A simple NQS model in a discrete lattice

 ANDDiagrammatic Monte Carlo for paired fermions

Carlo Barbieri

Outline:

Thesis work by:
L. Lazzarino, G. Paravizzini, BSc
S. Brolli, MPhys

Overview of low-energy nuclear physics

Composite system of interacting fermions
Binding and limits of stability
Coexistence of individual and collective behaviors

Experimental programs
RIKEN, FAIR, FRIB, ISAC...

Self-organization and emerging phenomena EOS of neutron star matter

Extreme mass
II) Ab Initio computations of nuclear structure
[Frontiers in Physics 8, 626976 (2021)]
Correlations known better for stable isotopes
[C. Barbieri and W. H. Dickhoff, Prog. Part. Nucl. Phys 52, 377 (2004)]
Neutron-rich nuclei; Shell evolution (far from stability)
I) Understanding the nuclear force

QCD-derived; 3-nucleon forces (3NFs)
First principle (ab-initio) predictions

- 283 st
- $\approx 3,000$
- $\approx 7,00$ (
III) Interdisciplinary character

Astrophysics
Tests of the standard model
Other fermionic systems:
ultracold gasses; molecules;

THE FUTURE OF NUCLEAR STRUCTURE: CHALLENGES AND OPPORTUNITIES IN THE MICROSCOPIC DESCRIPTION OF NUCLEI

EDITED BY: Luigi Coraggio, Saori Pastore and Carlo Barbieri PUBLISHED IN: Frontiers in Physics

FRONTIERS topical review (doi: 10.3389/fphy.2020.626976) :

Frontiers in Physics 8, 626976 (2021)

* frontiers Research Topics

Editors: L. Coraggio, S. Pastore, CB

Reach of ab initio methods across the nuclear chart

Extension beyond few-nucleons thanks to:

- Soft (nearly perturbative) effective nuclear forces
- Diagrammatic many-body approaches

Legnaro Natl' Lab Mid Term Plan; Eur. Phys. J. Plus 138, 709 (2023)

Open challenges:

- Accuracy (better theory of nuclear forces)
- Mass number limit (optimised model spaces)

Precision \& scattering (high-order diag. resummations $\$$
H. Hergert, Frontiers in Phys 8, 379 (2020)
L. Coraggio, S. Pastore, CB, Frontiers in Phys 8, 626976 (2021)

Quest to predict exotic (unstable) isotopes

Nature 473, 25 (2011); 486, 509 (2012) Neutron number, N

Most isotopes are deformed (even triaxially) and change shape under external action

density $\left(\mathrm{fm}^{-3}\right)$

pairing gap (MeV)

pairing phase

- 283 stable isotopes
- $\approx 3,000$ are known
- $\approx 7,000$ predicted to exist

Fission of ${ }^{240 P u}$:

- time dependent DFT inspired, in 3D

NQS for

fermions confined in a box

Confined fermions w/ a discrete coordinate space mesh

- Discretise coordinate space
- Use occupation number to locate particles

$\Longleftrightarrow \quad(0,1,0,0,0,1,0,0,0)$
- Use a Fock space basis to represent particle configurations:

$$
|\psi\rangle=\prod_{i} \psi^{\dagger}\left(x_{i}\right)|0\rangle=\left|n_{0}=0, n_{1}=1, n_{2}=0, n_{3}=0, n_{4}=0, n_{5}=1, \ldots n_{L}=0\right\rangle
$$

- Can be mapped into a system of spins (with fixed magnetisation):

$$
\langle x \mid \psi\rangle \rightarrow\langle S \mid \psi\rangle \Leftrightarrow\left\{\begin{array}{cl}
c_{\uparrow \uparrow \uparrow \ldots} \doteq\langle\uparrow \uparrow \uparrow \ldots \mid \psi\rangle=\psi(\uparrow \uparrow \uparrow \ldots) & \\
c_{\downarrow \uparrow \uparrow \ldots} \doteq\langle\downarrow \uparrow \uparrow \ldots \mid \psi\rangle=\psi(\downarrow \uparrow \uparrow \ldots) & \\
\vdots & \\
c_{\downarrow \downarrow \downarrow \ldots} \doteq\langle\downarrow \downarrow \downarrow \ldots \mid \psi\rangle=\psi(\downarrow \downarrow \downarrow \ldots) & \\
\text { Carleo and Troyer, } \\
\text { Caience 355, } 602 \text { (2017) }
\end{array}\right.
$$

