣩ˝ŗ˙ƨ
ǑʯȳƉʚǶɄȳ ˝ɼʚ ȳƨʚ˝Ʉɼȕ ɱŗɼŗȭƨʚƨɼʌࣘ

3ȋ(˥; θ) =
∂θȋψθ(˥)

ψθ(˥) ࣱࢉࡹ࣯

˝ƨ Ɖŗȳ ƕƨȭɄȳʌʚɼŗʚƨ ʚǫŗʚ ʚǫƨ ǖɼŗƕǶƨȳʚ ɄǑ ʚǫƨ pŗȭǶțʚɄȳǶŗȳ

∂θȋ〈H〉ψ = 〈aȋ〉|ψ(˥)|ࡽ ࣱࢍࡹ࣯

Ɖŗȳ ſƨ ƨ˙ŗțʯŗʚƨƕ ˙Ƕŗ ¡ƨʚɼɄɱɄțǶʌ ʌŗȭɱțǶȳǖ ʚǫɼɄʯǖǫ ʚǫƨ ʌʚɄƉǫŗʌʚǶƉ
ǖɼŗƕǶƨȳʚ ƨʌʚǶȭŗʚɄɼ

aȋ(˥; θ) = 2_ࡽ
[
3∗ȋ(˥; θ)

(
BHQ+(˥)− 〈BHQ+〉|ψ(˥)|ࡽ

)]
. ࣱࡹ࣯

óʚɄƉǫŗʌʚǶƉ éƨƉɄȳ̇ǖʯɼŗʚǶɄȳ

θ(ʋ+ࡹ) = θ(ʋ) − η(ʋ) ç−ࡹ∇θ 〈H〉ψ, ࣱࡹ࣯

çǮȃ = 〈3∗Ǯ 〉〈3ȃ〉 − 〈3∗Ǯ 3ȃ〉, ࣱ࢙ࡹ࣯


óʚɄƉǫŗʌʚǶƉ eɼŗƕǶƨȳʚ 6ƨʌƉƨȳʚ

İƨ ƕƨ̇ȳƨ ʚǫƨ țɄǖŗɼǶʚǫȭǶƉ ƕƨɼǶ˙ŗʚǶ˙ƨʌ ɄǑ ʚǫƨ ȳƨʯɼŗț ȳƨʚ˝Ʉɼȕࣩ˝ŗ˙ƨ
ǑʯȳƉʚǶɄȳ ˝ɼʚ ȳƨʚ˝Ʉɼȕ ɱŗɼŗȭƨʚƨɼʌࣘ

3ȋ(˥; θ) =
∂θȋψθ(˥)

ψθ(˥) ࣱࢉࡹ࣯

˝ƨ Ɖŗȳ ƕƨȭɄȳʌʚɼŗʚƨ ʚǫŗʚ ʚǫƨ ǖɼŗƕǶƨȳʚ ɄǑ ʚǫƨ pŗȭǶțʚɄȳǶŗȳ

∂θȋ〈H〉ψ = 〈aȋ〉|ψ(˥)|ࡽ ࣱࢍࡹ࣯

Ɖŗȳ ſƨ ƨ˙ŗțʯŗʚƨƕ ˙Ƕŗ ¡ƨʚɼɄɱɄțǶʌ ʌŗȭɱțǶȳǖ ʚǫɼɄʯǖǫ ʚǫƨ ʌʚɄƉǫŗʌʚǶƉ
ǖɼŗƕǶƨȳʚ ƨʌʚǶȭŗʚɄɼ

aȋ(˥; θ) = 2_ࡽ
[
3∗ȋ(˥; θ)

(
BHQ+(˥)− 〈BHQ+〉|ψ(˥)|ࡽ

)]
. ࣱࡹ࣯

óʚɄƉǫŗʌʚǶƉ éƨƉɄȳ̇ǖʯɼŗʚǶɄȳ

θ(ʋ+ࡹ) = θ(ʋ) − η(ʋ) ç−ࡹ∇θ 〈H〉ψ, ࣱࡹ࣯

çǮȃ = 〈3∗Ǯ 〉〈3ȃ〉 − 〈3∗Ǯ 3ȃ〉, ࣱ࢙ࡹ࣯


óʚɄƉǫŗʌʚǶƉ eɼŗƕǶƨȳʚ 6ƨʌƉƨȳʚ

İƨ ƕƨ̇ȳƨ ʚǫƨ țɄǖŗɼǶʚǫȭǶƉ ƕƨɼǶ˙ŗʚǶ˙ƨʌ ɄǑ ʚǫƨ ȳƨʯɼŗț ȳƨʚ˝Ʉɼȕࣩ˝ŗ˙ƨ
ǑʯȳƉʚǶɄȳ ˝ɼʚ ȳƨʚ˝Ʉɼȕ ɱŗɼŗȭƨʚƨɼʌࣘ

3ȋ(˥; θ) =
∂θȋψθ(˥)

ψθ(˥) ࣱࢉࡹ࣯

˝ƨ Ɖŗȳ ƕƨȭɄȳʌʚɼŗʚƨ ʚǫŗʚ ʚǫƨ ǖɼŗƕǶƨȳʚ ɄǑ ʚǫƨ pŗȭǶțʚɄȳǶŗȳ

∂θȋ〈H〉ψ = 〈aȋ〉|ψ(˥)|ࡽ ࣱࢍࡹ࣯

Ɖŗȳ ſƨ ƨ˙ŗțʯŗʚƨƕ ˙Ƕŗ ¡ƨʚɼɄɱɄțǶʌ ʌŗȭɱțǶȳǖ ʚǫɼɄʯǖǫ ʚǫƨ ʌʚɄƉǫŗʌʚǶƉ
ǖɼŗƕǶƨȳʚ ƨʌʚǶȭŗʚɄɼ

aȋ(˥; θ) = 2_ࡽ
[
3∗ȋ(˥; θ)

(
BHQ+(˥)− 〈BHQ+〉|ψ(˥)|ࡽ

)]
. ࣱࡹ࣯

óʚɄƉǫŗʌʚǶƉ éƨƉɄȳ̇ǖʯɼŗʚǶɄȳ

θ(ʋ+ࡹ) = θ(ʋ) − η(ʋ) ç−ࡹ∇θ 〈H〉ψ, ࣱࡹ࣯

çǮȃ = 〈3∗Ǯ 〉〈3ȃ〉 − 〈3∗Ǯ 3ȃ〉, ࣱ࢙ࡹ࣯


óʚɄƉǫŗʌʚǶƉ eɼŗƕǶƨȳʚ 6ƨʌƉƨȳʚ

İƨ ƕƨ̇ȳƨ ʚǫƨ țɄǖŗɼǶʚǫȭǶƉ ƕƨɼǶ˙ŗʚǶ˙ƨʌ ɄǑ ʚǫƨ ȳƨʯɼŗț ȳƨʚ˝Ʉɼȕࣩ˝ŗ˙ƨ
ǑʯȳƉʚǶɄȳ ˝ɼʚ ȳƨʚ˝Ʉɼȕ ɱŗɼŗȭƨʚƨɼʌࣘ

3ȋ(˥; θ) =
∂θȋψθ(˥)

ψθ(˥) ࣱࢉࡹ࣯

˝ƨ Ɖŗȳ ƕƨȭɄȳʌʚɼŗʚƨ ʚǫŗʚ ʚǫƨ ǖɼŗƕǶƨȳʚ ɄǑ ʚǫƨ pŗȭǶțʚɄȳǶŗȳ

∂θȋ〈H〉ψ = 〈aȋ〉|ψ(˥)|ࡽ ࣱࢍࡹ࣯

Ɖŗȳ ſƨ ƨ˙ŗțʯŗʚƨƕ ˙Ƕŗ ¡ƨʚɼɄɱɄțǶʌ ʌŗȭɱțǶȳǖ ʚǫɼɄʯǖǫ ʚǫƨ ʌʚɄƉǫŗʌʚǶƉ
ǖɼŗƕǶƨȳʚ ƨʌʚǶȭŗʚɄɼ

aȋ(˥; θ) = 2_ࡽ
[
3∗ȋ(˥; θ)

(
BHQ+(˥)− 〈BHQ+〉|ψ(˥)|ࡽ

)]
. ࣱࡹ࣯

óʚɄƉǫŗʌʚǶƉ éƨƉɄȳ̇ǖʯɼŗʚǶɄȳ

θ(ʋ+ࡹ) = θ(ʋ) − η(ʋ) ç−ࡹ∇θ 〈H〉ψ, ࣱࡹ࣯

çǮȃ = 〈3∗Ǯ 〉〈3ȃ〉 − 〈3∗Ǯ 3ȃ〉, ࣱ࢙ࡹ࣯


Eȳƨɼǖ˦ ƨ˙ŗțʯŗʚǶɄȳ

İƨ ˝ŗȳʚ ʚɄ ȭǶȳǶȭǶ˲ƨ ʚǫƨ ƨ˥ɱ ˙ŗț ɄǑ

H = ò+ Ğ = ∑
Ǯ

− ǣ̄ࡽ
ࡽ(˕∆)ȣǮࡽ ∑

ȃ

[
ψ†
ȃ+ࡹψȃ − †ψࡽ

ȃ ψȃ + ψ†
ȃ−ࡹψȃ

]
+ Ğ. ࣱࡽࡹ࣯

ÿǫɼɄʯǖǫ ŗȳ ŗʯ˥ǶțǶŗɼ˦ ɄɱƨɼŗʚɄɼ

BHQ+(˥) =
∫
Ɛ˥′ H˥˥′

ψ(˥′)
ψ(˥) ࣱࢁࡹ࣯

Eȳƨɼǖ˦ Ɖŗȳ ſƨ ʌŗȭɱțƨƕ ǑɼɄȭ |ψ(˕)|ࡽ ∼ _"Jࡽ ˙Ƕŗ ȭƨʚɼɄɱɄțǶʌ
ŗțǖɄɼǶʚǫȭ

〈ψ|H|ψ〉
〈ψ|ψ〉 = 〈BHQ+〉|ψ(˥)|ࡽ . ࣱࢅࡹ࣯

�ȳʚǶʌ˦ȭȭƨʚɼǶ˲ŗʚǶɄȳ Ƕʌ ǶȳʚɼǶȳʌǶƉ Ƕȳ |ψ〉 ƉɄȳʌʚɼʯƉʚǶɄȳ ࣯ʌǶǖȳ ɱɼɄſțƨȭࣱ

ࢍ

Eȳƨɼǖ˦ ƨ˙ŗțʯŗʚǶɄȳ

İƨ ˝ŗȳʚ ʚɄ ȭǶȳǶȭǶ˲ƨ ʚǫƨ ƨ˥ɱ ˙ŗț ɄǑ

H = ò+ Ğ = ∑
Ǯ

− ǣ̄ࡽ
ࡽ(˕∆)ȣǮࡽ ∑

ȃ

[
ψ†
ȃ+ࡹψȃ − †ψࡽ

ȃ ψȃ + ψ†
ȃ−ࡹψȃ

]
+ Ğ. ࣱࡽࡹ࣯

ÿǫɼɄʯǖǫ ŗȳ ŗʯ˥ǶțǶŗɼ˦ ɄɱƨɼŗʚɄɼ

BHQ+(˥) =
∫
Ɛ˥′ H˥˥′

ψ(˥′)
ψ(˥) ࣱࢁࡹ࣯

Eȳƨɼǖ˦ Ɖŗȳ ſƨ ʌŗȭɱțƨƕ ǑɼɄȭ |ψ(˕)|ࡽ ∼ _"Jࡽ ˙Ƕŗ ȭƨʚɼɄɱɄțǶʌ
ŗțǖɄɼǶʚǫȭ

〈ψ|H|ψ〉
〈ψ|ψ〉 = 〈BHQ+〉|ψ(˥)|ࡽ . ࣱࢅࡹ࣯

�ȳʚǶʌ˦ȭȭƨʚɼǶ˲ŗʚǶɄȳ Ƕʌ ǶȳʚɼǶȳʌǶƉ Ƕȳ |ψ〉 ƉɄȳʌʚɼʯƉʚǶɄȳ ࣯ʌǶǖȳ ɱɼɄſțƨȭࣱ

ࢍ

Eȳƨɼǖ˦ ƨ˙ŗțʯŗʚǶɄȳ

İƨ ˝ŗȳʚ ʚɄ ȭǶȳǶȭǶ˲ƨ ʚǫƨ ƨ˥ɱ ˙ŗț ɄǑ

H = ò+ Ğ = ∑
Ǯ

− ǣ̄ࡽ
ࡽ(˕∆)ȣǮࡽ ∑

ȃ

[
ψ†
ȃ+ࡹψȃ − †ψࡽ

ȃ ψȃ + ψ†
ȃ−ࡹψȃ

]
+ Ğ. ࣱࡽࡹ࣯

ÿǫɼɄʯǖǫ ŗȳ ŗʯ˥ǶțǶŗɼ˦ ɄɱƨɼŗʚɄɼ

BHQ+(˥) =
∫
Ɛ˥′ H˥˥′

ψ(˥′)
ψ(˥) ࣱࢁࡹ࣯

Eȳƨɼǖ˦ Ɖŗȳ ſƨ ʌŗȭɱțƨƕ ǑɼɄȭ |ψ(˕)|ࡽ ∼ _"Jࡽ ˙Ƕŗ ȭƨʚɼɄɱɄțǶʌ
ŗțǖɄɼǶʚǫȭ

〈ψ|H|ψ〉
〈ψ|ψ〉 = 〈BHQ+〉|ψ(˥)|ࡽ . ࣱࢅࡹ࣯

�ȳʚǶʌ˦ȭȭƨʚɼǶ˲ŗʚǶɄȳ Ƕʌ ǶȳʚɼǶȳʌǶƉ Ƕȳ |ψ〉 ƉɄȳʌʚɼʯƉʚǶɄȳ ࣯ʌǶǖȳ ɱɼɄſțƨȭࣱ

ࢍ



One fermion — optimization

Step 35

final

Step 5



Two fermions — optimization

Convergence with Nv=10
,Ʉȳ˙ƨɼǖƨȳƉƨ ǑɄɼ ࡽ ǑƨɼȭǶɄȳʌ

bǶǖʯɼƨ ࣘࡹ óɄțʯʚǶɄȳ ǑɄɼ ʚǫƨ ʚ˝Ʉ ɱŗɼʚǶƉțƨʌ ȳɄȳࣽǶȳʚƨɼŗƉʚǶȳǖ ɱɼɄſțƨȭ ˝Ƕʚǫ ŗȳ é$¡
ſʯǶțʚ ˝Ƕʚǫ Ʉȳț˦ ࡱࡹ ǫǶƕƕƨȳ ȳɄƕƨʌࣖ ÿǫǶʌ ʌǶȭʯțŗʚǶɄȳ ɱɼɄ˙ƨʌ ʚǫŗʚ Ƕʚ Ƕʌ ɱɄʌʌǶſțƨ ʚɄ
ǫŗ˙ƨ ŗ ʌŗʚǶʌǑ˦Ƕȳǖ ŗɱɱɼɄ˥ǶȭŗʚǶɄȳ ŗțʌɄ ˝Ƕʚǫ ɼƨțŗʚǶ˙ƨț˦ Ǒƨ˝ ǫ˦ɱƨɼ ɱŗɼŗȭƨʚƨɼʌࣖ

࢙

p˦ɱƨɼɱŗɼŗȭƨʚƨɼ ɄɱʚǶȭǶ˲ŗʚǶɄȳ

�ǣ 〈ʋ〉/ǶʚƨɼŗʚǶɄȳ ∆B/B

ࡴࢇ ࢋࣖࡿ ȭǶȳ ࡿ
ࡴࢃ ࣖࡻ ȭǶȳ ࣖࡿ
ࡴࡿ ࡻ ȭǶȳ ࢃࡴࣖࡴ
ࡴࡻ ࡿࣖࡻ ʌ ࢋࡴࣖࡴ
ࢋ ࢇ ʌ ࡴ

ÿŗſțƨ ࣘࡹ E˾ƉǶƨȳƉ˦ ŗȳƕ ɸʯŗțǶʚ˦ ɄǑ ƉɄȳ˙ƨɼǖƨȳƉƨ ɄǑ é$¡ʌ ˝Ƕʚǫ ˙ŗɼǶɄʯʌ �ǣ ʚɄ
ȭɄƕƨț ʚǫƨ ʚ˝Ʉ ȳɄȳࣽǶȳʚƨɼŗƉʚǶȳǖ ǑƨɼȭǶɄȳʌ Ƕȳ ŗ ſɄ˥ࣖ �ˉ Ƕʌ ʌƨʚ ʚɄ ࡱࡹ ǑɄɼ ƨ˙ƨɼ˦
ʌǶȭʯțŗʚǶɄȳࣖ



Hyperparameter optimization



Two fermions — NQS wave function
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Hydrogen atom on the 3D lattice

Figure 3.6: From left to right and top to bottom sections of the hydrogen
wave function more and more near to the boundary obtained fixing the z
coordinate of the particle in 8,7,6,2. Near the boundary the wave function
goes to zero.

Finally, in fig.3.7 a plot of a one-dimensional section in correspondence
with the nucleus to see the behavior of the cusp compared to the theoretical
behavior / exp(�r). Our cusp condition already seems to work well in
lattices with number of points 103-203.
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RBM wave function (x-y plane at z=cons)
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Figure 3.4: The optimization of the network for the hydrogen atom confined
in a box Nv=4913(17x17x17) and a zoom of the last iterations on the right.
The network seems to converge to the exact value in the continuum limit
but it misses the correct result for the discretized problem.’