NQS representation

- Use a Restricted Boltzmann Machine with complex parameter to represent the w.f.:

$$
\mathcal{P}(v \cap h)=\frac{1}{\mathcal{Z}} \exp \left(a^{\top} v+b^{\top} h+h^{\top} \underline{\underline{W}} v\right) \quad \text { with: } \quad\left\{\begin{array} { l }
{ v \in \{ - 1 , 1 \} ^ { N _ { v } } } \\
{ h \in \{ - 1 , 1 \} ^ { N _ { h } } }
\end{array} \quad \left\{\begin{array}{l}
a \in \mathbb{C}^{N_{v}} \\
b \in \mathbb{C}^{N_{h}} \\
W \in \operatorname{Mat}_{N_{h} \times N_{v}}(\mathbb{C})
\end{array}\right.\right.
$$

- Marginalize w.r.t. the hidden nodes:

$$
\langle x \mid \psi\rangle \rightarrow \mathcal{P}(\mathrm{v})=\sum_{\{\mathrm{h}\}} \mathcal{P}(\mathrm{v} \cap \mathrm{~h})
$$

$$
\left\{\begin{array}{l}
\mathrm{a}=\mathrm{a}^{(0)}+\Delta \mathrm{a}=\mathrm{a}^{(0)}+\sum_{i=1}^{N_{n}} \mathrm{a}^{(i)} \\
1 / \mathcal{Z}=\exp \left(\sum_{i=1}^{N_{n}} K^{(i)}\right) \\
\mathrm{w}^{(i)}=\left(\begin{array}{c}
W_{1, i} \\
W_{2, i} \\
\vdots \\
W_{N_{v, i}}
\end{array}\right) \in \mathbb{C}^{N_{v},} \\
\omega_{i}(\mathrm{v})=\mathrm{w}^{(i)} \mathrm{T}_{\mathrm{v}}+b_{i}=\sum_{j} w_{j i} v_{j}+b_{i},
\end{array}\right.
$$

Restricted Boltzmann Machine

$\psi(\mathbf{v})=2^{N_{h}} \exp \left(\mathrm{a}^{(0)} \mathbf{T} \mathbf{v}\right) \prod_{i=1}^{N_{h}}\left[\exp \left(K^{(i)}+\mathbf{a}^{(i)} \mathbf{T} \mathbf{v}\right) \cosh \left(\omega_{i}(\mathbf{v})\right)\right]$
<- Note that a ${ }^{(\mathrm{i})}$ are site dependent and no hidden nodes are necessary for a single particle ($N_{h}=0$).

Energy minimization

- The Hamiltonian for N_{v} fermions fermions will be:

$$
\mathcal{H}=T+V=\sum_{i} \frac{-\hbar^{2}}{2 m_{i}(\Delta x)^{2}} \sum_{j}\left[\psi_{j+1}^{\dagger} \psi_{j}-2 \psi_{j}^{\dagger} \psi_{j}+\psi_{j-1}^{\dagger} \psi_{j}\right]+V
$$

+ appropriate conditions at the walls.
- Sample $E_{\text {loc }}$ from $|\psi(x)|^{2} \sim \mathrm{RBM}^{2}$ using MCMC:

$$
\begin{aligned}
& E_{\mathrm{loc}}(\mathrm{x})=\int d \mathrm{x}^{\prime} \mathcal{H}_{\mathrm{xx}} \frac{\psi\left(\mathrm{x}^{\prime}\right)}{\psi(\mathbf{x})} \\
& \frac{\langle\psi| \mathcal{H}|\psi\rangle}{\langle\psi \mid \psi\rangle}=\left\langle E_{\mathrm{loc}}\right\rangle_{|\psi(\mathrm{x})|^{2}}
\end{aligned}
$$