Exact convergence is not achieved. Many attempts have been made
to achieve exact convergence by varying the learning parameters, but no
better results have been obtained, suggesting that more advanced learning
methods are needed. However, the convergence is already quite good and
we will now plot the wave function. We show the wave function in arbitrary
units, simply normalizing it by dividing for its maximum. In Fig. 3.6 we see
some sections of the wave function obtained by first fixing the coordinate
of the particle in correspondence with the nucleus and then varying one
coordinate in the direction of the boundary. In Fig. 3.5 we show the wave
function compared with the theoretical behavior / exp(�r), where r is the
distance from the nucleus.

Figure 3.5: A section of the wave function of the hydrogen in correspon-
dence of the nucleus on the left is compared with an equivalent section of
exp(�r) on the right. It is di�cult to distinguish the two.
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Figure 3.7: One-dimensional section of the hydrogen wave function in cor-
respondence of the nucleus compared with theoretical behavior / exp(�r).

3.2.3 Neural-Network Solution for the non-interacting
Helium atom GS in a Box

We now show the results for the ground state of the helium atom with
non-interacting electrons. We follow the same scheme as in the previous
section. We still consider boxes with trap length L = 10 a0 and only
visible units of RBM are needed to study the system, since the electrons
are considered to be non-interacting. However, this time we have twice
the number of parameters since we now have to visible layers, one for spin
down and one for spin up. Table 3.3 lists the results we obtained in low
discretized lattices using the SR to optimize the parameters. The RBM
is initialized with random parameters distributed as Gaussian centered on
the origin and with a variance of 10�4, learning rate ⌘ = 0.5 and ⌘1 = 1.5
x 105. NQS again shows great compatibility with the exact value of the
discretized Hamiltonian.

Nv NQS Energy Value Diagonalizer
54(3x3x3) -2.260744 ± 9 x 10�6 -2.26056
250(5x5x5) -3.26335 ± 7 x 10�5 -3.26354
686(7x7x7) -3.9271 ± 3 x 10�4 -3.92786

Table 3.3: NQS energy value vs exact value of the Hamiltonian for the
non-interacting Helium atom GS confined in a box of 10 Bohr radius.

As the discretization increased and thus the number of parameters in-
creased, we used a classical gradient descendent algorithm. Many attempts
were made to obtain a valid result. Our best result is shown in Fig. 3.8,
where the network appears to converge near the continuum limit missing
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The cusp at the proton site is recovered

Convergence 



Self-consistent Green’s function (SCGF) 
and 

Diagrammatic Monte Carlo (DiagMC)



Green’s function theory for nuclei 

The Green’s function is found as the exact solution of the Dyson equation: The Green’s function is found as the exact solution of the Dyson equation
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It requires knowing the self-energy which is the sum of an infinite series of Feynman diagrams: 

The number of required diagrams 

explodes (factorially!) with the order 

of the approximation…



All Ladders (GT) and ring modes (GW) are coupled 
to all orders. Two approaches: 

• Faddev-RPA allows for RPA modes 

• ADC(3) Tamn-Dancoff version using 3rd order 
diagrams as ‘seeds’: 

The Faddev-RPA and ADC(3) methods in a few words

n p

“Extended” 
Hartree-Fock

Σ★(ω) = R(2p1h) R(2h1p)

F-RPA:  
Phys. Rev. C63, 034313 (2001) 
Phys. Rev. A76, 052503 (2007) 
Phys. Rev. A83, 042517 (2011) 

ADC(3): 
Lect. Notes in Phys 936 (2017)- 
Chapter 11.

Compute the nuclear self energy to extract both scattering (optical potential) and spectroscopy. 
Both ladders and rings are needed for atomi nuclei:
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Explicit expressions for effective 1B and 2N interaction
operators are

Ũ =
∑

αβ

Ũαβ a†
αaβ , (13)

with

Ũαβ = −Uαβ +
∑

γ δ

Vαγ ,βδ ρδγ + 1
4

∑

γ ε
δη

Wαγ ε,βδη (δη,γ ε, (14)

and

Ṽ = 1
4

∑

αγ
βδ

[

Vαβ,γ δ +
∑

εη

Wαβε,γ δη ρηε

]

a†
αa

†
βaδaγ , (15)

where, in the averaging of 2NFs and 3NFs, one- and two-
body reduced density matrices of the many-body system are
produced,

ρδγ =
〈
)A

0

∣∣ a†
γ aδ

∣∣)A
0

〉
= −ih̄ gδγ (t − t+), (16)

(δη,γ ε =
〈
)A

0

∣∣ a†
γ a†

εaηaδ

∣∣)A
0

〉
= ih̄ gII

δη,γ ε(t − t+). (17)

The two-body density of Eq. (17) is obtained when the
opportune limits are taken in the time arguments of the 2B
Green’s function in Eq. (2).

We note that when the irreducible self-energy is computed
with the effective Hamiltonian of Eq. (12), a portion of the
many-body effects is incorporated in the interactions, which
become system dependent. This is done in a systematic way
and the procedure is in principle superior to the usual normal
ordering approach. Here the density matrices ρ and ( entering
the contraction of the interaction vertex are obtained from the
true correlated propagators; i.e., they are not computed from
the reference state.

The separation of a simple unperturbed Hamiltonian Ĥ0
from Eq. (11) is instrumental to any approach based on
perturbation theory (or on all-orders resummations): it allows
us to define a reference state upon which a perturbative series
is constructed and it also leads to the expansion of the Green’s
function in Feynman diagrams. Nevertheless, the auxiliary
potential Û eventually cancels from the SCGF formalism.
Considering the decomposition of Eq. (9), the irreducible
static self-energy *∞

αβ is given exactly by the 1B effective
interaction [22]:

*∞
αβ = Ũαβ . (18)

Since Û is added to the definition of the reference propagator
g(0) but subtracted in Eq. (14), it eventually cancels out exactly
from the Dyson equation [see Eq. (28)]. The dynamic self-
energy *̃αβ(ω) can still depend on the auxiliary potential
through the perturbative expansion in g

(0)
αβ (ω). However, in

the full self-consistent approach, the perturbative series is
restricted to skeleton diagrams where fully correlated propaga-
tors gαβ(ω) replace the uncorrelated ones. Thus, the partition
of the Hamiltonian into a uncorrelated part and residual part
is completely lost in the exact SCGF formalism and one may
think of the correlated propagator as playing the role of an
improved reference state.

(a) (b)

FIG. 1. One-particle irreducible, skeleton, and interaction-
irreducible self-energy diagrams appearing at second order in the
expansion of Eq. (9), using the effective Hamiltonian of Eq. (12).
The wiggly lines represent the 2N effective interaction of Eq. (15),
while the long-dashed lines represent the interaction-irreducible
3NF Ŵ .

For the irreducible self-energy, all one-particle irreducible,
skeleton and interaction-irreducible diagrams up to third order
have been derived in Ref. [22]. Within the skeleton expansion,
i.e., when single-particle propagators are correlated, the irre-
ducible self-energy up to the third order is given by the exact
static part, Eq. (18), the two second-order diagrams of Fig. 1,
and the 17 third-order diagrams of Figs. 2 and 6. In this case,
the energy-dependent part of the self-energy contains only
effective 2NFs and irreducible 3NFs as interaction insertions.
Note that because of Eq. (15), the contribution of Fig. 1(a)
actually corresponds to four separate diagrams if expressed
in terms of the bare Hamiltonian Eq. (10), of which three are
interaction reducible [22]. Likewise, many more reducible di-
agrams would appear at third order. Without propagator renor-
malization, when one considers the diagrammatic expansion
with reference propagators g

(0)
αβ (ω) as internal fermionic lines,

other diagrams with different topologies must be included
to take into account explicitly additional correlations in both
the static and dynamic part of the self-energy. These terms
contain also nonskeleton diagrams that include Ũ and are
presented in Appendix C.

In Fig. 1 we show the only two one-particle irreducible,
skeleton, and interaction-irreducible diagrams at second order.
These diagrams imply different sets of intermediate state

(a) (b)

(c)

FIG. 2. As described in the caption of Fig. 1 but for the third-order
diagrams with only 2p1h and 2h1p intermediate state configurations.
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The Self-Consistent Green’s Function with Faddev-RPA
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spectroscopic factors and asymptotic normalization coef-
ficients that can be employed for the consistent computa-
tion of nucleon capture and knockout processes.
Results.—We first compare to early NCSM-RGM results

from Ref. [19], where neutron scattering off 16O was
computedwith a NN-only interaction derived from the chiral
next-to-next-to-next-to-leading order force of Ref. [41]
(EM500) and evolved with free space similarity renormal-
ization group (SRG) [42] to a cutoff λ ¼ 2.66 fm−1. This soft
interaction facilitates model space convergence and allows
for amoremeaningful benchmark. These earlyNCSM-RGM
computations did not include virtual excitations of the target
nucleus. For consistence, we performed our SCGF calcu-
lations with the same Hamiltonian but evaluated the phase
shifts using only the static self-energy,Σð∞Þ. The comparison
is shown in the upper panel of Fig. 1, and it is very
satisfactory for the jπ ¼ 1=2þ and 5=2þ partial waves.
For this light nucleus, the discrepancy of about 1 MeV for
the energy of the 3=2þ resonance is also consistent with the
uncertainty in the transformation to the center ofmass system
done in Eq. (5). As we discuss below, doorway excitations of
the target nucleus have a strong impact on the energies of
single particle resonances. To account for this, we performed
new NCSMC calculations that can also include low-lying
excitations of 17O. Extrapolating from model spaces of
NNCSM ¼ 6–10ℏΩ, we find quasiparticle energies of −3.4,
−2.7, and 3.2 MeV for the 5=2þ; 1=2þ bound states and the
3=2þ resonance, respectively. The corresponding results
from the SCGF, including the full Σ⋆ðωÞ self-energy, are

−6.3, −5.5, and 0.5 MeV. These should be expected to be
more bound since SCGF introduces a larger number of 2p1h
doorway configurations. At the same, time the excitation
energies relative to the 17O ground state agree to within
200 keV,which is a satisfactory agreement given the different
many-body truncations of the two approaches.
We performed an analogous comparison for the chiral

next-to-next-to-leading order NNþ 3N interaction of
Ref. [32] (named NNLOsat). For NCSM techniques, 16O
is more difficult to converge because the interaction is
harder and the additional 3N matrix elements limit the
applicability of importance truncation [43]. We performed
our NCSM-RGM calculations at NNCSM ¼ 8ℏΩ and esti-
mated an uncertainty of 1 to 2 MeV for the position of
resonances. The SCGF still allows computations with
Nmax ¼ 13, and we find that phase shifts are well con-
verged up to 15 MeV for this space. This puts into evidence
the advantage of the latter approach to address ab initio
scattering off medium mass isotopes. The NNLOsat bench-
mark is displayed in the lower panel of Fig. 1, and it is
qualitatively similar to the case of the soft EM500-SRG
interaction, with the jπ ¼ 1=2þ and 5=2þ waves agreeing
best. For both Hamiltonians, the largest discrepancies are
for the jπ ¼ 3=2þ and 7=2− resonances, which are more
affected by correlations in the continuum and the different
many-body truncations of the two approaches. NNLOsat
was explicitly constructed to reproduce correct nuclear
saturation properties of medium mass nuclei, including
binding energies and radii. The constraint on radii is crucial
to predicting elastic scattering observables that can be
reasonably compared to the experiment; hence, we will
focus on this Hamiltonian in the following.

FIG. 1. Real part of nuclear phase shifts, δðEc:m:Þ, for neutrons
scattering off 16O as a function of energy obtained from the (upper
panel) EM500-SRG and (lower panel) NNLOsat interactions. The
solid lines are SCGF calculations using only the static part of the
self-energy Σð∞Þ in a Nmax ¼ 13 space. The dashed lines are for
NCSM-RGM, which included only the ground state of 16O
and used a no-core model space up to (top, from Ref. [19])
NNCSM ¼ 18ℏΩ and (bottom) 8ℏΩ.

FIG. 2. Real phase shifts, δðEc:m:Þ, for neutrons scattering off
16O using the complete self-energy, Eq. (2), and NNLOsat in an
oscillator space of frequency ℏΩ ¼ 20 MeV and size Nmax ¼ 13.
(Upper panel) Positive parity, (central panel) l ¼ 1, and (lower
panel) l ¼ 3 partial waves are shown.
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Elastic neutron scattering [Phys Rev. Lett. 123, 092501 (2013)]

Virtual excitations of the target have the double effect of
increasing the attraction of the real part of the optical
potential (and hence lowering the single particle spectrum)
and of generating a large number of narrow resonances.
This is clearly seen in Fig. 2, which displays the phase
shifts for neutron elastic scattering predicted by the whole
self-energy of Eq. (2). Most of the virtual excitations
responsible for this, especially at low energy, are accessed
by coupling to hundreds of 2p1h configurations for 17O and
appear as clear spikes or “smoothed” oscillations in the
figure. The SCGF-ADC(3) approach has the advantage of
including these states naturally, even at large energies, so it
describes efficiently the relevant physics. Table I compares
the energies of some representative bound and scattering
states to the experiment. The 3=2þ single particle resonance
is computed at 0.91 MeV in the c.m. frame, very close to
the experimental value. The first 1=2− and 3=2− are both
predicted as bound states, although experimentally they are
found inverted with the 3=2− in the continuum. We
calculate a narrow width for the 5=2− and 7=2− resonances,
corresponding to excited states, close to the ones observed
at 3.02 and 3.54 MeV [44]. However, there are other very
narrow f-wave resonances, measured between 1.55 and
2.82 MeV, that our SCGF calculations do not resolve. In
general, we find that NNLOsat predicts the location of
dominant quasiparticle and hole states with an accuracy of
≲1 MeV for this nucleus.

Figure 3 compares the low-energy differential cross
sections originating from Eq. (5) to neutron scattering data
for 16O at 3.286 MeVand 40Ca at 3.2 MeV. The minima are
reproduced well for 16O (and close to the experiment for
40Ca), confirming the correct prediction of density distri-
butions for NNLOsat [32,34,46]. However, the results are
somewhat overestimated and hint at a general lack of
absorption that is usually faced by attempts at computing
the optical potentials ab initio. This is likely related to
missing doorway configurations (3p2h and beyond) that
should be propagated in the denominators of Eq. (2) but are
neglected by state-of-the-art approaches. Note that there are
more than 200 experimentally observed excitations already
between the ground state and the neutron separation
threshold in 41Ca [47], while the SCGF ADC(3) predicts
only about 40 of them. This issue is likely to worsen at
higher energies, where configurations more complex than
2p1h become relevant. We investigated this problem by
computing total nþ 16O elastic cross sections, σðEc:m:Þ,
with only Σð∞Þ, suppressing 50% of the 2p1h and 2h1p
states (evenly across all energies), and by using the
complete ADC(3) self-energy. Figure 4 shows that
σðEc:m:Þ presents oscillations up to about 5 MeV. These
are in part reproduced by theory and are sensible to

TABLE I. Excitation spectrum of 17O with respect to the nþ 16O threshold, as obtained from Eq. (5) and the
NNLOsat interaction and compared to the experiment [45]. Broad resonances in the continuum (most notably, the
5=2þ) are computed at midpoint. The asterisk subscripts indicate higher excited states, above the lowest one, for
each partial wave.

ε (MeV) 5=2þ 1=2þ 1=2− 5=2− 3=2− 3=2þ 5=2þ$ 5=2−$ 7=2−$

Exp −4.14 −3.27 −1.09 −0.30 0.41 0.94 3.23 3.02 3.54
NNLOsat −5.06 −3.58 −0.15 −1.23 −2.24 0.91 4.57 3.36 3.37

FIG. 3. Differential cross section for neutron elastic scattering
off 16O (40Ca) at 3.286 (3.2) MeV of neutron energy, with
NNLOsat and compared to the empirical data from Refs. [44,50].

FIG. 4. Total elastic cross section for neutron elastic scattering
on 16O form SCGFADC(3) at different incident neutron energies
compared to the experiment in Ref. [51]. The dashed, dotted-
dashed, and solid lines correspond to the sole static self-energy
Σð∞Þ, to retaining 50% of the 2p1h and 2h1p doorway configu-
rations and to the complete Eq. (2), respectively.
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FIG. 7. Isovector E1 photoabsorption cross sections of 14,16,22,24O computed with the NNLOsat interaction and the SCGF many-body
method. The reference gOpRS

MF (ω) propagator is computed using an ADC(3) self-energy. The curves are obtained by folding the discrete spectra
with Lorentzian widths " = 3.0 MeV. Experimental data for 16O in (b) are from Ahrens et al. [47] (red squares) and from Ishkhanov et al. [49]
(green circles); experimental data for 22O in (c) are from Leistenschneider et al. [48].

D. 68Ni

The isovector dipole response in the neutron-rich 68Ni was
recently measured and the corresponding dipole polarizability
extracted by Rossi et al. [52]. The experimental data are
shown in Fig. 9 and compared with the computed SCGF
curve. The few experimental points at ∼9.5 MeV and around
∼17 MeV excitation energies are interpreted as pygmy and
giant dipole resonances, respectively. We refer to Table IV

TABLE III. 40Ca and 48Ca isovector dipole polarizabilities αD of
Eq. (22) compared with those calculated with the CC-LIT method in
Refs. [28,29,50] and those extracted from the experimental spectra
of Refs. [47,51] for 40Ca and of Ref. [50] for 48Ca.

Nucleus SCGF CC-LIT Expt.

40Ca 1.79 fm3 2.23(3) fm3 1.87(3) fm3

48Ca 2.06 fm3 2.25(8) fm3 2.07(22) fm3

for a comparison with the closest peaks in the computed
discrete RPA spectrum, which is also displayed in Fig. 9. In
particular, the computed strength at low energy is fragmented
in two principal peaks at 10.68 MeV and 10.92 MeV, located
at higher energy than the experimental PDR. For the GDR,
Table IV reports the centroid calculated from the DRPA
response around the main peak after the Lorentzian folding.

The αD computed by integrating the DRPA spectrum is
in agreement with the experiment, also reported in Table IV.
The 3.88(31) fm3 value is obtained by including corrections
from a theoretical extrapolation of the low-energy and high-
energy parts of the spectrum [6], which were not accessible
in the experiment of Rossi et al. [52]. Both the discrete peaks
and the convoluted response in Fig. 9 confirm that the com-
puted spectrum is somehow shifted towards higher energy as
compared to the experimental excitation energies. The
strength of the PDR is also underestimated.

The lack of strength in the low-energy part of the spectrum
could point to insufficient constraints on the isospin-violating
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FIG. 9. Isovector dipole response for 68Ni computed using a
gOpRS

MF (ω) reference from Dyson-ADC(3). The lower (upper) panel
shows the discrete (convoluted) spectrum obtained from DRPA. The
convolution uses a Lorentzian width " = 3.0 MeV. Experimental
data are from Rossi et al. [52].

verified by using different RPA phenomenological models
[55]. When varying the truncation of the model space in our
simulations, from small spaces up to convergence, we find that

TABLE IV. Experimental excitation energies of PDR and GDR,
and dipole polarizability in 68Ni from Rossi et al. [52], compared
with those calculated with the SCGF method at ADC(3)-DRPA level
(see text for details).

SCGF Exp

EPDR (MeV) 10.68 9.55(17)
10.92

EGDR (MeV) 18.1 17.1(2)

αD (fm3) 3.60 3.40(23)
3.88(31)
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FIG. 10. Photoabsorption cross sections of 16O computed with
g̃OpRS

p!1 (ω). The computed DRPA spectrum is convoluted with a
Lorentzian width of " = 3.0 MeV. Experimental data are from
Ahrens et al. [47] (red squares) and from Ishkhanov et al. [49] (green
circles).

the polarizability of this nucleus is strongly correlated to its
radius.

IV. DIFFERENT REDUCTION OF THE
DRESSED PROPAGATOR

The procedure for reducing the fully dressed propagator
into a simpler OpRS one is not unique. Different definitions
of the constraining moments can be used, as in Eqs. (18) and
(20). Moreover, propagators gOpRS

αβ (ω) with different numbers
of quasiparticle and quasihole poles are possible according to
the number of moments considered. In general, the strategy
of constraining the lower moments through Eq. (19) is very
effective and it works similarly to Krylov subspace projection
techniques to induce a fast convergence of the spectroscopic
response spectrum [56]. As a result, several fundamental
observables and physical quantities that are encoded in the
fully dressed propagator are retained already when a few
moments are conserved. Nevertheless, even with large-scale
computational technique it is normally possible to handle only
the smallest OpRs propagators. It is therefore interesting to
investigate by how much this truncation affects the DRPA
computed quantities. Even more interesting is the need to
ascertain the effect of fragmentation, beyond the gOpRS

MF (ω): As
discussed in Sec. II A, the fragmented strength in the solution
of Eq. (7) results from admixtures of 2p1h and 2h1p states.
These can couple in the DRPA equations to generate the redis-
tribution of strength at high energies without explicitly includ-
ing configurations beyond ph. While the above information is
washed out of a mean-field propagator, some fragmentation
is already present even in the lowest g̃OpRS

p=0,1,2,...(ω) reference
propagators when the moments (20) are constrained.

To investigate these effects, we compare the photoabsorp-
tion cross section of 16O predicted from the mean-field type
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verified by using different RPA phenomenological models
[55]. When varying the truncation of the model space in our
simulations, from small spaces up to convergence, we find that

TABLE IV. Experimental excitation energies of PDR and GDR,
and dipole polarizability in 68Ni from Rossi et al. [52], compared
with those calculated with the SCGF method at ADC(3)-DRPA level
(see text for details).
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the polarizability of this nucleus is strongly correlated to its
radius.

IV. DIFFERENT REDUCTION OF THE
DRESSED PROPAGATOR

The procedure for reducing the fully dressed propagator
into a simpler OpRS one is not unique. Different definitions
of the constraining moments can be used, as in Eqs. (18) and
(20). Moreover, propagators gOpRS

αβ (ω) with different numbers
of quasiparticle and quasihole poles are possible according to
the number of moments considered. In general, the strategy
of constraining the lower moments through Eq. (19) is very
effective and it works similarly to Krylov subspace projection
techniques to induce a fast convergence of the spectroscopic
response spectrum [56]. As a result, several fundamental
observables and physical quantities that are encoded in the
fully dressed propagator are retained already when a few
moments are conserved. Nevertheless, even with large-scale
computational technique it is normally possible to handle only
the smallest OpRs propagators. It is therefore interesting to
investigate by how much this truncation affects the DRPA
computed quantities. Even more interesting is the need to
ascertain the effect of fragmentation, beyond the gOpRS

MF (ω): As
discussed in Sec. II A, the fragmented strength in the solution
of Eq. (7) results from admixtures of 2p1h and 2h1p states.
These can couple in the DRPA equations to generate the redis-
tribution of strength at high energies without explicitly includ-
ing configurations beyond ph. While the above information is
washed out of a mean-field propagator, some fragmentation
is already present even in the lowest g̃OpRS

p=0,1,2,...(ω) reference
propagators when the moments (20) are constrained.

To investigate these effects, we compare the photoabsorp-
tion cross section of 16O predicted from the mean-field type
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verified by using different RPA phenomenological models
[55]. When varying the truncation of the model space in our
simulations, from small spaces up to convergence, we find that
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with those calculated with the SCGF method at ADC(3)-DRPA level
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Ahrens et al. [47] (red squares) and from Ishkhanov et al. [49] (green
circles).

the polarizability of this nucleus is strongly correlated to its
radius.

IV. DIFFERENT REDUCTION OF THE
DRESSED PROPAGATOR

The procedure for reducing the fully dressed propagator
into a simpler OpRS one is not unique. Different definitions
of the constraining moments can be used, as in Eqs. (18) and
(20). Moreover, propagators gOpRS

αβ (ω) with different numbers
of quasiparticle and quasihole poles are possible according to
the number of moments considered. In general, the strategy
of constraining the lower moments through Eq. (19) is very
effective and it works similarly to Krylov subspace projection
techniques to induce a fast convergence of the spectroscopic
response spectrum [56]. As a result, several fundamental
observables and physical quantities that are encoded in the
fully dressed propagator are retained already when a few
moments are conserved. Nevertheless, even with large-scale
computational technique it is normally possible to handle only
the smallest OpRs propagators. It is therefore interesting to
investigate by how much this truncation affects the DRPA
computed quantities. Even more interesting is the need to
ascertain the effect of fragmentation, beyond the gOpRS

MF (ω): As
discussed in Sec. II A, the fragmented strength in the solution
of Eq. (7) results from admixtures of 2p1h and 2h1p states.
These can couple in the DRPA equations to generate the redis-
tribution of strength at high energies without explicitly includ-
ing configurations beyond ph. While the above information is
washed out of a mean-field propagator, some fragmentation
is already present even in the lowest g̃OpRS

p=0,1,2,...(ω) reference
propagators when the moments (20) are constrained.

To investigate these effects, we compare the photoabsorp-
tion cross section of 16O predicted from the mean-field type
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68Ni:

considered. Among the nuclei studied in this Letter, only
100Sn and 132Sn are doubly magic and can be computed at
the ADC(3) truncation level. Our investigations show that,
as observed previously on lighter nuclei [8,36,56], the
difference between the ADC(2) and ADC(3) values for the
charge radius (and similarly for the charge density dis-
tribution) is very small, such that it is basically converged at
the ADC(2) level. As such, we do not discuss differences
between ADC(2) and ADC(3) results any further in this
Letter. In the following, we will hence represent our results
as a band obtained for frequencies from 10 to 14 MeV at
Nmax ¼ 13 and from 12 to 14 MeV at Nmax ¼ 11 for
E3max ¼ 16.
From this procedure, the charge radius of 132Xe is

estimated to be 4.824" 0.124 fm, which agrees with the
value recently extracted from the SCRIT experiment of
hr2i1=2 ¼ 4.79þ0.11

−0.08 fm [10]. For comparison, the calcula-
tions have been reproduced using the newly
proposed NN þ 3NðlnlÞ interaction [36], which is known
to have good convergence properties with respect to the
model space size and to give results similar to the very
successful 1.8=2.0ðEMÞ interaction [33]. In contrast to
NNLOsat, the charge radius obtained for 132Xe is
4.070" 0.045 fm, largely underestimating the experi-
mental value consistently with studies on lighter nuclei
[36]. Despite this failure at reproducing the experimental
value of the charge radius, one notices that values obtained
from NN þ 3NðlnlÞ converge better than for NNLOsat, as
expected from the softness of NN þ 3NðlnlÞ. This relative
hardness of NNLOsat, tied to the nonlocal cutoff on the
three-body terms, has been shown to play an important role
for saturation properties of nuclear matter [57] and thus
helps for a good reproduction of both energies and radii, in
contrast to NN þ 3NðlnlÞ.
In addition to the sole charge radius, another quantity

that can be computed from SCGF calculations is the charge
density distribution. In the case of 132Xe, the SCRIT group
extracted the constants c and t for a two-parameter Fermi
charge distribution ρðrÞ ¼ ρ0=f1þ exp½4 ln 3ðr − cÞ=t'g.
Figure 2 displays this two-point Fermi distribution as a
dotted line with a gray band representing the error bars,
while the green band represents our SCGF calculations. It
can be observed that while the SCGF calculations agree
with the two-point Fermi distribution at the surface of the
nucleus, though slightly overpredicting the charge radius,
we obtain an oscillating behavior for the density inside the
nucleus that cannot be reproduced with only a two-
point Fermi distribution. Extracting a three-point Fermi
distribution from the experiment would require an increase
in its luminosity such that possible discrepancies
between theory and experiment cannot be discussed any
further here.
To better gauge the discrepancies between the theoretical

and experimental bands in Fig. 2, we compare the
computed electron scattering cross sections directly to

SCRIT data. Figure 3 displays the differential cross
sections multiplied by the luminosity as a function of
the effective momentum transfer for the three experimental
electron beam energies of Ee ¼ 151 MeV, 201 MeV, and

FIG. 2. Charge density distribution for 132Xe obtained from
Gorkov SCGF calculations at ADC(2). The dotted line with gray
band corresponds to the two-point Fermi distribution with
parameter and error bars extracted from Ref. [10].

FIG. 3. Luminosity multiplied by the differential cross section
for 132Xe obtained from Gorkov SCGF calculations at ADC(2).
The values for the NN þ 3NðlnlÞ interaction have been scaled by
102 for clarity. The gray bands correspond to the two-point Fermi
distribution with parameter and error bars extracted from
Ref. [10]. Experimental values are taken from [10] and duplicated
with a scaling of 102 for comparison with NN þ 3NðlnlÞ values,
where error bars have been removed for clarity.
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the number of neutrons increases. This is attributable to the
strong components of the proton-neutron forces, which also
enhances their correlations. However, the overall dependence
on proton-neutron asymmetry is rather mild. We note that the
vicinity to the neutron dripline would require to explicitly
account for the continuum. Reference [71] found that this
effect is sizable for 24,28O and leads to further quenching
of the proton SFs. Again, this could be interpreted as a
reduced gap between the highest neutron quasihole state and
the nearby particle continuum. In this sense, the reduction of
SFs is an indirect consequence of the change in proton-neutron
asymmetry, which first affects energy gaps.

For the case of the NN + 3N -induced Hamiltonian we
find a completely similar picture, with SFs of dominant peaks
being on average slightly larger than those obtained with the
full interaction. Also in this case, stronger quenchings are
associated with increased fragmentation of nearby strength
and the narrowing of (sub-)shell gaps. Thus, we conclude that
the general effects of the original 3NFs on the quenching of
absolute SFs mainly results from the rearrangement of shell
orbits and excitation gaps.

C. Results for open shells

The present implementation of the Gorkov-GF approach
allows calculations up to the second order in the self-energy
[i.e., at the ADC(2) level]. Although this does not guarantee
the best precision for quasiparticle energies [49], it still yields
proper predictions for the trend of binding energies [22].

We plot the Gorkov-predicted binding energies for all
oxygen isotopes in Fig. 6 and compare them to the Dyson-
ADC(3) results where available. For the Dyson case, the
NN + 3N -induced Hamiltonian systematically underbinds
the full isotopic chain and predicts 28O to be bound with

 O  O  O  O  O  O  O  O
-180

-160

-140

-120

-100

-80

-60

Dys-ADC(3), NN+3N(ind)

Dys-ADC(3), NN+3N(full)

Gkv-2nd, NN+3N(full)

Exp

14 16 18 20 22 24 26 28

E
g.

s.
 [

M
eV

]

ω=24 MeV

SRG=2.0 fm-1

Dys-ADC(3),  NN+3N(full)

Dys-ADC(3),  NN+3N(ind)

Gorkov-2nd,   NN+3N(full)
Exp

FIG. 6. (Color online) Binding energies of oxygen isotopes.
Dashed and solid lines join the results from Dyson-ADC(3) cal-
culations with the NN + 3N -induced (squares) and full (circles)
Hamiltonians. The shaded area highlights the changes owing to the
original 3NF at NNLO. The open diamonds, joined by dot-dashed
lines, are from Gorkov calculations at second order and include
open-shell isotopes. Odd-even isotopes are obtained by summing
total binging energies of the even-even systems [Eq. (10)] and the
energies for addition or removal of a neutron [Eq. (12)]. Experiment
are from Refs. [56,57,60,63,72].

respect to 24O. This is fully corrected by including the
original 3NF at leading order, which brings all results to about
3% form the experiment or closer. This is well within the
estimated theoretical errors discussed above [19]. The dot-
dashed line shows the trend of ground-state energies for the full
Hamiltonian obtained form Gorkov, which include the 18,20,26O
isotopes. This demonstrates that the fraction of binding missed
by the second-order truncation is rather constant across the
whole isotopic chain and, in the present case, of about
2–4 MeV. The result is a constant shift with respect to the
complete ADC(3) prediction and the overall trend of binding
energy is reproduced very close to the experiment. Note that
binding energies for odd-even oxygens can be calculated either
as neutron addition or neutron removal from two different
nearby isotopes. Figure 6 shows that this procedure can lead
to somewhat different results, which should be taken as an
indication of the errors owing to the second-order many-body
truncation. For the more complete Dyson-ADC(3) method and
the full Hamiltonian, these differences are never larger than
200 keV and are not visible in the plot. Our calculations with
the more accurate Dyson-ADC(3) scheme predict 28O to be
unbound with respect to 24O by 5.2 MeV. However, this value
should be slightly affected by the vicinity to the continuum
[17], which was neglected in the present work.

Figure 7 shows the analogous information for the binding
energies of the nitrogen and fluorine isotopic chains, obtained
through removal and addition of one proton. This confirms that
all considerations made regarding the effects of leading-order
3NFs on the oxygens also apply to their neighboring chains. In
particular, the repulsive effect on the d3/2 neutron orbit is key
in determining the neutron driplines at 23N and 24O. Fluorine
isotopes have been observed experimentally up to 31F but with
a 29F that is very weakly bound. Figure 7 clearly demonstrates
that this is attributable to an very subtle cancellation between
the repulsion form 3NFs and the attraction generated by one
extra proton [19].

The general qualitative features of the spectral functions
discussed in the previous sections are also found in our Gorkov
propagators but with an even more spread single-particle
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FIG. 7. (Color online) Same as Fig. 6 but for the binding energies
of nitrogen and fluorine isotopes. These are calculated as addition
or removal of a proton to and from even-even oxygen isotopes.
Experiment are from Refs. [56–58,63,72].
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TABLE II. Ionization energies in electronvolt calculated in the aug-cc-pVDZ basis set. The geometry was taken at the experimental value
(See Table I). In the last two rows, the mean absolute deviation and maximum absolute deviation compared to experiment are given. The values
between parentheses are calculated without the 1σu level of N2. The column labeled ADC(3) represents the ADC(3) results from Ref. [28].
Experimental values are from Refs. [28,29].

HF Level HF FTDA FTDA(c) ADC(3) FRPA FRPA(c) Expt.

HF
1π 17.17 16.22 16.46 16.48 16.05 16.35 16.05
3σ 20.98 20.14 20.33 20.36 20.03 20.24 20.0

CO
5σ 15.10 14.48 13.88 13.94 14.37 13.69 14.01
1π 17.44 17.02 16.93 16.98 16.95 16.84 16.91
4σ 21.99 20.05 20.11 20.19 19.46 19.59 19.72

N2

3σg 17.25 16.14 15.65 15.72 15.76 15.18 15.60
1πu 16.73 17.20 16.82 16.85 17.71 17.14 16.98
2σu 21.25 19.35 18.99 19.06 18.29 17.90 18.78

H2O
1b1 13.86 12.80 12.83 12.86 12.62 12.67 12.62
3a1 15.93 15.06 15.11 15.15 14.91 14.98 14.74
1b2 19.56 19.15 19.19 19.21 19.06 19.13 18.51

#̄ (eV) 1.26(1.14) 0.34(0.31) 0.27(0.28) 0.30(0.30) 0.25(0.23) 0.31(0.26)
#max (eV) 2.47(2.27) 0.64(0.64) 0.68(0.68) 0.70(0.70) 0.73(0.73) 0.88(0.62)

A. Ground-state and ionization energies at
equilibrium geometry

The FRPA fails to describe the correct dissociation behavior
of diatomic molecules due to the appearance of instabilities in
the RPA. The HF ground state becomes unstable with respect to
ph excitations in the dissociation limit. The RPA Hamiltonian
matrix is no longer positive-definite, which results in complex
solutions to the RPA equations. All calculations were therefore
performed at or close to the equilibrium geometry.