Use gradient descent w/ SR:

$$
\begin{aligned}
& D_{k}(x ; \theta)=\frac{\partial_{\theta_{k}} \psi^{\theta}(x)}{\psi^{\theta}(x)} \\
& \partial_{\theta_{k}}\langle\mathcal{H}\rangle_{\psi}=\left\langle G_{k}\right\rangle_{|\psi(x)|^{2}} \\
& G_{k}(x ; \theta)=2 \operatorname{Re}\left[D_{k}^{*}(x ; \theta)\left(E_{\text {loc }}(x)-\left\langle E_{\text {loc }}\right\rangle_{|\psi(x)|^{2}}\right)\right]
\end{aligned}
$$

Stochastic Reconfiguration

$$
\begin{aligned}
\theta^{(t+1)} & =\theta^{(t)}-\eta^{(t)} S^{-1} \nabla_{\theta}\langle\mathcal{H}\rangle_{\psi}, \\
S_{i j} & =\left\langle D_{i}^{*}\right\rangle\left\langle D_{j}\right\rangle-\left\langle D_{i}^{*} D_{j}\right\rangle,
\end{aligned}
$$

One fermion - optimization

Two fermions - optimization

Convergence with $N_{v}=10$

Figure 1: Solution for the two particles non-interacting problem with an RBM built with only 10 hidden nodes. This simulation proves that it is possible to have a satisfying approximation also with relatively few hyper parameters.

Hyperparameter optimization

N_{h}	$\langle t\rangle /$ iteration	$\Delta E / E$
40	2.75 min	2%
30	1.8 min	2.6%
20	1 min	0.03%
10	16.2 s	0.05%
5	4 s	60%

Table 1: Efficiency and quality of convergence of RBMs with various N_{h} to model the two non-interacting fermions in a box. N_{v} is set to 10 for every simulation.

Two fermions - NQS wave function

Neural network ground state

Figure 2: Physical learning process of an RBM with $N_{h}=20$ from the starting wave function (upper left). The NN seems to be learning boundaries and antisimmetry in the following iterations (number 15, 30 and 300 are reported).

Hydrogen atom on the 3D lattice

Convergence

Figure 3.4: The optimization of the network for the hydrogen atom confined in a box $\mathrm{Nv}=4913(17 \mathrm{x} 17 \mathrm{x} 17)$ and a zoom of the last iterations on the right The network seems to converge to the exact value in the continuum limit but it misses the correct result for the discretized problem.

The cusp at the proton site is recovered

Figure 3.7: One-dimensional section of the hydrogen wave function in correspondence of the nucleus compared with theoretical behavior $\propto \exp (-r)$

UNIVERSITÀ DEGLI STUDI DI MILANO
DIPARTIMENTO DI FISICA

Self-consistent Green's function (SCGF) and

Diagrammatic Monte Carlo (DiagMC)

Green's function theory for nuclei

The Green's function is found as the exact solution of the Dyson equation:

$$
G_{\alpha \beta}(\omega)=G_{\alpha \beta}^{(0)}(\omega)+\sum_{\gamma \delta} G_{\alpha \gamma}^{(0)}(\omega) \Sigma_{\gamma \delta}^{\star}(\omega) G_{\delta \beta}(\omega)
$$

It requires knowing the self-energy which is the sum of an infinite series of Feynman diagrams:

The number of required diagrams explodes (factorially!) with the order of the approximation...

The Faddev-RPA and ADC(3) methods in a few words

Compute the nuclear self energy to extract both scattering (optical potential) and spectroscopy.
Both ladders and rings are needed for atomi nuclei:
F-RPA:
Phys. Rev. C63, 034313 (2001) Phys. Rev. A76, 052503 (2007)
Phys. Rev. A83, 042517 (2011)
ADC(3):
Lect. Notes in Phys 936 (2017)Chapter 11.