We first concentrate on calculating ground-state and ion-
ization energies in equilibrium for a set of small molecules
with a singlet ground state. For each method, calculations
were performed for a number of different separation distances
around the approximate equilibrium distance, after which
a third-order polynomial was fitted to find the true energy
minimum and equilibrium distance. For three molecules, we
have also performed a FCI calculation. This was done at
the FRPA(c) geometry, but within the quoted accuracy the
same result holds for the CCSD(T) geometry. The results
calculated in a correlation-consistent polarized valence double
zeta (cc-pVDZ) basis set are presented in Table I.

The ground-state energies for the molecules H2 to H2O
show little difference (at most 4 mH) between ADC(3) and
FRPA. The differences for the other molecules, which have
double or triple bonds, are somewhat larger, i.e., of the order
of 10 mH. The FRPA(c) ground-state energies tend to be close
to the CCSD(T) results with a maximum deviation of 18 mH
in case of C2H2.

The equilibrium bond distances show a larger spread
when comparing the Faddeev-Tamm-Dancoff approximation
[FTDA(c)] and FRPA(c). The equilibrium bond distances
for ADC(3) and FRPA have comparable deviations from
the experimental values and, in the majority of cases, are
closer to the experimental value than the CCSD(T) results.

The FRPA(c) results are generally closer to the experimental
value than ADC(3). The same conclusion can be made for the
vertical ionization energies. The coupled-cluster results were
calculated as the difference of the ground-state energies of the
neutral and ionic molecule at the same geometry. The FTDA(c)
and FRPA(c) ionization energies outperform the coupled-
cluster results when the experimental value is available.

One remarkable fact is the lack of an equilibrium distance
(no energy minimum) for N2, CO2, and C2H2 in both the FTDA
and FRPA calculations without incorporating self-consistency
at the level of the Hartree-Fock–type diagram. This example
stresses the importance of a consistent treatment of the
static self-energy. The inclusion of self-consistency in the
calculations tends to adjust the results toward experiment,
where needed.

To compare with previous ADC(3) calculations by other au-
thors, we calculated ionization energies for a set of molecules
with the settings used in Ref. [28], i.e., at the experimental
geometries and with the augmented-cc-pVDZ (aug-cc-pVDZ)
basis set. The results are presented in Table II. The present
FTDA(c) results are in close agreement with the Dyson
ADC(3) results in Ref. [28]. The differences are less than 2 mH
and, in fact, are already present when comparing the Hartree-
Fock single-particle energies. Compared to experiment, the
mean absolute error is of the same order of magnitude for
ADC(3) and FRPA. Note that there is a large deviation for
the 2σu level of N2 in the FRPA(c), which has a substantial
influence on the mean error value.

We have also checked the basis-set dependency of the
results by performing calculations for HF in the cc-pVDZ,
correlation-consistent polarized valence triple zeta (cc-pVTZ),
aug-cc-pVDZ, and augmented cc-pVTZ (aug-cc-pVTZ) basis
sets. The differences in ionization energies between the basis
sets with double zeta functions and these with triple zeta
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TABLE II. Ionization energies in electronvolt calculated in the aug-cc-pVDZ basis set. The geometry was taken at the experimental value
(See Table I). In the last two rows, the mean absolute deviation and maximum absolute deviation compared to experiment are given. The values
between parentheses are calculated without the 1σu level of N2. The column labeled ADC(3) represents the ADC(3) results from Ref. [28].
Experimental values are from Refs. [28,29].

HF Level HF FTDA FTDA(c) ADC(3) FRPA FRPA(c) Expt.

HF
1π 17.17 16.22 16.46 16.48 16.05 16.35 16.05
3σ 20.98 20.14 20.33 20.36 20.03 20.24 20.0

CO
5σ 15.10 14.48 13.88 13.94 14.37 13.69 14.01
1π 17.44 17.02 16.93 16.98 16.95 16.84 16.91
4σ 21.99 20.05 20.11 20.19 19.46 19.59 19.72

N2

3σg 17.25 16.14 15.65 15.72 15.76 15.18 15.60
1πu 16.73 17.20 16.82 16.85 17.71 17.14 16.98
2σu 21.25 19.35 18.99 19.06 18.29 17.90 18.78

H2O
1b1 13.86 12.80 12.83 12.86 12.62 12.67 12.62
3a1 15.93 15.06 15.11 15.15 14.91 14.98 14.74
1b2 19.56 19.15 19.19 19.21 19.06 19.13 18.51

#̄ (eV) 1.26(1.14) 0.34(0.31) 0.27(0.28) 0.30(0.30) 0.25(0.23) 0.31(0.26)
#max (eV) 2.47(2.27) 0.64(0.64) 0.68(0.68) 0.70(0.70) 0.73(0.73) 0.88(0.62)

A. Ground-state and ionization energies at
equilibrium geometry

The FRPA fails to describe the correct dissociation behavior
of diatomic molecules due to the appearance of instabilities in
the RPA. The HF ground state becomes unstable with respect to
ph excitations in the dissociation limit. The RPA Hamiltonian
matrix is no longer positive-definite, which results in complex
solutions to the RPA equations. All calculations were therefore
performed at or close to the equilibrium geometry.

We first concentrate on calculating ground-state and ion-
ization energies in equilibrium for a set of small molecules
with a singlet ground state. For each method, calculations
were performed for a number of different separation distances
around the approximate equilibrium distance, after which
a third-order polynomial was fitted to find the true energy
minimum and equilibrium distance. For three molecules, we
have also performed a FCI calculation. This was done at
the FRPA(c) geometry, but within the quoted accuracy the
same result holds for the CCSD(T) geometry. The results
calculated in a correlation-consistent polarized valence double
zeta (cc-pVDZ) basis set are presented in Table I.

The ground-state energies for the molecules H2 to H2O
show little difference (at most 4 mH) between ADC(3) and
FRPA. The differences for the other molecules, which have
double or triple bonds, are somewhat larger, i.e., of the order
of 10 mH. The FRPA(c) ground-state energies tend to be close
to the CCSD(T) results with a maximum deviation of 18 mH
in case of C2H2.

The equilibrium bond distances show a larger spread
when comparing the Faddeev-Tamm-Dancoff approximation
[FTDA(c)] and FRPA(c). The equilibrium bond distances
for ADC(3) and FRPA have comparable deviations from
the experimental values and, in the majority of cases, are
closer to the experimental value than the CCSD(T) results.

The FRPA(c) results are generally closer to the experimental
value than ADC(3). The same conclusion can be made for the
vertical ionization energies. The coupled-cluster results were
calculated as the difference of the ground-state energies of the
neutral and ionic molecule at the same geometry. The FTDA(c)
and FRPA(c) ionization energies outperform the coupled-
cluster results when the experimental value is available.

One remarkable fact is the lack of an equilibrium distance
(no energy minimum) for N2, CO2, and C2H2 in both the FTDA
and FRPA calculations without incorporating self-consistency
at the level of the Hartree-Fock–type diagram. This example
stresses the importance of a consistent treatment of the
static self-energy. The inclusion of self-consistency in the
calculations tends to adjust the results toward experiment,
where needed.

To compare with previous ADC(3) calculations by other au-
thors, we calculated ionization energies for a set of molecules
with the settings used in Ref. [28], i.e., at the experimental
geometries and with the augmented-cc-pVDZ (aug-cc-pVDZ)
basis set. The results are presented in Table II. The present
FTDA(c) results are in close agreement with the Dyson
ADC(3) results in Ref. [28]. The differences are less than 2 mH
and, in fact, are already present when comparing the Hartree-
Fock single-particle energies. Compared to experiment, the
mean absolute error is of the same order of magnitude for
ADC(3) and FRPA. Note that there is a large deviation for
the 2σu level of N2 in the FRPA(c), which has a substantial
influence on the mean error value.

We have also checked the basis-set dependency of the
results by performing calculations for HF in the cc-pVDZ,
correlation-consistent polarized valence triple zeta (cc-pVTZ),
aug-cc-pVDZ, and augmented cc-pVTZ (aug-cc-pVTZ) basis
sets. The differences in ionization energies between the basis
sets with double zeta functions and these with triple zeta
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A. Ground-state and ionization energies at
equilibrium geometry

The FRPA fails to describe the correct dissociation behavior
of diatomic molecules due to the appearance of instabilities in
the RPA. The HF ground state becomes unstable with respect to
ph excitations in the dissociation limit. The RPA Hamiltonian
matrix is no longer positive-definite, which results in complex
solutions to the RPA equations. All calculations were therefore
performed at or close to the equilibrium geometry.

We first concentrate on calculating ground-state and ion-
ization energies in equilibrium for a set of small molecules
with a singlet ground state. For each method, calculations
were performed for a number of different separation distances
around the approximate equilibrium distance, after which
a third-order polynomial was fitted to find the true energy
minimum and equilibrium distance. For three molecules, we
have also performed a FCI calculation. This was done at
the FRPA(c) geometry, but within the quoted accuracy the
same result holds for the CCSD(T) geometry. The results
calculated in a correlation-consistent polarized valence double
zeta (cc-pVDZ) basis set are presented in Table I.

The ground-state energies for the molecules H2 to H2O
show little difference (at most 4 mH) between ADC(3) and
FRPA. The differences for the other molecules, which have
double or triple bonds, are somewhat larger, i.e., of the order
of 10 mH. The FRPA(c) ground-state energies tend to be close
to the CCSD(T) results with a maximum deviation of 18 mH
in case of C2H2.

The equilibrium bond distances show a larger spread
when comparing the Faddeev-Tamm-Dancoff approximation
[FTDA(c)] and FRPA(c). The equilibrium bond distances
for ADC(3) and FRPA have comparable deviations from
the experimental values and, in the majority of cases, are
closer to the experimental value than the CCSD(T) results.

The FRPA(c) results are generally closer to the experimental
value than ADC(3). The same conclusion can be made for the
vertical ionization energies. The coupled-cluster results were
calculated as the difference of the ground-state energies of the
neutral and ionic molecule at the same geometry. The FTDA(c)
and FRPA(c) ionization energies outperform the coupled-
cluster results when the experimental value is available.

One remarkable fact is the lack of an equilibrium distance
(no energy minimum) for N2, CO2, and C2H2 in both the FTDA
and FRPA calculations without incorporating self-consistency
at the level of the Hartree-Fock–type diagram. This example
stresses the importance of a consistent treatment of the
static self-energy. The inclusion of self-consistency in the
calculations tends to adjust the results toward experiment,
where needed.

To compare with previous ADC(3) calculations by other au-
thors, we calculated ionization energies for a set of molecules
with the settings used in Ref. [28], i.e., at the experimental
geometries and with the augmented-cc-pVDZ (aug-cc-pVDZ)
basis set. The results are presented in Table II. The present
FTDA(c) results are in close agreement with the Dyson
ADC(3) results in Ref. [28]. The differences are less than 2 mH
and, in fact, are already present when comparing the Hartree-
Fock single-particle energies. Compared to experiment, the
mean absolute error is of the same order of magnitude for
ADC(3) and FRPA. Note that there is a large deviation for
the 2σu level of N2 in the FRPA(c), which has a substantial
influence on the mean error value.

We have also checked the basis-set dependency of the
results by performing calculations for HF in the cc-pVDZ,
correlation-consistent polarized valence triple zeta (cc-pVTZ),
aug-cc-pVDZ, and augmented cc-pVTZ (aug-cc-pVTZ) basis
sets. The differences in ionization energies between the basis
sets with double zeta functions and these with triple zeta
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(See Table I). In the last two rows, the mean absolute deviation and maximum absolute deviation compared to experiment are given. The values
between parentheses are calculated without the 1σu level of N2. The column labeled ADC(3) represents the ADC(3) results from Ref. [28].
Experimental values are from Refs. [28,29].
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A. Ground-state and ionization energies at
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The FRPA fails to describe the correct dissociation behavior
of diatomic molecules due to the appearance of instabilities in
the RPA. The HF ground state becomes unstable with respect to
ph excitations in the dissociation limit. The RPA Hamiltonian
matrix is no longer positive-definite, which results in complex
solutions to the RPA equations. All calculations were therefore
performed at or close to the equilibrium geometry.

We first concentrate on calculating ground-state and ion-
ization energies in equilibrium for a set of small molecules
with a singlet ground state. For each method, calculations
were performed for a number of different separation distances
around the approximate equilibrium distance, after which
a third-order polynomial was fitted to find the true energy
minimum and equilibrium distance. For three molecules, we
have also performed a FCI calculation. This was done at
the FRPA(c) geometry, but within the quoted accuracy the
same result holds for the CCSD(T) geometry. The results
calculated in a correlation-consistent polarized valence double
zeta (cc-pVDZ) basis set are presented in Table I.

The ground-state energies for the molecules H2 to H2O
show little difference (at most 4 mH) between ADC(3) and
FRPA. The differences for the other molecules, which have
double or triple bonds, are somewhat larger, i.e., of the order
of 10 mH. The FRPA(c) ground-state energies tend to be close
to the CCSD(T) results with a maximum deviation of 18 mH
in case of C2H2.

The equilibrium bond distances show a larger spread
when comparing the Faddeev-Tamm-Dancoff approximation
[FTDA(c)] and FRPA(c). The equilibrium bond distances
for ADC(3) and FRPA have comparable deviations from
the experimental values and, in the majority of cases, are
closer to the experimental value than the CCSD(T) results.

The FRPA(c) results are generally closer to the experimental
value than ADC(3). The same conclusion can be made for the
vertical ionization energies. The coupled-cluster results were
calculated as the difference of the ground-state energies of the
neutral and ionic molecule at the same geometry. The FTDA(c)
and FRPA(c) ionization energies outperform the coupled-
cluster results when the experimental value is available.

One remarkable fact is the lack of an equilibrium distance
(no energy minimum) for N2, CO2, and C2H2 in both the FTDA
and FRPA calculations without incorporating self-consistency
at the level of the Hartree-Fock–type diagram. This example
stresses the importance of a consistent treatment of the
static self-energy. The inclusion of self-consistency in the
calculations tends to adjust the results toward experiment,
where needed.

To compare with previous ADC(3) calculations by other au-
thors, we calculated ionization energies for a set of molecules
with the settings used in Ref. [28], i.e., at the experimental
geometries and with the augmented-cc-pVDZ (aug-cc-pVDZ)
basis set. The results are presented in Table II. The present
FTDA(c) results are in close agreement with the Dyson
ADC(3) results in Ref. [28]. The differences are less than 2 mH
and, in fact, are already present when comparing the Hartree-
Fock single-particle energies. Compared to experiment, the
mean absolute error is of the same order of magnitude for
ADC(3) and FRPA. Note that there is a large deviation for
the 2σu level of N2 in the FRPA(c), which has a substantial
influence on the mean error value.

We have also checked the basis-set dependency of the
results by performing calculations for HF in the cc-pVDZ,
correlation-consistent polarized valence triple zeta (cc-pVTZ),
aug-cc-pVDZ, and augmented cc-pVTZ (aug-cc-pVTZ) basis
sets. The differences in ionization energies between the basis
sets with double zeta functions and these with triple zeta
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50% of 2p1h/2h1p poles suppressed

High order configurations, or 
ADC(n>>3), to be critical for fully 
ab initio optical potentials

chains [34]. Hence, we are now in a position to mean-
ingfully compare first principles approaches to scattering
data in medium mass nuclei. In the following, we present
state-of-the-art SCGF calculations to test current ab initio
methods and compare our results to NCSM-RGM and
NCSMC computations with NN and NNþ 3N inter-
actions. We then use a saturating chiral Hamiltonian to
study elastic scattering of neutrons from 16O and 40Ca.
Formalism.—The Hamiltonian used to compute the

self-energy is

HðAÞ ¼ T̂ − T̂c:m:ðAþ 1Þ þ V̂ þ Ŵ; ð1Þ

where T̂c:m:ðAþ 1Þ is the center of mass kinetic energy for
the A-nucleon target plus the projectile, and V̂ and Ŵ are
the NN and 3N interactions. Ŵ is included as an equivalent
effective two-body interaction, averaged on the correlated
propagator as discussed in Refs. [30,35]. The SCGF
calculation proceeds by solving the Dyson equation,
gðωÞ ¼ g0ðωÞ þ g0ðωÞΣ⋆ðωÞgðωÞ, in a harmonic oscillator
(HO) basis of Nmax þ 1 shells, where g0ðωÞ is the free
particle propagator, and the irreducible self-energy Σ⋆ðωÞ
has the following general spectral representation:

Σ⋆
αβðE;ΓÞ ¼ Σð∞Þ
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where α and β label the single particle quantum numbers of
the HO basis, Σð∞Þ is the correlated and energy independent
mean field, and Γ sets the correct boundary conditions. We
performed calculations with the third order algebraic
diagrammatic construction [ADC(3)] method, where the
matrix M (N) couples single particle states to intermediate
2p1h (2h1p) configurations,C (D) is the interaction matrix
among these configurations, and K contains their unper-
turbed energies [36,37]. All intermediate 2p1h and 2h1p
states (respectively labeled by indices i, j and r, s) were
included. For Nmax ¼ 13, this incorporates configurations
up to 400 MeVof excitation energy and partial waves of the
projectile up to angular momentum j ¼ 27=2 for both
parities.
The resulting dressed single particle propagator can be

written in the Källén-Lehmann representation as

gαβðE;ΓÞ ¼
X

n

hΨA
0 jcαjΨAþ1

n ihΨAþ1
n jc†βjΨA

0 i
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0 jc

†
αjΨA−1
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k jcβjΨA

0 i
E − EA

0 þ EA−1
k − iΓ

: ð3Þ

The poles of the forward-in-time propagator, EAþ1
n − EA

0 ,
indicate then the energy of the nth exited state of the

(Aþ 1)-nucleon system with respect to the ground state
of the target A. Hence, they are directly identified
with the scattering energy. For each many-body state
jΨAþ1

n i in the continuum, the corresponding overlaps
ψnðαÞ≡ hΨAþ1

n jc†αjΨA
0 i are associated with the elastic

scattering wave function through Feshbach theory [1,38].
Although the scattering waves are unbound, the self-

energy Σ⋆ðωÞ associated with the optical potential is
localized, and it can be efficiently expanded on square
integrable functions. Hence, we proceed by calculating
Eq. (2) in HO basis but transform it to momentum space
before solving the scattering problem. This will ensure that
the proper asymptotic behaviors of both bound and
scattering states are obtained. The optical potential for a
given partial wave (l, j) is then expressed as