All Ladders (GT) and ring modes (GW) are coupled to all orders. Two approaches:

- Faddev-RPA allows for RPA modes
- ADC(3) Tamn-Dancoff version using 3rd order diagrams as 'seeds':

The Self-Consistent Green's Function with Faddev-RPA

Binding energies
oxygen drip line
[Phys Rev. Lett. 111, 062501 (2013)] $\quad \begin{aligned} & \text { Charge \& Matter distribution } \\ & \text { Neutron skins [Phys Rev. Lett. 125, } 182501 \text { (2020)] }\end{aligned}$

	SCGF	Exp.
${ }^{100} \mathrm{Sn}$	$4.525-4.707$	
${ }^{132} \mathrm{Sn}$	$4.725-4.956$	4.7093
${ }^{132} \mathrm{Xe}$	$4.700-4.948$	4.7859
${ }^{136} \mathrm{Xe}$	$4.715-4.928$	4.7964
${ }^{138} \mathrm{Xe}$	$4.724-4.941$	4.8279

Spectroscopy
Ionisation energies and affinities for simple atoms and molecules
[Phys Rev. A. 83, 042517 (2011); 85, 012501 (2012)]

	Level	ADC(3)	FRPA	FRPA(c)	Expt.
нF					
	${ }_{3}^{1 / \pi}$	${ }^{16.48}$	${ }_{20.03}^{16.05}$	${ }_{20}^{16.35}$	16.05 20.0
co					
	5	13.94 1.908	14.37 1.95	13.69 1.64	${ }_{14.01}^{14.91}$
	${ }_{4 \sigma}^{1 \pi}$	16.98 20.19	16.95 19.46	10.84 19.59	19.912 19.72
$\mathrm{H}_{2} \mathrm{O}$	${ }_{1} b_{1}$	12.86	12.62	12.67	2.62
	$3 a_{1}$	15.15	14.91	14.98	14.74
	${ }_{1}^{1 b_{2}}$	19.21	19.06		18.51
	Δ (ev)	${ }^{0.350 .0 .30)}$	${ }^{0.25(0.23)}$	${ }^{0.3110 .26)}$	

Nuclear ELM response and dipole polarisability, a_{D}

Ab-initio Nuclear Computation \& BcDor code

BoccaDorata code: https://gitlab.com/cbarbieri/BoccaDorata

- C++ class library for handling many-body propagators (MPI \& OpenMP based).
- Computation of nuclear spectral functions, many-body propagators, RPA responses, coupled cluster equations and effective interaction/charges for the shell model.

Code history:
2006
core functions and FRPA
shell model charges\&interactions (lowest order)

2010
new Gorkov formalism for (v. Soma, 2010-) open-shell nuclei (at $2^{\text {nd }}$ order)

Coupled clusters equations
2012

2013

2014

2022
DIPARTIMENTO DI FISICA
Gorkov at $3^{\text {rd }}$ order (will become massively parallel...)

S. Springer

 Morten Hjorth-Jensen
 Maria Paola Lombardo
 Ubirjajara van Kolck Editors
 An Advanced
 Course in
 Computational
 Nuclear Physics
 Bridging the Scales from Quarks to Neutron Stars

Self-consistent Green's function formalism and methods for Nuclear Physics

Benchmark of ab-initio methods for oxygen isotopic chain

A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013)

\rightarrow 3NF tensor and 3NF near flourine's dripline K. Hebeler et al., Annu. Rev. Nucl. Part. Sci. 65, 457 (2015)

UNIVERSITÀ DEGLI STUDI DI MILANO
DIPARTIMENTO DI FISICA

Role of intermediate state configurations (ISCs)

[A. Idini, CB, Navrátil,
Phys. Rev. Lett. 123, 092501 (2019)]

50% of $2 p 1 h / 2 h 1 p$ poles suppressed
2.

Full $\Sigma_{\alpha \beta}^{\star}(\omega)$ (all ISCs included)
0
0

$$
\begin{aligned}
& \begin{array}{ccc}
5 & 10 & 15 \\
& & E(\mathrm{MeV})
\end{array} \\
& \Sigma_{\alpha \beta}^{\star}(\omega)=\Sigma_{\alpha \beta}^{(\infty)}+\sum_{i, j} \mathbf{M}_{\alpha, i}^{\dagger}\left(\frac{1}{E-\left(\mathbf{K}^{>}+\mathbf{C}\right)+i \Gamma}\right)_{i, j} \mathbf{M}_{j, \beta}+\sum_{r, s} \mathbf{N}_{\alpha, r}\left(\frac{1}{E-\left(\mathbf{K}^{<}+\mathbf{D}\right)-i \Gamma}\right)_{r, s} \mathbf{N}_{s, \beta}^{\dagger}
\end{aligned}
$$

Inclusion of NNN forces

$\rightarrow 3 p 2 h / 3 h 2 p$ terms relevant to next-generation high-precision methods.

Formalism already laid out:

UNIVERSITÀ DEGLI STUDI DI MILANO
DIPARTIMENTO DI FISICA

Nambu-Covariant approach to build (Gorkov) propagators

Gorkov at $2^{\text {nd }}$ order:

pp-ladders:
ph-rings:

Gorkov at
3rd order:
(ONLY NN forces)

(NN ONLY forces) li studi di milano

DIPARTIMENTO DI FISICA

Nambu-Covariant approach to build (Gorkov) propagators

PHYSICAL REVIEW C 105, 044330 (2022)

Gorkov algebraic diagrammatic construction formalism at third order

Gorkov at 2nd order:

Carlo Barbieri
Department of Physics, Via Celoria 16, 20133, Milano, Italy and INFN, Via Celoria 16, 20133, Milano, Italy

Thomas Duguet

IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France and KU Leuven, Instituut voor Kern- en Stralingsfysica, 3001 Leuven, Belgium

Vittorio Somà
IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France

$$
\begin{aligned}
& \widetilde{\Sigma}_{\alpha \beta}^{11}(\omega)=\sum_{r r^{\prime}}\left\{\mathcal{C}_{\alpha, r}\left[\frac{1}{\omega \mathbb{I}-\mathcal{E}+i \eta}\right]_{r, r^{\prime}} \mathcal{C}_{r^{\prime}, \beta}^{\dagger}+\overline{\mathcal{D}}_{\alpha, r}^{\dagger}\left[\frac{1}{\omega \mathbb{I}+\mathcal{E}^{T}-i \eta}\right]_{r, r^{\prime}} \overline{\mathcal{D}}_{r^{\prime}, \beta}\right\} \\
& \widetilde{\Sigma}_{\alpha \beta}^{12}(\omega)=\sum_{r r^{\prime}}\left\{\mathcal{C}_{\alpha, r}\left[\frac{1}{\omega \mathbb{I}-\mathcal{E}+i \eta}\right]_{r, r^{\prime}} \mathcal{D}_{r^{\prime}, \beta}^{*}+\overline{\mathcal{D}}_{\alpha, r}^{\dagger}\left[\frac{1}{\omega \mathbb{I}+\mathcal{E}^{T}-i \eta}\right]_{r, r^{\prime}} \overline{\mathcal{C}}_{r^{\prime}, \beta}^{T}\right\}
\end{aligned}
$$

hh-interactions (hh int. among pp ladders

Gorkov at
3rd order: (ONLY NN forces)