Σ⋆l;jðk; k0;E;ΓÞ ¼
X

n;n0
Rn;lðkÞΣ

⋆l;j
n;n0ðE;ΓÞRn0;lðk0Þ; ð4Þ

which is nonlocal and energy dependent, where Rn;lðkÞ are
the radial HO wave functions in momentum space.
Through Eqs. (2) and (4), the SCGF approach provides
a parametrized, separable, and analytical form of the optical
potential.
The parameter Γ sets the time ordering boundary

conditions, but it does not affect the solution of the
many-body problem that comes from the diagonalization
of the equation of motion [5,27,37]. However, we retain it
in Eq. (4) to introduce a small finite width for the 2p1h and
2h1p configurations, which would otherwise be discretized
in the present approach. We checked that this does not
affect our conclusions below.
We use the intrinsic Hamiltonian of Eq. (1) and large

enough HO spaces so that the intrinsic ground state
decouples from the center of mass motion [39]. Even if
decoupled, the latter is not fully suppressed and the self-
energy (4) is still computed in laboratory frame. We correct
for this by rescaling the scattering momentum appropri-
ately, which naturally leads to the correct center of mass
(c.m.) energy Ec:m: and reduced mass μ¼ γm, with
γ≡A=ðAþ1Þ. The Dyson equation eventually reduces
to the following one-body eigenvalue problem [25,37]:

½Ec:m: − k2=ð2μÞ&ψ l;jðkÞ

¼
Z

dk0k02γ3Σ⋆l;jðγk; γk0; γEc:m:;ΓÞψ l;jðk0Þ; ð5Þ

We diagonalize this Schrödinger-like equation in momen-
tum space so that the kinetic energy is treated exactly and
we account for the nonlocality and l, j dependence of
Eq. (4). The phase shifts δðEc:m:Þ are obtained as a function
of the projectile energy for each partial wave, from which
the differential cross section can be calculated. The bound
state solutions of Eq. (5) yields overlap wave functions
between jΨAi and jΨAþ1i [40]. Hence, they provide
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methods and compare our results to NCSM-RGM and
NCSMC computations with NN and NNþ 3N inter-
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where α and β label the single particle quantum numbers of
the HO basis, Σð∞Þ is the correlated and energy independent
mean field, and Γ sets the correct boundary conditions. We
performed calculations with the third order algebraic
diagrammatic construction [ADC(3)] method, where the
matrix M (N) couples single particle states to intermediate
2p1h (2h1p) configurations,C (D) is the interaction matrix
among these configurations, and K contains their unper-
turbed energies [36,37]. All intermediate 2p1h and 2h1p
states (respectively labeled by indices i, j and r, s) were
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The poles of the forward-in-time propagator, EAþ1
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0 ,
indicate then the energy of the nth exited state of the

(Aþ 1)-nucleon system with respect to the ground state
of the target A. Hence, they are directly identified
with the scattering energy. For each many-body state
jΨAþ1

n i in the continuum, the corresponding overlaps
ψnðαÞ≡ hΨAþ1

n jc†αjΨA
0 i are associated with the elastic

scattering wave function through Feshbach theory [1,38].
Although the scattering waves are unbound, the self-

energy Σ⋆ðωÞ associated with the optical potential is
localized, and it can be efficiently expanded on square
integrable functions. Hence, we proceed by calculating
Eq. (2) in HO basis but transform it to momentum space
before solving the scattering problem. This will ensure that
the proper asymptotic behaviors of both bound and
scattering states are obtained. The optical potential for a
given partial wave (l, j) is then expressed as

Σ⋆l;jðk; k0;E;ΓÞ ¼
X

n;n0
Rn;lðkÞΣ

⋆l;j
n;n0ðE;ΓÞRn0;lðk0Þ; ð4Þ

which is nonlocal and energy dependent, where Rn;lðkÞ are
the radial HO wave functions in momentum space.
Through Eqs. (2) and (4), the SCGF approach provides
a parametrized, separable, and analytical form of the optical
potential.
The parameter Γ sets the time ordering boundary

conditions, but it does not affect the solution of the
many-body problem that comes from the diagonalization
of the equation of motion [5,27,37]. However, we retain it
in Eq. (4) to introduce a small finite width for the 2p1h and
2h1p configurations, which would otherwise be discretized
in the present approach. We checked that this does not
affect our conclusions below.
We use the intrinsic Hamiltonian of Eq. (1) and large

enough HO spaces so that the intrinsic ground state
decouples from the center of mass motion [39]. Even if
decoupled, the latter is not fully suppressed and the self-
energy (4) is still computed in laboratory frame. We correct
for this by rescaling the scattering momentum appropri-
ately, which naturally leads to the correct center of mass
(c.m.) energy Ec:m: and reduced mass μ¼ γm, with
γ≡A=ðAþ1Þ. The Dyson equation eventually reduces
to the following one-body eigenvalue problem [25,37]:

½Ec:m: − k2=ð2μÞ&ψ l;jðkÞ

¼
Z

dk0k02γ3Σ⋆l;jðγk; γk0; γEc:m:;ΓÞψ l;jðk0Þ; ð5Þ

We diagonalize this Schrödinger-like equation in momen-
tum space so that the kinetic energy is treated exactly and
we account for the nonlocality and l, j dependence of
Eq. (4). The phase shifts δðEc:m:Þ are obtained as a function
of the projectile energy for each partial wave, from which
the differential cross section can be calculated. The bound
state solutions of Eq. (5) yields overlap wave functions
between jΨAi and jΨAþ1i [40]. Hence, they provide
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Inclusion of NNN forces 

Formalism already laid out:  
  F. Raimondi, CB, Phys. Rev. C97, 054308 (2018).

➔ 3p2h/3h2p terms relevant to next-generation high-precision methods.
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FIG. 5. Third-order skeleton diagrams corresponding to !̃11(ω) with a particle-particle (pp) type intermediate interaction. The contri-
butions to the other Nambu components of the self-energy with pp intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.

self-energy, i.e., to the first or second term on the right-hand
side of Eqs. (29), respectively,

E (Ia)
r,r′ =






1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)

for forward poles
1
6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)

for backward poles,

(44)

where

E (pp)
k1k2,k4k5

=
∑

αβγ δ

(
U k1

α U k2
β

)∗
vαβ,γ δU k4

γ U k5
δ , (45)

E (hh)
k1k2,k4k5

=
∑

αβγ δ

V̄k1
α V̄k2

β vαβ,γ δ

(
V̄k4

γ V̄k5
δ

)∗
. (46)

The corresponding hh (pp) interaction contributions to the
forward-going (backward-going) self-energies arise from the
four diagrams in Fig. 6. They are analogous to the diagrams
of Fig. 5 except for inverting the orientation of all lines en-
tering and leaving the intermediate interaction vertex. These
diagrams lead to the following corrections to the coupling
amplitudes:

C (IIc)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

2

(
V̄k4

µ V̄k5
ν

)∗
t k4k5
k1k2

V̄k3
λ , (47a)

C (IId)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

(
V̄k4

ν U k5
λ

)∗
t k4k5
k1k2

U k3
µ , (47b)

D̄(IIc)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k1k2
k4k5

U k3
λ

(
U k4

µ U k5
ν

)∗ vµν,αλ

2
, (47c)

D̄(IId)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k1k2
k4k5

V̄k3
µ

(
U k4

ν V̄k5
λ

)∗
vµν,αλ, (47d)

whereas the corresponding first-order corrections to the en-
ergy matrix are

E (Ib)
r,r′ =






1
6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)

for forward poles
1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)

for backward poles.

(48)

The equivalence between the E and ET denominators in
Eqs. (29) is restored only after adding Eqs. (44) and (48)
together. Hence, it is mandatory that diagrams in Figs. 5 and 6
are all computed together on the same footing. The topolog-
ical relation between the two classes of diagrams, i.e., the
inversion of lines in the intermediate interaction, is reflected
into the fact that Eqs. (43) and (47) transform into each other

(a) (b) (c) (d)

FIG. 6. Third-order skeleton diagrams contributing to !̃11(ω) with a hole-hole (hh) type intermediate interaction. Similarly to Fig. 5, the
contributions to the other Nambu components of the self-energy with hh intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.
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obtained by inverting one or both of the incoming and outgoing lines.
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E (Ia)
r,r′ =






1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)

for forward poles
1
6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)
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where
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γ U k5
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γ V̄k5
δ

)∗
. (46)

The corresponding hh (pp) interaction contributions to the
forward-going (backward-going) self-energies arise from the
four diagrams in Fig. 6. They are analogous to the diagrams
of Fig. 5 except for inverting the orientation of all lines en-
tering and leaving the intermediate interaction vertex. These
diagrams lead to the following corrections to the coupling
amplitudes:
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whereas the corresponding first-order corrections to the en-
ergy matrix are
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1
6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)

for forward poles
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(
E (pp)
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)

for backward poles.

(48)

The equivalence between the E and ET denominators in
Eqs. (29) is restored only after adding Eqs. (44) and (48)
together. Hence, it is mandatory that diagrams in Figs. 5 and 6
are all computed together on the same footing. The topolog-
ical relation between the two classes of diagrams, i.e., the
inversion of lines in the intermediate interaction, is reflected
into the fact that Eqs. (43) and (47) transform into each other
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FIG. 6. Third-order skeleton diagrams contributing to !̃11(ω) with a hole-hole (hh) type intermediate interaction. Similarly to Fig. 5, the
contributions to the other Nambu components of the self-energy with hh intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.

044330-10

GORKOV ALGEBRAIC DIAGRAMMATIC CONSTRUCTION … PHYSICAL REVIEW C 105, 044330 (2022)

(a) (b) (c)
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(g) (h) (i)

FIG. 7. Third-order skeleton diagrams contributing to !̃11(ω) with a particle-hole (ph) type intermediate interaction. Similarly to Figs. 5
and 6, the contributions to the other Nambu components of the self-energy with ph intermediate interactions originate from nine analogous
diagrams each, obtained by inverting one or both of the incoming and outgoing lines.

under the exchange t k1k2
k4k5

↔ t k4k5
k1k2

. Inserting all contributions
into Eqs. (29) implies self-energy terms including mixed prod-
ucts of Eqs. (43) and (47). These are rightful time orderings
arising from fourth- and higher-order diagrams and therefore
not depicted in Figs. 5–7.

The remaining third-order skeleton diagrams involve a
particle-hole type intermediate interaction and are displayed
in Fig. 7. Performing the energy integral and making the an-
tisymmetrization with respect to all ISC quasiparticle indices
explicit through the use of the operator

Ai j# f (ki, k j, k#)

≡ f (ki, k j, k#) + f (k j, k#, ki ) + f (k#, ki, k j )

− f (k j, ki, k#) − f (k#, k j, ki ) − f (ki, k#, k j ), (49)

the nine diagrams of Fig. 7 introduce three additional terms to
each coupling matrix

C (IIe)
α,r = 1√

6
A123

∑

µνλ
k7k8

vαλ,µν

(
V̄k7

ν U k8
λ

)∗U k1
µ t k8k2

k7k3
, (50a)

C (IIf )
α,r = 1√

6
A123

∑

µνλ
k7k8

vαλ,µν

(
U k7

λ V̄k8
µ

)∗U k1
ν t k8k2

k7k3
, (50b)

C (IIg)
α,r = 1√

6
A123

∑

µνλ
k7k8

vαλ,µν

(
V̄k7

µ V̄k8
ν

)∗V̄k1
λ t k8k2

k7k3
, (50c)

D̄(IIe)
r,α = 1√

6
A123

∑

µνλ
k7k8

V̄k1
ν t k2k8

k3k7

(
V̄k7

λ U k8
µ

)∗
vµν,αλ, (50d)
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Notice that the latter relationship can be also obtained from the
conjugate of Eq. (61) by using properties of Gorkov amplitudes
and self-energies. Equations (61) or (62) and their solutions are
independent of auxiliary potential U , which canceled out. This
leaves proper self-energy contributions only, which eventually
act as energy-dependent potentials. The self-energies depend,
in turn, on amplitudes U k and Vk such that Eqs. (61) or (62)
must be solved iteratively. At each iteration the chemical
potential µ must be fixed such that Eq. (18) is fulfilled, which
translates into the necessity for amplitude V to satisfy

N =
∑

a

ρaa =
∑

a,k

∣∣Vk
a

∣∣2
, (63)

where ρab is the (normal) one-body density matrix (54a).
As demonstrated in Appendix A, the spectroscopic am-

plitudes solution of Eq. (61) or (62) fulfill normalization
conditions

∑

a

∣∣Xk
a

∣∣2 = 1 +
∑

ab

Xk†
a

∂#ab(ω)
∂ω

∣∣∣∣
+ωk

Xk
b, (64a)

∑

a

∣∣Yk
a

∣∣2 = 1 +
∑

ab

Yk†
a

∂#ab(ω)
∂ω

∣∣∣∣
−ωk

Yk
b, (64b)

where only the proper self-energy appears because of the
energy independence of the auxiliary potential.

B. First-order self-energies

In Fig. 1, first-order diagrams contributing to normal and
anomalous self-energies are displayed. Diagrammatic rules
appropriate to the computation of Gorkov’s propagators and
for the evaluation of self-energy diagrams are discussed in
Appendix B, while the % derivability of the presently used
truncation scheme is addressed in Sec. VI.

The four first-order self-energies diagrams are computed in
Eqs. (B8), (B10), (B12), and (B13) and read

#
11 (1)
ab = +

∑

cd

V̄acbd ρdc ≡ +&ab = +&
†
ab, (65a)

#
22 (1)
ab = −

∑

cd

V̄b̄dāc ρ∗
cd = −&∗

āb̄
, (65b)

#
12 (1)
ab = 1

2

∑

cd

V̄ab̄cd̄ ρ̃cd ≡ +h̃ab, (65c)

#
21 (1)
ab = 1

2

∑

cd

V̄ ∗
bācd̄

ρ̃∗
cd = +h̃

†
ab, (65d)

where the normal (ρab) and anomalous (ρ̃ab) density matrices
have been defined in Eqs. (54).

FIG. 1. First-order normal #11 (1) (left) and anomalous #21 (1)

(right) self-energy diagrams. Double lines denote self-consistent
normal (two arrows in the same direction) and anomalous (two
arrows in opposite directions) propagators while dashed lines embody
antisymmetrized matrix elements of the NN interaction.

C. HFB limit

Neglecting higher-order contributions to the self-energy,
Eqs. (61) and (65) combine to give

∑

b

(
Tab + &ab − µ δab h̃ab

h̃
†
ab −T ∗

āb̄
− &∗

āb̄
+ µ δāb̄

) (
U k

b

Vk
b

)

= ωk

(
U k

a

Vk
a

)

, (66)

which is nothing but the HFB eigenvalue problem in the case
where time-reversal invariance is not assumed. In such a limit,
U k and Vk define the unitary Bogoliubov transformation [59]
according to

aa =
∑

k

U k
a βk + V̄k∗

a β
†
k , (67a)

a†
a =

∑

k

U k∗
a β

†
k + V̄k

a βk. (67b)

Moreover, normalization condition (64b) reduces in this case
to the well-known HFB identity

∑

a

∣∣Yk
a

∣∣2 =
∑

a

∣∣U k
a

∣∣2 +
∑

a

∣∣Vk
a

∣∣2 = 1. (68)

Let us now stress that, despite the energy independence of first-
order self-energies, some fragmentation of the single-particle
strength is already accounted for at the HFB level such that
one deals with quasiparticle degrees of freedom. In particular,
one can deduce from Eq. (68) that (generalized) spectroscopic
factors defined in Eq. (51) are already smaller than one. Such
a fragmentation is an established consequence of static pairing
correlations that are explicitly treated at the HFB level through
particle number symmetry breaking.

Finally, let us underline again that, whenever higher orders
are to be included in the calculation, first-order self-energies
(65) are self-consistently modified (in particular, through
the further fragmentation of the quasiparticle strength) such
that they no longer correspond to standard Hartree-Fock and
Bogoliubov potentials, in spite of their energy independence.
They actually correspond to the energy-independent part of
the (dynamically) correlated self-energy.

D. Second-order self-energies

Let us now discuss second-order contributions to normal
and anomalous (irreducible) self-energies.

In Figs. 2 and 3 the four types of normal and anomalous
self-energies are depicted. The evaluation of all second-order
diagrams is performed in Appendix B. Before addressing their

FIG. 2. Second-order normal self-energies #11 (2′) (left) and
#11 (2′′) (right). See Fig. 1 for conventions.
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Notice that the latter relationship can be also obtained from the
conjugate of Eq. (61) by using properties of Gorkov amplitudes
and self-energies. Equations (61) or (62) and their solutions are
independent of auxiliary potential U , which canceled out. This
leaves proper self-energy contributions only, which eventually
act as energy-dependent potentials. The self-energies depend,
in turn, on amplitudes U k and Vk such that Eqs. (61) or (62)
must be solved iteratively. At each iteration the chemical
potential µ must be fixed such that Eq. (18) is fulfilled, which
translates into the necessity for amplitude V to satisfy

N =
∑

a

ρaa =
∑

a,k

∣∣Vk
a

∣∣2
, (63)

where ρab is the (normal) one-body density matrix (54a).
As demonstrated in Appendix A, the spectroscopic am-

plitudes solution of Eq. (61) or (62) fulfill normalization
conditions
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−ωk
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where only the proper self-energy appears because of the
energy independence of the auxiliary potential.

B. First-order self-energies

In Fig. 1, first-order diagrams contributing to normal and
anomalous self-energies are displayed. Diagrammatic rules
appropriate to the computation of Gorkov’s propagators and
for the evaluation of self-energy diagrams are discussed in
Appendix B, while the % derivability of the presently used
truncation scheme is addressed in Sec. VI.

The four first-order self-energies diagrams are computed in
Eqs. (B8), (B10), (B12), and (B13) and read

#
11 (1)
ab = +

∑

cd

V̄acbd ρdc ≡ +&ab = +&
†
ab, (65a)

#
22 (1)
ab = −

∑

cd

V̄b̄dāc ρ∗
cd = −&∗

āb̄
, (65b)

#
12 (1)
ab = 1

2

∑

cd

V̄ab̄cd̄ ρ̃cd ≡ +h̃ab, (65c)

#
21 (1)
ab = 1

2

∑

cd

V̄ ∗
bācd̄

ρ̃∗
cd = +h̃

†
ab, (65d)

where the normal (ρab) and anomalous (ρ̃ab) density matrices
have been defined in Eqs. (54).

FIG. 1. First-order normal #11 (1) (left) and anomalous #21 (1)

(right) self-energy diagrams. Double lines denote self-consistent
normal (two arrows in the same direction) and anomalous (two
arrows in opposite directions) propagators while dashed lines embody
antisymmetrized matrix elements of the NN interaction.

C. HFB limit

Neglecting higher-order contributions to the self-energy,
Eqs. (61) and (65) combine to give

∑

b

(
Tab + &ab − µ δab h̃ab

h̃
†
ab −T ∗

āb̄
− &∗

āb̄
+ µ δāb̄

) (
U k

b

Vk
b

)

= ωk

(
U k

a

Vk
a

)

, (66)

which is nothing but the HFB eigenvalue problem in the case
where time-reversal invariance is not assumed. In such a limit,
U k and Vk define the unitary Bogoliubov transformation [59]
according to

aa =
∑

k

U k
a βk + V̄k∗

a β
†
k , (67a)

a†
a =

∑

k

U k∗
a β

†
k + V̄k

a βk. (67b)

Moreover, normalization condition (64b) reduces in this case
to the well-known HFB identity

∑

a

∣∣Yk
a

∣∣2 =
∑

a

∣∣U k
a

∣∣2 +
∑

a

∣∣Vk
a

∣∣2 = 1. (68)

Let us now stress that, despite the energy independence of first-
order self-energies, some fragmentation of the single-particle
strength is already accounted for at the HFB level such that
one deals with quasiparticle degrees of freedom. In particular,
one can deduce from Eq. (68) that (generalized) spectroscopic
factors defined in Eq. (51) are already smaller than one. Such
a fragmentation is an established consequence of static pairing
correlations that are explicitly treated at the HFB level through
particle number symmetry breaking.

Finally, let us underline again that, whenever higher orders
are to be included in the calculation, first-order self-energies
(65) are self-consistently modified (in particular, through
the further fragmentation of the quasiparticle strength) such
that they no longer correspond to standard Hartree-Fock and
Bogoliubov potentials, in spite of their energy independence.
They actually correspond to the energy-independent part of
the (dynamically) correlated self-energy.

D. Second-order self-energies

Let us now discuss second-order contributions to normal
and anomalous (irreducible) self-energies.

In Figs. 2 and 3 the four types of normal and anomalous
self-energies are depicted. The evaluation of all second-order
diagrams is performed in Appendix B. Before addressing their

FIG. 2. Second-order normal self-energies #11 (2′) (left) and
#11 (2′′) (right). See Fig. 1 for conventions.
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FIG. 5. Third-order skeleton diagrams corresponding to !̃11(ω) with a particle-particle (pp) type intermediate interaction. The contri-
butions to the other Nambu components of the self-energy with pp intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.

self-energy, i.e., to the first or second term on the right-hand
side of Eqs. (29), respectively,

E (Ia)
r,r′ =






1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)

for forward poles
1
6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)

for backward poles,

(44)

where

E (pp)
k1k2,k4k5

=
∑

αβγ δ

(
U k1

α U k2
β

)∗
vαβ,γ δU k4

γ U k5
δ , (45)

E (hh)
k1k2,k4k5

=
∑

αβγ δ

V̄k1
α V̄k2

β vαβ,γ δ

(
V̄k4

γ V̄k5
δ

)∗
. (46)

The corresponding hh (pp) interaction contributions to the
forward-going (backward-going) self-energies arise from the
four diagrams in Fig. 6. They are analogous to the diagrams
of Fig. 5 except for inverting the orientation of all lines en-
tering and leaving the intermediate interaction vertex. These
diagrams lead to the following corrections to the coupling
amplitudes:

C (IIc)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

2

(
V̄k4

µ V̄k5
ν

)∗
t k4k5
k1k2

V̄k3
λ , (47a)

C (IId)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

(
V̄k4

ν U k5
λ

)∗
t k4k5
k1k2

U k3
µ , (47b)

D̄(IIc)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k1k2
k4k5

U k3
λ

(
U k4

µ U k5
ν

)∗ vµν,αλ

2
, (47c)

D̄(IId)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k1k2
k4k5

V̄k3
µ

(
U k4

ν V̄k5
λ

)∗
vµν,αλ, (47d)

whereas the corresponding first-order corrections to the en-
ergy matrix are

E (Ib)
r,r′ =






1
6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)

for forward poles
1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)

for backward poles.

(48)

The equivalence between the E and ET denominators in
Eqs. (29) is restored only after adding Eqs. (44) and (48)
together. Hence, it is mandatory that diagrams in Figs. 5 and 6
are all computed together on the same footing. The topolog-
ical relation between the two classes of diagrams, i.e., the
inversion of lines in the intermediate interaction, is reflected
into the fact that Eqs. (43) and (47) transform into each other

(a) (b) (c) (d)

FIG. 6. Third-order skeleton diagrams contributing to !̃11(ω) with a hole-hole (hh) type intermediate interaction. Similarly to Fig. 5, the
contributions to the other Nambu components of the self-energy with hh intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.
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FIG. 5. Third-order skeleton diagrams corresponding to !̃11(ω) with a particle-particle (pp) type intermediate interaction. The contri-
butions to the other Nambu components of the self-energy with pp intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.

self-energy, i.e., to the first or second term on the right-hand
side of Eqs. (29), respectively,

E (Ia)
r,r′ =






1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)

for forward poles
1
6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)

for backward poles,

(44)

where

E (pp)
k1k2,k4k5

=
∑

αβγ δ

(
U k1

α U k2
β

)∗
vαβ,γ δU k4

γ U k5
δ , (45)

E (hh)
k1k2,k4k5

=
∑

αβγ δ

V̄k1
α V̄k2

β vαβ,γ δ

(
V̄k4

γ V̄k5
δ

)∗
. (46)

The corresponding hh (pp) interaction contributions to the
forward-going (backward-going) self-energies arise from the
four diagrams in Fig. 6. They are analogous to the diagrams
of Fig. 5 except for inverting the orientation of all lines en-
tering and leaving the intermediate interaction vertex. These
diagrams lead to the following corrections to the coupling
amplitudes:

C (IIc)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

2

(
V̄k4

µ V̄k5
ν

)∗
t k4k5
k1k2

V̄k3
λ , (47a)

C (IId)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

(
V̄k4

ν U k5
λ

)∗
t k4k5
k1k2

U k3
µ , (47b)

D̄(IIc)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k1k2
k4k5

U k3
λ

(
U k4

µ U k5
ν

)∗ vµν,αλ

2
, (47c)

D̄(IId)
r,α = 1√

6
P123

∑

µνλ
k4k5
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k4k5

V̄k3
µ

(
U k4
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λ

)∗
vµν,αλ, (47d)

whereas the corresponding first-order corrections to the en-
ergy matrix are

E (Ib)
r,r′ =
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6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)

for forward poles
1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)

for backward poles.

(48)

The equivalence between the E and ET denominators in
Eqs. (29) is restored only after adding Eqs. (44) and (48)
together. Hence, it is mandatory that diagrams in Figs. 5 and 6
are all computed together on the same footing. The topolog-
ical relation between the two classes of diagrams, i.e., the
inversion of lines in the intermediate interaction, is reflected
into the fact that Eqs. (43) and (47) transform into each other

(a) (b) (c) (d)

FIG. 6. Third-order skeleton diagrams contributing to !̃11(ω) with a hole-hole (hh) type intermediate interaction. Similarly to Fig. 5, the
contributions to the other Nambu components of the self-energy with hh intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 7. Third-order skeleton diagrams contributing to !̃11(ω) with a particle-hole (ph) type intermediate interaction. Similarly to Figs. 5
and 6, the contributions to the other Nambu components of the self-energy with ph intermediate interactions originate from nine analogous
diagrams each, obtained by inverting one or both of the incoming and outgoing lines.

under the exchange t k1k2
k4k5

↔ t k4k5
k1k2

. Inserting all contributions
into Eqs. (29) implies self-energy terms including mixed prod-
ucts of Eqs. (43) and (47). These are rightful time orderings
arising from fourth- and higher-order diagrams and therefore
not depicted in Figs. 5–7.

The remaining third-order skeleton diagrams involve a
particle-hole type intermediate interaction and are displayed
in Fig. 7. Performing the energy integral and making the an-
tisymmetrization with respect to all ISC quasiparticle indices
explicit through the use of the operator

Ai j# f (ki, k j, k#)

≡ f (ki, k j, k#) + f (k j, k#, ki ) + f (k#, ki, k j )

− f (k j, ki, k#) − f (k#, k j, ki ) − f (ki, k#, k j ), (49)

the nine diagrams of Fig. 7 introduce three additional terms to
each coupling matrix

C (IIe)
α,r = 1√

6
A123

∑

µνλ
k7k8

vαλ,µν

(
V̄k7

ν U k8
λ

)∗U k1
µ t k8k2

k7k3
, (50a)

C (IIf )
α,r = 1√

6
A123

∑

µνλ
k7k8

vαλ,µν

(
U k7

λ V̄k8
µ

)∗U k1
ν t k8k2

k7k3
, (50b)

C (IIg)
α,r = 1√

6
A123

∑

µνλ
k7k8

vαλ,µν

(
V̄k7

µ V̄k8
ν

)∗V̄k1
λ t k8k2

k7k3
, (50c)

D̄(IIe)
r,α = 1√

6
A123

∑

µνλ
k7k8

V̄k1
ν t k2k8

k3k7

(
V̄k7

λ U k8
µ

)∗
vµν,αλ, (50d)
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Background: The Gorkov approach to self-consistent Green’s function theory has been formulated by Somà,
Duguet, and Barbieri in [Phys. Rev. C 84, 064317 (2011)]. Over the past decade, it has become a method of refer-
ence for first-principles computations of semimagic nuclear isotopes. The currently available implementation is
limited to a second-order self-energy and neglects particle-number nonconserving terms arising from contracting
three-particle forces with anomalous propagators. For nuclear physics applications, this is sufficient to address
first-order energy differences (i.e., two neutron separation energies, excitation energies of states dominating
the one-nucleon spectral function), ground-state radii and moments on an accurate enough basis. However,
addressing absolute binding energies, fine spectroscopic details of N ± 1 particle systems or delicate quantities
such as second-order energy differences associated with pairing gaps, requires going to higher truncation orders.
Purpose: The formalism is extended to third order in the algebraic diagrammatic construction (ADC) expansion
with two-body Hamiltonians.
Methods: The expansion of Gorkov propagators in Feynman diagrams is combined with the algebraic diagram-
matic construction up to the third order as an organization scheme to generate the Gorkov self-energy.
Results: Algebraic expressions for the static and dynamic contributions to the self-energy, along with equa-
tions for the matrix elements of the Gorkov eigenvalue problem, are derived. It is first done for a general basis
before specifying the set of equations to the case of spherical systems displaying rotational symmetry. Workable
approximations to the full self-consistency problem are also elaborated on. The formalism at third order it thus
complete for a general two-body Hamiltonian.
Conclusions: Working equations for the full Gorkov-ADC(3) are now available for numerical implementation.

DOI: 10.1103/PhysRevC.105.044330

I. INTRODUCTION

Ab initio quantum many-body computations are crucial to
high-precision investigations in several fields of physics. Most
applications to finite-size fermion systems concern nuclear
physics and quantum chemistry to the point that these dis-
ciplines often share the same computational techniques and
cross fertilization among the two has led to advancements
of ab initio theories over the years. For nuclear physics, the
past two decades have witnessed remarkable breakthroughs
in first-principles computations of nuclear structure that ex-
ploit soft nuclear interactions based on chiral effective-field
theory [1]. The availability of many-body methods that scale
favorably with particle number has enabled precision predic-
tions of medium-mass isotopes and the possibility to confront
experimental information of exotic isotopes at the limits of
stability (see Refs. [2,3] for a review).

Many successful approaches, such as many-body pertur-
bation theory (MBPT) [4], self-consistent Green’s function
(SCGF) [5], coupled cluster (CC) [6], and in-medium simi-
larity renormalization group [7] can reach sizable systems by
restricting the Fock space to selected excited configurations
for which it is possible to resum infinite series of diagrams.
However, in their basic formalism, they are limited to closed-
shell systems. For open-shell cases, near-degeneracies in the
single-particle spectrum often prevent the use of any perturba-
tion expansion. The possible ways around this issue are either
multireference approaches or the use of symmetry-breaking
reference states. In the first case, all degenerate configurations
are diagonalized explicitly, which, however, adds a costly
step to the calculation that scales exponentially with system
size [8], with the notable exception of a recently proposed
multireference many-body perturbation theory [9–11]. The
second path relies on using a reference state that explicitly
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(C̄†)T = C̄∗

Σ21
αβ(ω) :

α

α

β

β

C

C†

D̄

D̄†

Σ11
αβ(ω) :

FIG. 4. (left column) The two time orderings through which
the diagram of Fig. 2(a) contributes to !̃11(ω). The top (bottom)
diagram corresponds to the forward-going (backward-going) prop-
agation. The matrices C and D to which a given vertex contributes
are indicated next to it. (right column) Analogous time orderings
for the corresponding contributions to !̃21(ω) [Fig. 2(b)]. The C
(D) topologies that contribute to the anomalous index of !̃21(ω) are
highlighted with green (orange) vertices. A comparison between the
vertices on the left- and right-hand sides elucidates the occurrence of
the same couplings C and D across all Eqs. (29).

to !̃21(ω): the top part of the upper-right diagram is exactly
the same as the top part of the lower-left one, but it will
enter as a transposed matrix in the Lehmann representation
because it is an exit point of the self-energy in the first
case and entry point in the second. This property is general
because the net number of propagator (lines) flowing into
the interaction vertex is reversed exactly in the same way
both for backward time propagation and for the inversion of
a Nambu indices between normal to anomalous. It is easy
to convince oneself that the same considerations apply to
particle-number nonconserving interactions, as long as these
are Hermitian. Moreover, as for the case of quasiparticle
antisymmetrization, the presence of anomalous propagators
allows for any possible topological combination of lines and
ensures that this correspondence is realized also for more
complex diagrams, at any order in the Feynman expansion.
Therefore, any portion of Feynman diagram contributing to
a normal (anomalous) forward part of the self-energy will
contribute identically to the backward part of corresponding
anomalous (normal) case. It follows that exactly the same
matrices C and D must appear in all four self-energies of
Eqs. (29).

The rigorous proof of this property is beyond the scope of
the present work and is not elaborated on further. However,
let us recall that relations (29) naturally stem out from Nambu
covariant theory of Ref. [40]. In this case both the normal and
anomalous contributions are embedded in a single propagator
such that the C and D couplings are part of a unique cou-
pling matrix. For our purposes, we have verified by hand that
Eqs. (29) are satisfied by all diagrams discussed in the present
work.

B. Third-order skeleton diagrams

Following the above discussion one concludes that it is
sufficient to derive ADC(3) expressions of the coupling and
interaction matrices associated with one particular Gorkov
self-energy. While the diagrams contributing to !̃11(ω) are
presently employed, the other self-energies, Eqs. (29b)–(29d),
were checked to lead to the same results.

There exist 17 possible third-order skeleton diagrams that
must be grouped in three classes on the basis of their con-
nection through Pauli exchanges of propagator lines. These
are depicted respectively in Figs. 5–7. Each middle vertex in
these diagrams acts as a seed for the all-orders Tamm-Dancoff
resummations generated by ADC(3).

Diagram 5(a) is the diagram that makes two-particle and
two-hole interact in the ISCs in the usual Dyson-ADC(3)
formalism, respectively for forward and backward time prop-
agation. Adding diagrams 5(b), 5(c), and 5(d) guarantees the
antisymmetrization with respect to the third, noninteracting
quasiparticle. The frequency integrals needed to work out
the algebraic expressions of these diagrams are discussed in
Appendix C and lead to the same contributions as in Eqs. (39),
plus second-order corrections to the coupling amplitudes and
first-order correction to the energy matrix.