(NN ONLY forces) li studi di milano

$\mathcal{C}_{\alpha, r}^{(\mathrm{ILb})}=\frac{1}{\sqrt{6}} \mathcal{P}_{123} \sum_{\alpha_{\mu \lambda, \mu \nu}}\left(\overline{\mathcal{V}}_{\nu}^{k_{4}} \mathcal{U}_{\lambda}^{k_{5}}\right)^{*} t_{k_{4} k_{5}}^{k_{1} k_{2}} \mathcal{U}_{\mu}^{k_{3}}, \quad$ (43b)
$\mathcal{C}_{\alpha, r}^{(\text {IIc })}=\frac{1}{\sqrt{6}} \mathcal{P}_{123} \sum_{\mu \nu \lambda}^{k_{4} k_{5}} \frac{v_{\alpha \lambda, \mu \nu}}{2}\left(\overline{\mathcal{V}}_{\mu}^{k_{4}} \overline{\mathcal{V}}_{\nu}^{k_{5}}\right)^{*} t_{k_{1} k_{2}}^{k_{k} k_{5}} \overline{\mathcal{V}}_{\lambda}^{k_{3}}, \quad$ (47a)
$\mathcal{C}_{\alpha, r}^{(\text {IId })}=\frac{1}{\sqrt{6}} \mathcal{P}_{123} \sum_{\substack{\mu \nu \lambda \\ k_{4} k_{5}}}^{\substack{k_{4} k_{5}}} v_{\alpha \lambda, \mu \nu}\left(\overline{\mathcal{V}}_{\nu}^{k_{4}} \mathcal{U}_{\lambda}^{k_{5}}\right)^{*} t_{k_{1} k_{2}}^{k_{k} k_{5}} \mathcal{U}_{\mu}^{k_{3}}, \quad$ (47b)
$\mathcal{E}_{k_{1} k_{2}, k_{4} k_{5}}^{(p p)}=\sum_{\alpha \beta \gamma \delta}\left(\mathcal{U}_{\alpha}^{k_{1}} \mathcal{U}_{\beta}^{k_{2}}\right)^{*} v_{\alpha \beta, \gamma \delta} \mathcal{U}_{\gamma}^{k_{4}} \mathcal{U}_{\delta}^{k_{5}}$,
$\mathcal{E}_{k_{1} k_{2}, k_{4} k_{5}}^{(h h)}=\sum_{\alpha \beta \gamma \delta} \overline{\mathcal{V}}_{\alpha}^{k_{1}} \overline{\mathcal{V}}_{\beta}^{k_{2}} v_{\alpha \beta, \gamma \delta}\left(\overline{\mathcal{V}}_{\gamma}^{k_{4}} \overline{\mathcal{V}}_{\delta}^{k_{5}}\right)^{*}$
(46)
$\mathcal{C}_{\alpha, r}^{(\mathrm{ILe})}=\frac{1}{\sqrt{6}} \mathcal{A}_{123} \sum_{\substack{\mu \nu \lambda \\ k, k_{s}}} v_{\alpha \lambda, \mu v}\left(\overline{\bar{v}}_{v}^{k_{i}^{k}} \mathcal{U}_{\lambda}^{k_{8}}\right)^{*} \mathcal{U}_{\mu}^{k_{1} t_{k} t_{k \neq k_{3}}^{k_{k} k_{2}}, \quad \text { (50a) }}$ $\mathcal{C}_{\alpha, r}^{(\text {IIf })}=\frac{1}{\sqrt{6}} \mathcal{A}_{123} \sum_{\mu \nu \lambda} v_{\alpha \lambda, \mu \nu}\left(\mathcal{U}_{\lambda}^{k_{i}} \overline{\mathcal{V}}_{\mu}^{k_{s}}\right)^{*} \mathcal{U}_{\nu}^{\left.k_{1} t_{k} t_{k l k_{k}}^{k_{k}}, \quad \text {, } 50 \mathrm{~b}\right)}$
 $\mathcal{E}_{r, r^{\prime}}^{(\mathrm{Ic})}=\frac{1}{6} \mathcal{A}_{123} \mathcal{A}_{456}\left(\delta_{k_{1}, k_{4}} \mathcal{E}_{k_{2} k_{3}, k_{5} k_{6}}^{(p h)}\right)$,

Diagrams grow factorially (more than exponentially) with the order A direct calculation of all diagrams beyond order three is unfeasible.

Diagrammatic Monte Carlo (DiagMC) samples diagrams in their topological space using a Markov chain.

Overview of the math

$$
\Sigma_{\alpha \beta}^{\star}(\omega)=\sum_{\mathcal{T}} \sum_{\gamma_{1} \ldots \gamma_{n}} \int d \omega_{1} \ldots d \omega_{m} \mathcal{D}_{\alpha \beta}^{\omega}\left(\mathcal{T} ; \gamma_{1} \ldots \gamma_{n} ; \omega_{1} \ldots \omega_{m}\right) 1_{\mathcal{T} \in \mathcal{S}_{\Sigma^{\star}}}
$$

We define $\mathcal{C}:=\left(\mathcal{T} ; \gamma_{1} \ldots \gamma_{n} ; \omega_{1} \ldots \omega_{m}\right)$

$$
\begin{aligned}
& \Sigma_{\alpha \beta}^{\star}(\omega)=\int d \mathcal{C}\left|\mathcal{D}_{\alpha \beta}^{\omega}(\mathcal{C})\right| e^{i \arg \left[\mathcal{D}_{\alpha \beta}^{\omega}(\mathcal{C})\right]_{\mathcal{T} \in \mathcal{S}_{\Sigma^{\star}}}} \\
& \Sigma_{\alpha \beta}^{\star}(\omega)=\mathcal{Z}_{\alpha \beta}^{\omega} \int d \mathcal{C} \frac{\left|\mathcal{D}_{\alpha \beta}^{\omega}(\mathcal{C})\right| W_{o}(N)}{\mathcal{Z}_{\alpha \beta}^{\omega}} \frac{e^{i \arg \left[D_{\alpha \beta}^{\omega}(\mathcal{C})\right]}}{W_{o}(N)} 1_{\mathcal{T} \in \mathcal{S}_{\Sigma^{\star}}}
\end{aligned}
$$