Let us first define the tensor

t k3k4
k1k2

≡
∑

αβγ δ

V̄k1
α V̄k2

β vαβ,γ δU k3
γ U k4

δ

−
(
ωk1 + ωk2 + ωk3 + ωk4

) (42)

that is closely related to the lowest-order double amplitude
in Bogoliubov coupled cluster (BCC) theory [47]. Note that
BCC expressions are typically derived performing first the
normal ordering of the Hamiltonian with respect to the Bo-
goliubov vacuum and expressing it in terms of Bogoliubov
quasiparticle operators whereas the original matrix elements
of V appear in Eq. (42). In the special case of a HFB mean
field, U and V amplitudes account for the normal ordering
and t k3k4

k1k2
does indeed reduce to the lowest order BCC double

amplitude. Consequently, Eq. (42) extends the concept of
BCC amplitudes to account for the strength fragmentation of
a dressed propagator. With this tensor at hand, the contribu-
tions to the coupling amplitudes resulting from the diagrams
displayed in Fig. 5 read

C (IIa)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

2

(
V̄k4

µ V̄k5
ν

)∗
t k1k2
k4k5

V̄k3
λ , (43a)

C (IIb)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

(
V̄k4

ν U k5
λ

)∗
t k1k2
k4k5

U k3
µ , (43b)

D̄(IIa)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k4k5
k1k2

U k3
λ

(
U k4

µ U k5
ν

)∗ vµν,αλ

2
, (43c)

D̄(IIb)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k4k5
k1k2

V̄k3
µ

(
U k4

ν V̄k5
λ

)∗
vµν,αλ. (43d)

The first-order corrections to the energy matrix differ accord-
ing to whether they refer to forward or backward poles of the
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FIG. 5. Third-order skeleton diagrams corresponding to !̃11(ω) with a particle-particle (pp) type intermediate interaction. The contri-
butions to the other Nambu components of the self-energy with pp intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.

self-energy, i.e., to the first or second term on the right-hand
side of Eqs. (29), respectively,

E (Ia)
r,r′ =






1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)

for forward poles
1
6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)

for backward poles,

(44)

where

E (pp)
k1k2,k4k5

=
∑

αβγ δ

(
U k1

α U k2
β

)∗
vαβ,γ δU k4

γ U k5
δ , (45)

E (hh)
k1k2,k4k5

=
∑

αβγ δ

V̄k1
α V̄k2

β vαβ,γ δ

(
V̄k4

γ V̄k5
δ

)∗
. (46)

The corresponding hh (pp) interaction contributions to the
forward-going (backward-going) self-energies arise from the
four diagrams in Fig. 6. They are analogous to the diagrams
of Fig. 5 except for inverting the orientation of all lines en-
tering and leaving the intermediate interaction vertex. These
diagrams lead to the following corrections to the coupling
amplitudes:

C (IIc)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

2

(
V̄k4

µ V̄k5
ν

)∗
t k4k5
k1k2

V̄k3
λ , (47a)

C (IId)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

(
V̄k4

ν U k5
λ

)∗
t k4k5
k1k2

U k3
µ , (47b)

D̄(IIc)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k1k2
k4k5

U k3
λ

(
U k4

µ U k5
ν

)∗ vµν,αλ

2
, (47c)

D̄(IId)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k1k2
k4k5

V̄k3
µ

(
U k4

ν V̄k5
λ

)∗
vµν,αλ, (47d)

whereas the corresponding first-order corrections to the en-
ergy matrix are

E (Ib)
r,r′ =






1
6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)

for forward poles
1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)

for backward poles.

(48)

The equivalence between the E and ET denominators in
Eqs. (29) is restored only after adding Eqs. (44) and (48)
together. Hence, it is mandatory that diagrams in Figs. 5 and 6
are all computed together on the same footing. The topolog-
ical relation between the two classes of diagrams, i.e., the
inversion of lines in the intermediate interaction, is reflected
into the fact that Eqs. (43) and (47) transform into each other

(a) (b) (c) (d)

FIG. 6. Third-order skeleton diagrams contributing to !̃11(ω) with a hole-hole (hh) type intermediate interaction. Similarly to Fig. 5, the
contributions to the other Nambu components of the self-energy with hh intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.
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FIG. 5. Third-order skeleton diagrams corresponding to !̃11(ω) with a particle-particle (pp) type intermediate interaction. The contri-
butions to the other Nambu components of the self-energy with pp intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.

self-energy, i.e., to the first or second term on the right-hand
side of Eqs. (29), respectively,

E (Ia)
r,r′ =






1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)

for forward poles
1
6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)

for backward poles,

(44)

where

E (pp)
k1k2,k4k5

=
∑

αβγ δ

(
U k1

α U k2
β

)∗
vαβ,γ δU k4

γ U k5
δ , (45)

E (hh)
k1k2,k4k5

=
∑

αβγ δ

V̄k1
α V̄k2

β vαβ,γ δ

(
V̄k4

γ V̄k5
δ

)∗
. (46)

The corresponding hh (pp) interaction contributions to the
forward-going (backward-going) self-energies arise from the
four diagrams in Fig. 6. They are analogous to the diagrams
of Fig. 5 except for inverting the orientation of all lines en-
tering and leaving the intermediate interaction vertex. These
diagrams lead to the following corrections to the coupling
amplitudes:

C (IIc)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

2

(
V̄k4

µ V̄k5
ν

)∗
t k4k5
k1k2

V̄k3
λ , (47a)

C (IId)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

(
V̄k4

ν U k5
λ

)∗
t k4k5
k1k2

U k3
µ , (47b)

D̄(IIc)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k1k2
k4k5

U k3
λ

(
U k4

µ U k5
ν

)∗ vµν,αλ

2
, (47c)

D̄(IId)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k1k2
k4k5

V̄k3
µ

(
U k4

ν V̄k5
λ

)∗
vµν,αλ, (47d)

whereas the corresponding first-order corrections to the en-
ergy matrix are

E (Ib)
r,r′ =






1
6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)

for forward poles
1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)

for backward poles.

(48)

The equivalence between the E and ET denominators in
Eqs. (29) is restored only after adding Eqs. (44) and (48)
together. Hence, it is mandatory that diagrams in Figs. 5 and 6
are all computed together on the same footing. The topolog-
ical relation between the two classes of diagrams, i.e., the
inversion of lines in the intermediate interaction, is reflected
into the fact that Eqs. (43) and (47) transform into each other

(a) (b) (c) (d)

FIG. 6. Third-order skeleton diagrams contributing to !̃11(ω) with a hole-hole (hh) type intermediate interaction. Similarly to Fig. 5, the
contributions to the other Nambu components of the self-energy with hh intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 7. Third-order skeleton diagrams contributing to !̃11(ω) with a particle-hole (ph) type intermediate interaction. Similarly to Figs. 5
and 6, the contributions to the other Nambu components of the self-energy with ph intermediate interactions originate from nine analogous
diagrams each, obtained by inverting one or both of the incoming and outgoing lines.

under the exchange t k1k2
k4k5

↔ t k4k5
k1k2

. Inserting all contributions
into Eqs. (29) implies self-energy terms including mixed prod-
ucts of Eqs. (43) and (47). These are rightful time orderings
arising from fourth- and higher-order diagrams and therefore
not depicted in Figs. 5–7.

The remaining third-order skeleton diagrams involve a
particle-hole type intermediate interaction and are displayed
in Fig. 7. Performing the energy integral and making the an-
tisymmetrization with respect to all ISC quasiparticle indices
explicit through the use of the operator

Ai j# f (ki, k j, k#)

≡ f (ki, k j, k#) + f (k j, k#, ki ) + f (k#, ki, k j )

− f (k j, ki, k#) − f (k#, k j, ki ) − f (ki, k#, k j ), (49)

the nine diagrams of Fig. 7 introduce three additional terms to
each coupling matrix

C (IIe)
α,r = 1√

6
A123

∑

µνλ
k7k8

vαλ,µν

(
V̄k7

ν U k8
λ

)∗U k1
µ t k8k2

k7k3
, (50a)

C (IIf )
α,r = 1√

6
A123

∑

µνλ
k7k8

vαλ,µν

(
U k7

λ V̄k8
µ

)∗U k1
ν t k8k2

k7k3
, (50b)

C (IIg)
α,r = 1√

6
A123

∑

µνλ
k7k8

vαλ,µν

(
V̄k7

µ V̄k8
ν

)∗V̄k1
λ t k8k2

k7k3
, (50c)

D̄(IIe)
r,α = 1√

6
A123

∑

µνλ
k7k8

V̄k1
ν t k2k8

k3k7

(
V̄k7

λ U k8
µ

)∗
vµν,αλ, (50d)
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(a) (b) (c) (d)

FIG. 5. Third-order skeleton diagrams corresponding to !̃11(ω) with a particle-particle (pp) type intermediate interaction. The contri-
butions to the other Nambu components of the self-energy with pp intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.

self-energy, i.e., to the first or second term on the right-hand
side of Eqs. (29), respectively,

E (Ia)
r,r′ =






1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)

for forward poles
1
6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)

for backward poles,

(44)

where

E (pp)
k1k2,k4k5

=
∑

αβγ δ

(
U k1

α U k2
β

)∗
vαβ,γ δU k4

γ U k5
δ , (45)

E (hh)
k1k2,k4k5

=
∑

αβγ δ

V̄k1
α V̄k2

β vαβ,γ δ

(
V̄k4

γ V̄k5
δ

)∗
. (46)

The corresponding hh (pp) interaction contributions to the
forward-going (backward-going) self-energies arise from the
four diagrams in Fig. 6. They are analogous to the diagrams
of Fig. 5 except for inverting the orientation of all lines en-
tering and leaving the intermediate interaction vertex. These
diagrams lead to the following corrections to the coupling
amplitudes:

C (IIc)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

2

(
V̄k4

µ V̄k5
ν

)∗
t k4k5
k1k2

V̄k3
λ , (47a)

C (IId)
α,r = 1√

6
P123

∑

µνλ
k4k5

vαλ,µν

(
V̄k4

ν U k5
λ

)∗
t k4k5
k1k2

U k3
µ , (47b)

D̄(IIc)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k1k2
k4k5

U k3
λ

(
U k4

µ U k5
ν

)∗ vµν,αλ

2
, (47c)

D̄(IId)
r,α = 1√

6
P123

∑

µνλ
k4k5

t k1k2
k4k5

V̄k3
µ

(
U k4

ν V̄k5
λ

)∗
vµν,αλ, (47d)

whereas the corresponding first-order corrections to the en-
ergy matrix are

E (Ib)
r,r′ =






1
6P123P456

(
E (hh)

k1k2,k4k5
δk3,k6

)

for forward poles
1
6P123P456

(
E (pp)

k1k2,k4k5
δk3,k6

)

for backward poles.

(48)

The equivalence between the E and ET denominators in
Eqs. (29) is restored only after adding Eqs. (44) and (48)
together. Hence, it is mandatory that diagrams in Figs. 5 and 6
are all computed together on the same footing. The topolog-
ical relation between the two classes of diagrams, i.e., the
inversion of lines in the intermediate interaction, is reflected
into the fact that Eqs. (43) and (47) transform into each other

(a) (b) (c) (d)

FIG. 6. Third-order skeleton diagrams contributing to !̃11(ω) with a hole-hole (hh) type intermediate interaction. Similarly to Fig. 5, the
contributions to the other Nambu components of the self-energy with hh intermediate interactions originate from four analogous diagrams each
obtained by inverting one or both of the incoming and outgoing lines.
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D̄(IIf )
r,α = 1√

6
A123

∑

µνλ
k7k8

V̄k1
µ t k2k8

k3k7

(
U k7

ν V̄k8
λ

)∗
vµν,αλ, (50e)

D̄(IIg)
r,α = 1√

6
A123

∑

µνλ
k7k8

U k1
λ t k2k8

k3k7

(
U k7

µ U k8
ν

)∗
vµν,αλ, (50f)

whereas the particle-hole contribution to the ISC energy inter-
action matrix is given by

E (Ic)
r,r′ = 1

6A123A456
(
δk1,k4E

(ph)
k2k3,k5k6

)
, (51)

with

E (ph)
k2k3,k5k6

=
∑

αβγ δ

(
U k2

α V̄k3
β

)∗
vαδ,βγU k5

γ V̄k6
δ . (52)

C. Nonskeleton contributions

Sections III A and III B exhaust all the diagrams that enter
fully self-consistent computations up to ADC(3). In this case,
the self-energy is purely a functional of the fully dressed
propagator, G(ω), and all above equations are expressed in
terms of its spectroscopic amplitudes and poles, Eqs. (19)–
(21). If, instead, the many-body expansion is based on the
unperturbed reference propagator G(0)(ω) additional compos-
ite, i.e., nonskeleton, diagrams need to be included. Thus, the
present section along with Appendix B introduce all remain-
ing composite diagrams up to third order.

The unperturbed propagator (25) has a spectral representa-
tion analogous to Eqs. (18)

G(0)11
αβ (ω) =

∑

k

{
Uk

αUk
β

∗

ω − ε (0)
k + iη

+
V̄k

α
∗V̄k

β

ω + ε (0)
k − iη

}

, (53a)

G(0)12
αβ (ω) =

∑

k

{
Uk

αVk
β

∗

ω − ε (0)
k + iη

+
V̄k

α
∗Ūk

β

ω + ε (0)
k − iη

}

, (53b)

G(0)21
αβ (ω) =

∑

k

{
Vk

αUk
β

∗

ω − ε (0)
k + iη

+
Ūk

α
∗V̄k

β

ω + ε (0)
k − iη

}

, (53c)

G(0)22
αβ (ω) =

∑

k

{
Vk

αVk
β

∗

ω − ε (0)
k + iη

+
Ūk

α
∗Ūk

β

ω + ε (0)
k − iη

}

, (53d)

where we used the notation ε (0)
k , Uk , and Vk to stress that these

are not correlated spectroscopic quantities but unperturbed
ones. For the present purpose, these are the solution of the
HFB eigenvalue problem associated with *U ,

∑

β

(
tαβ + uαβ − µδαβ uan.

αβ̄

−
(
uan.

ᾱβ

)∗ −tβ̄ᾱ − uβ̄ᾱ + µδαβ

)(
Uk

β

Vk
β

)

= ε (0)
k

(
Uk

α

Vk
α

)
. (54)

Since the composite diagrams discussed in this section assume
a HFB reference state, their contributions to ADC interactions

and amplitudes are expressed in terms of the unperturbed state
generated by Eq. (54).

1. Static self-energy

The composite diagrams contributing to !(∞)
αβ (ω) can be

obtained by expanding Gorkov Eq. (26) up to second order
and by inserting the results into the diagrams of Fig. 1. The
resulting equations for the static self-energies are rather cum-
bersome and are detailed in Appendix B. However, these are
not needed in the vast majority of applications since their
self-consistent counter part, Eqs. (37), is easier to compute
and contains all of them implicitly.

2. Third-order terms

The energy-dependent !̃(ω) at second order receives no
contributions from self-energy insertions. Thus, the only com-
posite diagrams appear at order three and involve the insertion
of a static one-body potential to the known diagrams of Fig. 2.
This leads to the ten diagrams displayed in Fig. 8 for a generic
external potential U . In the following, we provide the contri-
butions from these diagrams in terms of the matrix elements
of U and the amplitudes of Eq. (53), with the understanding
that these need to be substituted with those of V HFB − U
introduced by the perturbation *I from Eq. (7).

The top two rows in Fig. 8 cover all diagrams containing
self-energies insertions originating from the normal compo-
nent of U , i.e., the term associated with matrix elements uαβ

in Eq. (13). They contribute to the coupling matrices C and D
through the normal BCC singlet amplitude

t k1
k2

≡
∑

αβ

V̄k1
α uαβUk2

β

−
(
ωk1 + ωk2

) , (55)

and to the energy matrix through particle and hole interactions

E (p)
k1k2

≡
∑

αβ

(
Uk1

α

)∗
uαβUk2

β , (56a)

E (h)
k1k2

≡
∑

αβ

V̄k1
α uαβ

(
V̄k2

β

)∗
. (56b)

All together, this leads to the following ADC(3) contributions
to the coupling matrices:

C (IIh)
α,r = 1√

6
A123

∑

µνλ
k7

vαλ,µν

(
V̄k7

µ

)∗[
t k7
k1

− t k1
k7

]
Uk2

ν V̄k3
λ , (57a)

C (IIi)
α,r = 1√

6
P123

∑

µνλ
k7

vαλ,µν

(
Uk7

λ

)∗[
t k7
k1

− t k1
k7

]
Uk2

µ Uk3
ν , (57b)

D̄(IIh)
r,α = 1√

6
A123

∑

µν
λk7

(
Uk7

µ

)∗[
t k7
k1

− t k1
k7

]
V̄k2

ν Uk3
λ vµν,αλ, (57c)

D̄(IIi)
r,α = 1√

6
P123

∑

µν
λk7

(
V̄k7

λ

)∗[
t k7
k1

− t k1
k7

]
V̄k2

µ V̄k3
ν vµν,αλ, (57d)
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The expectation value of any one-body operator O is given by

〈!0|O|!0〉 =
∑

αβ

oαβρβα, (23)

whereas the Migdal-Galitski-Koltun energy sum rule deliver-
ing the ground-state energy

%0 = 1
2π

∫ 0

−∞
[tαβ − µδαβ + ωδαβ]ImG11

βα (ω)dω (24)

is exact for a Hamiltonian with up to two-particle interactions.

B. Gorkov equations

The perturbative expansion of Gorkov propagators is
devised following the standard approach of defining an unper-
turbed propagator, G(0)(t − t ′), according to definitions (14)
and (15) but with % replaced by the one-body grand potential
%U . After Fourier transform to frequency domain, one finds

G(0)(ω) = [ωI − !U ]−1, (25)

where model space and Nambu indices are implicit and the
matrix inversion is performed with respect to both. One then
exploits the interaction picture to devise a perturbative expan-
sion of the full propagator of Eq. (16) that can be represented
as a series of Feynman diagrams in powers of the perturbation
%I [25].