- $W_{o}(N)$ is an order dependent reweighting factor

Q $\mathcal{Z}_{\alpha \beta}^{\omega}=\int d \mathcal{C}\left|\mathcal{D}_{\alpha \beta}^{\omega}(\mathcal{C})\right| W_{o}(N)$ is a normalization factor
Q $w_{\alpha \beta}^{\omega}(\mathcal{C}):=\frac{\left|\mathcal{D}_{\alpha \beta}^{\omega}(\mathcal{C})\right| W_{o}(N)}{\mathcal{Z}_{\alpha \beta}^{\omega}}$ is a probability distribution function

The Markov chain must have the correct equilibrium distribution $w_{\alpha \beta}^{\omega}(\mathcal{C})$:

$$
\Sigma_{\alpha \beta}^{\star}(\omega)=\mathcal{Z}_{\alpha \beta}^{\omega}\left[\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \frac{e^{i \arg \left[\mathcal{D}_{\alpha \beta}^{\omega}\left(\mathcal{C}_{i}\right)\right]}}{W_{o}(N)} 1_{\mathcal{T}_{i} \in \mathcal{S}_{\Sigma^{\star}}}\right]
$$

where the normalization $\mathcal{Z}_{\alpha \beta}^{\omega}$ is unknown but it can be estimated.

We turn propagators that close on themselves into zigzag lines with an arbitrary value

with k an arbitrary constant that can be used to optimize the convergence.

Define the normalisation sector \mathcal{S}_{N} to be made of both these diagrams:

\mathcal{S}_{N} has weight:

$$
\mathcal{Z}_{N_{\alpha}}^{\omega}:=\int_{\mathcal{S}_{N}} d \mathcal{C} w_{\alpha}^{\omega}=\frac{|g|}{4 \sqrt{\pi k}}+\frac{g^{2}}{16 \pi k}\left|G_{\alpha}(\omega)\right| W_{o}(2)
$$

- These diagrams belong to w_{α}^{ω} but not to $\mathcal{S}_{\Sigma^{\star}}$

Q They are easy to integrate and to simulate with the Monte Carlo method

The expected number of times the normalization sector is visited (\mathcal{N}) gives the normalization $\mathcal{Z}_{\alpha}^{\omega}$:

$$
\frac{\mathcal{Z}_{N_{\alpha}}^{\omega}}{\mathcal{Z}_{\alpha}^{\omega}}=\lim _{n \rightarrow \infty} \frac{\mathcal{N}}{n}
$$

Then, we get the fundamental equation of DiagMC: $\quad \Sigma_{\alpha}^{\star}(\omega)=\mathcal{Z}_{N}{ }_{\alpha}^{\omega} \lim _{n \rightarrow \infty} \frac{1}{\mathcal{N}} \sum_{i=1}^{n} \frac{e^{i \arg \left[\mathcal{D}_{\alpha}^{\omega}\left(\mathcal{C}_{i}\right)\right]}}{W_{o}(N)} 1_{\mathcal{T}_{i} \in \mathcal{S}_{\Sigma^{\star}}}$
UNIVERSITÀ DEGLI Studi di milano

Pairing Hamiltonian

Application to the Richardson-Gaudin pairing model with D levels (of spin $1 / 2$) and $M=4$ fermions:

$$
H=\xi \sum_{\alpha=0}^{D-1} \sum_{\sigma=+,-} \alpha c_{\alpha \sigma}^{\dagger} c_{\alpha \sigma}-\frac{g}{2} \sum_{\alpha, \beta=0}^{D-1} c_{\alpha+}^{\dagger} c_{\alpha-}^{\dagger} c_{\beta-} c_{\beta+}
$$

The updates

(1) Change Frequency
(2) Change Single-Particle Quantum Numbers
Standard Monte Carlo
(3) Add Loop
(4) Remove Loop Monte Carlo on the topology
(5) Reconnect

The updates

(1) Change Frequency
 (2) Change Single-Particle Quantum Numbers

Change Frequency:

Change Single-Particle Quantum Numbers:

The updates

(3) Add Loop
(4) Remove Loop

Monte Carlo on the topology
(5) Reconnect

ω_{1}^{\prime} is drawn from the probability distribution $W_{f}\left(\omega_{1}^{\prime}\right)$

$$
q_{A L}=\frac{|g|}{4 \pi} \frac{1}{W_{f}\left(\omega_{1}^{\prime}\right)} e^{-k \omega_{1}^{\prime 2}}\left|G_{\alpha}(\omega)\right| \frac{W_{o}(3)}{W_{o}(2)}
$$

Reconnect:

The unphysical propagators are turned into physical ones when reconnected.

Results of the simulation for $D=4$

$$
H=\xi \sum_{\alpha=0}^{D-1} \sum_{\sigma=+,-} \alpha c_{\alpha \sigma}^{\dagger} c_{\alpha \sigma}-\frac{g}{2} \sum_{\alpha, \beta=0}^{D-1} c_{\alpha+}^{\dagger} c_{\alpha-}^{\dagger} c_{\beta-} c_{\beta+}
$$

$\Sigma_{\alpha \beta}^{\star}(\omega)=\Sigma_{\alpha \beta}^{(\infty)}+\sum_{i, j} \mathbf{M}_{\alpha, i}^{\dagger}\left(\frac{1}{E-\left(\mathbf{K}^{>}+\mathbf{C}\right)+i \Gamma}\right) \mathbf{M}_{j, \beta}$

$$
+\sum_{r, s} \mathbf{N}_{\alpha, r}\left(\frac{1}{E-\left(\mathbf{K}^{<}+\mathbf{D}\right)-i \Gamma}\right)_{r, s} \mathbf{N}_{s, \beta}^{\dagger}
$$

Figure 4.1: Components $\alpha=0$ and $\alpha=2$ of the imaginary part of the self-energy for different values of the coupling g. The blue line is the results obtained with the BDMC simulation, while the red line is the best fit as a sum of two Lorentzians. The results for the two values of $\alpha=0,2$ are displayed respectively on the left and on the right of the graph. The error bars are calculated as explained in the main text.

Results of the simulation for $D=4$

Imaginary part of the component $\alpha=0$ of the diagonal self-energy for different values of the coupling:

We fitted the imaginary part of the self-energy as a sum of Lorentzians.

Results of the simulation for $D=4$

Correlation energy $\Delta E=E-E_{H F}$ as a function of interaction strength (g):

Reorganization in terms of ladders (I)

Breaking of the spectral representation is mostly due to truncation in partial all order resummations
—> Can reformulate DiagMC/BDMC in terms of complete lattes (now 3rd oder in $\boldsymbol{\Gamma}$)

\rightarrow New resummations scheme, now up to 3rd oder in Γ (actually, we find convergence at order 1)
-> New set of diagrammatic update rules
\rightarrow New normalisation sectors.

Reorganization in terms of ladders (I)

Imaginary part of the component $\alpha=0$ of the diagonal self-energy ($g=-0.6$):

Old updating scheme:

New updating scheme:

It restores the correct spectral representation also for $\mathrm{g}<-0.4$!

Reorganization in terms of ladders (I)

Correlation energy $\Delta E=E-E_{H F}$ as a function of interaction strength (g) :

Spectroscopic function for different dimensions of the model space (D):

Take home messages on DiagMC

9. We were able to obtain results in good agreement with the exact ones and the ones predicted by other state-of-the-art techniques.
(9) In future developments we need to extend the algorithm to higher order diagrams.
© A different updating scheme or a different method to sample higher order contributions can be considered.

- The application to realistic interactions is something that has to be studied in the next years

All merits goes to:
L. Lazzarino, G. Paravizzini (NQS)
S. Brolli (DiagMC)