Doing so, the standard Dyson equation for the interacting
propagator G(ω) is generalized to the set of coupled Gorkov
equations for the four propagators (18). Using Nambu’s ma-
trix notation, they read as

Gαβ (ω) = G(0)
αβ (ω) +

∑

γ δ

G(0)
αγ (ω)"*

γ δ (ω)Gδβ (ω), (26)

where the four self-energies

"*
αβ (ω) ≡

(
+*11

αβ (ω) +*12
αβ (ω)

+*21
αβ (ω) +*22

αβ (ω)

)
(27)

include all possible one-particle irreducible diagrams stripped
of their external legs. The remaining reducible diagrams are
then generated in a nonperturbative way through the all-orders

resummation generated by Eq. (26). In standard perturbation
theory, a given approximation to "*(ω) is a functional of the
unperturbed propagators G(0)(ω) and hence depends directly
on the choice of the reference state associated with %U . In
SCGF theory, the series of diagrams to be resummed is fur-
ther restricted to skeleton diagrams displaying no self-energy
insertion, provided that all propagator lines are replaced by
the interacting propagator G(ω). Since the full Dyson-Gorkov
series is included in such a propagator, the SCGF procedure
not only reduces the number of Feynman diagrams that need
to be dealt with but it implicitly accounts for higher-order
terms that are beyond the perturbative truncation chosen for
the self-energy. The self-energy becomes a functional of the
interacting propagator, "*[G; T,V ] and is no longer affected
by the choice of the unperturbed state. The price to pay for
such improvements is that diagrams expressed in terms of
G(ω) are more demanding to deal with, due to the rich pole
structure of Eqs. (18). Furthermore, "*(ω) and the Gorkov
equations (26) have respectively to be computed and solved
repeatedly through an iterative procedure.

The most general structure of the Gorkov self-energy can
be written as

"*
αβ (ω) = −U + "(∞)

αβ + "̃αβ (ω), (28)

where the auxiliary potential term U arising from %I at
first order is separated from the proper part of the self-
energy. The term "(∞) embodies the limit of the proper
self-energy to ω → ±∞ and represents the mean field
experienced by a particle in the correlated medium. It re-
duces to the Hartree-Fock-Bogoliubov (HFB) potential for a
self-consistent first-order truncation of "*(ω) but otherwise
includes additional in-medium corrections at higher orders.
Hence, it is referred to as the correlated HFB (cHFB) poten-
tial.

The components of the dynamic self-energy "̃(ω) also
have a spectral representation analogous to Eqs. (18). In this
case, the poles of the Lehmann representation are associated
with intermediate-state configurations (ISCs) combining dif-
ferent quasiparticle excitations {|!k〉; ωk}. To write the most
general form of the dynamic self-energy, a generic index r is
employed to label all possible ISCs that are eventually made
explicit in Sec. III. Thus, the general form writes

+̃11
αβ (ω) =

∑

rr′

{
Cα,r

[
1

ωI − E + iη

]

r,r′
C†

r′,β + D̄†
α,r

[
1

ωI + ET − iη

]

r,r′
D̄r′,β

}
, (29a)

+̃12
αβ (ω) =

∑

rr′

{
Cα,r

[
1

ωI − E + iη

]

r,r′
D∗

r′,β + D̄†
α,r

[
1

ωI + ET − iη

]

r,r′
C̄T

r′,β

}
, (29b)

+̃21
αβ (ω) =

∑

rr′

{
DT

α,r

[
1

ωI − E + iη

]

r,r′
C†

r′,β + C̄∗
α,r

[
1

ωI + ET − iη

]

r,r′
D̄r′,β

}
, (29c)

+̃22
αβ (ω) =

∑

r‘r′

{
DT

α,r

[
1

ωI − E + iη

]

r,r′
D∗

r′,β + C̄∗
α,r

[
1

ωI + ET − iη

]

r,r′
C̄T

r′,β

}
, (29d)

where Er,r′ denotes the elements of an energy matrix associated with an interaction among ISCs r and r′. Matrix E is Hermitian,
so that ET = E∗. The coupling matrices C and D couple single-particle and ISC spaces, with the elements of the barred matrices
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Estimating Z!

↵�

We turn propagators that close on themselves into zigzag lines with an
arbitrary value

e
i!1⌘G↵ (!1) =

↵

↵
!1�!

↵

↵
!1 := �ie

�k!
2
1 .

k is an arbitrary constant that can be used to optimize the convergence.
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with k an arbitrary constant that can be used to opsmize the convergence. 
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The expected number of smes the normalizason 
sector is visited (     ) gives the normalizason        :  

Then, we get the fundamental equason of DiagMC:

We define the set of normalization diagrams SN as the set made of these
two diagrams.

SN =
↵

↵

↵

↵
!1 ,

↵

↵

↵

↵
!1

↵

↵

↵

↵
!2

!

SN has weight

ZN
!

↵
:=

Z

SN

dC w
!

↵ =
|g|

4
p
⇡k

+
g
2

16⇡k
|G↵ (!)|Wo(2).
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The expected number of times the normalization sector is visited (N ) gives
the normalization Z!

↵ .

ZN
!

↵

Z!
↵

= lim
n!1

N
n
.

We get the fundamental equation of DiagMC

⌃?

↵ (!) = ZN
!

↵ lim
n!1

1

N

nX

i=1

e
i arg[D!

↵(Ci)]

Wo(N)
1Ti2S⌃? .
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Pairing Hamiltonian
Applicason to the Richardson-Gaudin pairing model with D levels (of spin 1/2) and M=4 fermions:

This method has been implemented for infinite systems.
It has never been tried for systems with discrete energy levels (nuclear
physics and quantum chemistry).

As a first application we considered the simple model

H = ⇠

D�1X

↵=0

X

�=+,�
↵c

†
↵�c↵� � g

2

D�1X

↵,�=0

c
†
↵+c

†
↵�c��c�+

with 4 particles.

↵ = 3

↵ = 2

↵ = 1

↵ = 0
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The updates
The updates

1 Change Frequency
2 Change Single-Particle Quantum Numbers
3 Add Loop
4 Remove Loop
5 Reconnect

Standard Monte Carlo

Monte Carlo on the topology

The acceptance ratio of each update must be fixed to reproduce the
correct equilibrium distribution (w!

↵�
).

With a self-consistent iterative scheme - bold diagrammatic Monte
Carlo (BDMC) - we are ergodic up to third order.
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Change Frequency:
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0
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0
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Change Single-Particle Quantum Numbers:
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Add Loop:
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�
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0
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|g|
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Wf (!0
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e
�k!
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1 |G↵ (!)|
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Wo(2)
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Reconnect:

↵

↵

↵

↵

�

�

�

�

! � !1 + !2 !1 !2

↵ ↵

↵ ↵

!

!
0
1

↵

↵

↵

↵

�

�

�

�
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0
1 !1
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↵
↵

↵ ↵
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0
1

!
0
1

The unphysical propagators are turned into physical ones when reconnected.
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The unphysical propagators are turned into 
physical ones when reconnected. 

& Remove Loop:



Results of the simulation for D=4 
This method has been implemented for infinite systems.
It has never been tried for systems with discrete energy levels (nuclear
physics and quantum chemistry).

As a first application we considered the simple model
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4.3. RESULTS OF THE SIMULATION FOR D = 4 57

Figure 4.1: Components ↵ = 0 and ↵ = 2 of the imaginary part of the self-energy for different
values of the coupling g. The blue line is the results obtained with the BDMC simulation, while
the red line is the best fit as a sum of two Lorentzians. The results for the two values of ↵ = 0, 2
are displayed respectively on the left and on the right of the graph. The error bars are calculated
as explained in the main text.

This method has been implemented for infinite systems.
It has never been tried for systems with discrete energy levels (nuclear
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chains [34]. Hence, we are now in a position to mean-
ingfully compare first principles approaches to scattering
data in medium mass nuclei. In the following, we present
state-of-the-art SCGF calculations to test current ab initio
methods and compare our results to NCSM-RGM and
NCSMC computations with NN and NNþ 3N inter-
actions. We then use a saturating chiral Hamiltonian to
study elastic scattering of neutrons from 16O and 40Ca.
Formalism.—The Hamiltonian used to compute the

self-energy is

HðAÞ ¼ T̂ − T̂c:m:ðAþ 1Þ þ V̂ þ Ŵ; ð1Þ

where T̂c:m:ðAþ 1Þ is the center of mass kinetic energy for
the A-nucleon target plus the projectile, and V̂ and Ŵ are
the NN and 3N interactions. Ŵ is included as an equivalent
effective two-body interaction, averaged on the correlated
propagator as discussed in Refs. [30,35]. The SCGF
calculation proceeds by solving the Dyson equation,
gðωÞ ¼ g0ðωÞ þ g0ðωÞΣ⋆ðωÞgðωÞ, in a harmonic oscillator
(HO) basis of Nmax þ 1 shells, where g0ðωÞ is the free
particle propagator, and the irreducible self-energy Σ⋆ðωÞ
has the following general spectral representation:

Σ⋆
αβðE;ΓÞ ¼ Σð∞Þ

αβ þ
X

i;j

M†
α;i

!
1

E− ðK> þCÞ þ iΓ

"

i;j
Mj;β

þ
X

r;s

Nα;r

!
1

E− ðK< þDÞ− iΓ

"

r;s
N†

s;β; ð2Þ

where α and β label the single particle quantum numbers of
the HO basis, Σð∞Þ is the correlated and energy independent
mean field, and Γ sets the correct boundary conditions. We
performed calculations with the third order algebraic
diagrammatic construction [ADC(3)] method, where the
matrix M (N) couples single particle states to intermediate
2p1h (2h1p) configurations,C (D) is the interaction matrix
among these configurations, and K contains their unper-
turbed energies [36,37]. All intermediate 2p1h and 2h1p
states (respectively labeled by indices i, j and r, s) were
included. For Nmax ¼ 13, this incorporates configurations
up to 400 MeVof excitation energy and partial waves of the
projectile up to angular momentum j ¼ 27=2 for both
parities.
The resulting dressed single particle propagator can be

written in the Källén-Lehmann representation as

gαβðE;ΓÞ ¼
X

n

hΨA
0 jcαjΨAþ1

n ihΨAþ1
n jc†βjΨA

0 i
E − EAþ1

n þ EA
0 þ iΓ

þ
X

k

hψA
0 jc

†
αjΨA−1

k ihΨA−1
k jcβjΨA

0 i
E − EA

0 þ EA−1
k − iΓ

: ð3Þ

The poles of the forward-in-time propagator, EAþ1
n − EA

0 ,
indicate then the energy of the nth exited state of the

(Aþ 1)-nucleon system with respect to the ground state
of the target A. Hence, they are directly identified
with the scattering energy. For each many-body state
jΨAþ1

n i in the continuum, the corresponding overlaps
ψnðαÞ≡ hΨAþ1

n jc†αjΨA
0 i are associated with the elastic

scattering wave function through Feshbach theory [1,38].
Although the scattering waves are unbound, the self-

energy Σ⋆ðωÞ associated with the optical potential is
localized, and it can be efficiently expanded on square
integrable functions. Hence, we proceed by calculating
Eq. (2) in HO basis but transform it to momentum space
before solving the scattering problem. This will ensure that
the proper asymptotic behaviors of both bound and
scattering states are obtained. The optical potential for a
given partial wave (l, j) is then expressed as

Σ⋆l;jðk; k0;E;ΓÞ ¼
X

n;n0
Rn;lðkÞΣ

⋆l;j
n;n0ðE;ΓÞRn0;lðk0Þ; ð4Þ

which is nonlocal and energy dependent, where Rn;lðkÞ are
the radial HO wave functions in momentum space.
Through Eqs. (2) and (4), the SCGF approach provides
a parametrized, separable, and analytical form of the optical
potential.
The parameter Γ sets the time ordering boundary

conditions, but it does not affect the solution of the
many-body problem that comes from the diagonalization
of the equation of motion [5,27,37]. However, we retain it
in Eq. (4) to introduce a small finite width for the 2p1h and
2h1p configurations, which would otherwise be discretized
in the present approach. We checked that this does not
affect our conclusions below.
We use the intrinsic Hamiltonian of Eq. (1) and large

enough HO spaces so that the intrinsic ground state
decouples from the center of mass motion [39]. Even if
decoupled, the latter is not fully suppressed and the self-
energy (4) is still computed in laboratory frame. We correct
for this by rescaling the scattering momentum appropri-
ately, which naturally leads to the correct center of mass
(c.m.) energy Ec:m: and reduced mass μ¼ γm, with
γ≡A=ðAþ1Þ. The Dyson equation eventually reduces
to the following one-body eigenvalue problem [25,37]:

½Ec:m: − k2=ð2μÞ&ψ l;jðkÞ

¼
Z

dk0k02γ3Σ⋆l;jðγk; γk0; γEc:m:;ΓÞψ l;jðk0Þ; ð5Þ

We diagonalize this Schrödinger-like equation in momen-
tum space so that the kinetic energy is treated exactly and
we account for the nonlocality and l, j dependence of
Eq. (4). The phase shifts δðEc:m:Þ are obtained as a function
of the projectile energy for each partial wave, from which
the differential cross section can be calculated. The bound
state solutions of Eq. (5) yields overlap wave functions
between jΨAi and jΨAþ1i [40]. Hence, they provide
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self-energy is
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where α and β label the single particle quantum numbers of
the HO basis, Σð∞Þ is the correlated and energy independent
mean field, and Γ sets the correct boundary conditions. We
performed calculations with the third order algebraic
diagrammatic construction [ADC(3)] method, where the
matrix M (N) couples single particle states to intermediate
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among these configurations, and K contains their unper-
turbed energies [36,37]. All intermediate 2p1h and 2h1p
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0 jc
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E − EA

0 þ EA−1
k − iΓ

: ð3Þ
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indicate then the energy of the nth exited state of the

(Aþ 1)-nucleon system with respect to the ground state
of the target A. Hence, they are directly identified
with the scattering energy. For each many-body state
jΨAþ1

n i in the continuum, the corresponding overlaps
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0 i are associated with the elastic

scattering wave function through Feshbach theory [1,38].
Although the scattering waves are unbound, the self-

energy Σ⋆ðωÞ associated with the optical potential is
localized, and it can be efficiently expanded on square
integrable functions. Hence, we proceed by calculating
Eq. (2) in HO basis but transform it to momentum space
before solving the scattering problem. This will ensure that
the proper asymptotic behaviors of both bound and
scattering states are obtained. The optical potential for a
given partial wave (l, j) is then expressed as
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which is nonlocal and energy dependent, where Rn;lðkÞ are
the radial HO wave functions in momentum space.
Through Eqs. (2) and (4), the SCGF approach provides
a parametrized, separable, and analytical form of the optical
potential.
The parameter Γ sets the time ordering boundary

conditions, but it does not affect the solution of the
many-body problem that comes from the diagonalization
of the equation of motion [5,27,37]. However, we retain it
in Eq. (4) to introduce a small finite width for the 2p1h and
2h1p configurations, which would otherwise be discretized
in the present approach. We checked that this does not
affect our conclusions below.
We use the intrinsic Hamiltonian of Eq. (1) and large

enough HO spaces so that the intrinsic ground state
decouples from the center of mass motion [39]. Even if
decoupled, the latter is not fully suppressed and the self-
energy (4) is still computed in laboratory frame. We correct
for this by rescaling the scattering momentum appropri-
ately, which naturally leads to the correct center of mass
(c.m.) energy Ec:m: and reduced mass μ¼ γm, with
γ≡A=ðAþ1Þ. The Dyson equation eventually reduces
to the following one-body eigenvalue problem [25,37]:

½Ec:m: − k2=ð2μÞ&ψ l;jðkÞ

¼
Z

dk0k02γ3Σ⋆l;jðγk; γk0; γEc:m:;ΓÞψ l;jðk0Þ; ð5Þ

We diagonalize this Schrödinger-like equation in momen-
tum space so that the kinetic energy is treated exactly and
we account for the nonlocality and l, j dependence of
Eq. (4). The phase shifts δðEc:m:Þ are obtained as a function
of the projectile energy for each partial wave, from which
the differential cross section can be calculated. The bound
state solutions of Eq. (5) yields overlap wave functions
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Results of the simulation for D=4 
Results of the simulation for D=4

Imaginary part of the component ↵ = 0 of the diagonal self-energy for
different values of the coupling:

We fitted the imaginary part of the self-energy as a sum of Lorentzians.
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This method has been implemented for infinite systems.
It has never been tried for systems with discrete energy levels (nuclear
physics and quantum chemistry).

As a first application we considered the simple model
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Results of the simulation for D=4 

Correlation energy �E = E � EHF as a function of g:
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Correlason energy                                      as a funcson of interacson strength (g): Correlation energy �E = E � EHF as a function of g:
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Reorganization in terms of ladders (𝜞)

A different updating scheme

We can reorganize the self-energy expansion

and devise a new updating scheme:

�(0) := + + + ...

⌃? = �(0) +
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�(0)

�(0)

+ ...
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Breaking of the spectral representason is mostly due to truncason in parsal all order resummasons

—> Can reformulate DiagMC/BDMC in terms of complete lawes (now 3rd oder in 𝜞) 

—> New resummasons scheme,  now up to 3rd oder in 𝜞 (actually, we find convergence at order 1)  
—> New set of diagrammasc update rules 
—> New normalisason sectors.



Reorganization in terms of ladders (𝜞)

Results of the simulation

Imaginary part of the component ↵ = 0 of the diagonal self-energy
(g = �0.6):

New updating scheme: Old updating scheme:

We are able to treat the case g < �0.4!
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New updating scheme: Old updating scheme:

We are able to treat the case g < �0.4!
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Imaginary part of the component α=0 of the diagonal self-energy (g=-0.6):

the

It restores the correct spectral representason also for g < −0.4!



Reorganization in terms of ladders (𝜞)

Correlation energy �E = E � EHF as a function of g:
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Correlation energy �E = E � EHF as a function of g:
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Correlason energy                                      as a funcson 
of interacson strength (g): 

Spectroscopic
function for
different dimensions
of the model space
(g = 0.6).
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Spectroscopic funcson for different 
dimensions of the model space (D):



Take home messages on DiagMC

  We were able to obtain results in good agreement with the exact ones and the ones predicted by 

other state-of-the-art techniques.  

  In future developments we need to extend the algorithm to higher order diagrams.  

  A different updasng scheme or a different method to sample higher order contribusons can be 

considered.  

  The applicason to realissc interacsons is something that has to be studied in the next years  

Thank you for your attention!!!

All merits goes to: 

L. Lazzarino, G. Paravizzini (NQS) 

S. Brolli (DiagMC) 


