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2AM: Operators

Invariance of action → conserved local currents → charges

Definitions see e.g. Lorce, Mantovani, Pasquini 2017

Space-time translations  →  EM tensor    →  total momentum  Tμν(x) Pi = ∫ d3x T0i(x)

Rotations  →  AM tensor    →  total AM  Jμαβ(x) Ji =
1
2

ϵijk ∫ d3x Tjk(x)

  Jμαβ = Jμαβ
q + Jμαβ

g

AM tensor

  Jμαβ
q,g (x) = xαTμβ

q,g(x) − xβTμα
q,g(x) Quark/gluon AM from EMT

  Tαβ
q (x) = ∑

f

ψ̄f(x) γ{αi∇β} ψf(x) Quark EMT (← GPDs)

Here: Use symmetric part of quark EMT → total quark AM Jq
Later: Non-symmetric EMT → separate orbital and spin quark AM Lq, Sq

Only total EMT is conserved, not individual quark/gluon/flavor contributions



3AM: EMT matrix elements

AM can be evaluated in any representation

  ⟨N′￼|Tαβ |N⟩

  A, B, D, C̄(t)
Invariant form factors Light-front components

  T++, T+i, Tij(ΔT)
3D components
  T00, T0k, Tkl(Δ)

(  frame)Δ+ = 0 (  frame)Δ0 = 0

GPDs  →    →  A + B Je.g.

GPDs  →    →   density[A + B](t) T0k(r)
Ji 1996

Polyakov 2003

Each representation has its uses/advantages

Here: Use representation by LF components in  frameΔ+ = 0 → Generalization ⟨B′￼|… |B⟩



4AM: Transverse density

p′￼
+ = p+, Δ+ = 0, ΔT ≠ 0  frameΔ+ = 0

T+i(ΔT |σ′￼, σ) = ⟨p′￼, σ′￼|T+i(0) |p, σ⟩

T+i(b |σ′￼, σ) = ∫
d2ΔT

(2π)2
e−iΔTb⟨p′￼, σ′￼|T+i(0) |p, σ⟩

EMT transition matrix element

transverse coordinate representation

2Sz(σ′￼, σ) Jq =
1

2p+ ∫ d2b [ b × T+T(b |σ′￼, σ) ]z AM transverse density and integral

T
+T (b)

b

N N, ∆z

Jq + Jg =
1
2

Spin sum rule (quarks + gluons)

Nucleon spin states: Light-front helicity states,  
prepared by LF boost from rest frame



5AM: Transverse density

T
+T (b)

b

N N, ∆z

Advantages of LF formulation

LF density: Boost-invariant/covariant, frame independent, appropriate for relativistic systems 

Mechanical interpretation:    in transverse planer × p

Relation to invariant form factors:  [ b × T+T(b |σ′￼, σ) ]z = 2Sz(σ′￼, σ)
b
2

d
db [ρA(b) + ρB(b)]

Can be generalized to transitions  B → B′￼

LF quantization: Transverse motion Galilean - nonrelativistic. 
Transverse localization does not depend on mass of state 
(cf. 3D Breit frame densities)



6Transition AM: Definition

p′￼
+ = p+, Δ+ = 0, ΔT ≠ 0, Δ− =

m′￼
2 − m2

p+
≠ 0  frameΔ+ = 0

T+i(ΔT |B′￼, B) = ⟨p′￼, B′￼|T+i(0) |p, B⟩ Transition matrix element 
isoscalar/isocvector operator

2Sz(B′￼, B) JB→B′￼ =
1

2p+ ∫ d2b [ b × T+T(b |B′￼, B) ]z
Transition AM  B → B′￼

T
+T (b)

b

N N, ∆z

Kinematic spin dependence factored out:  
Reduced matrix element

m′￼≠ m ,B = {S, S3, I, I3} B′￼= {S′￼, S′￼3, I′￼, I′￼3}
Baryon states, spin/isospin  

quantum numbers

Transitions as allowed by quantum numbers of states: 
Isoscalar/isovector component of quark operator

Kim, Won, Goity, Weiss 2023

B → B′￼



7Transition AM: N → Δ

Isovector transition AM 
N → N, N → Δ, Δ → Δ

⟨B′￼, p | (TV)αβ |B, p⟩ → JB→B′￼

 expansion of 3D multipole form factors of EMT in  frame1/Nc Δ0 = 0

(TV)αβ ≡ Tαβ
u − Tαβ

d “Isovector quark EMT” : New operator, 
not conserved, not related to symmetry

Kim, Won, Goity, Weiss 2023

Analysis using 1/Nc expansion

Light-front components from “matching” in frame where  and Δ+ = 0 Δ0 = 0

LO relations:  JV
p→p = 1

2
JV

p→Δ+

Numerical estimates using Lattice QCD 
results for  in protonJV

p→p ≡ Ju−d

[9] Göckeler 2004. [10] Hägler 2008. [11] Bratt 2010. [12] Bali 2019.  
[13] Alexandrou 2020

expansion of the 3D components of the EMT matrix element re-
spects 3D rotational invariance, the matching procedure imple-
ments 3D rotational invariance for the light-front components
of the matrix element; this property is not manifest in the light-
front formulation and imposes conditions on the light-front ma-
trix elements.2

We have computed the 1/Nc expansion of the 3-dimensional
multipoles of the EMT in the symmetric frame Eq. (15) using a
method based on the soliton picture of large-Nc baryons [3, 35];
equivalently one can use methods based on the algebra of the
spin-flavor symmetry group [22, 23]. The full results will be
presented elsewhere [36]; in the following we quote only the
multipoles relevant to the AM. In leading order of 1/Nc, the
matrix elements of the isoscalar and isovector components [see
Eq.(2)] of T 0k are of the form

hB0,�/2|(T̂ S )0k |B,��/2i = 2m2hS iiB0B
"
i✏kil�

l

m
J

S
1 (t) + ...

#
,

(19)

hB0,�/2|(T̂ V )0k |B,��/2i = 2m2hD3iiB0B
"
i✏kil�

l

m
J

V
1 (t) + ...

#
,

(20)

where we have omitted spin-independent terms / �k that do not
contribute to the AM. The spin/isospin dependence is contained
in the structures (here i = 0,±1 denote the spherical 3-vector
components)

hS iiB0B =
p

S (S + 1) hS S3, 1i|S 0S 03i �S 0S �I0I�I03I3 , (21)

hD3iiB0B = �
r

2S + 1
2S 0 + 1

hS S3, 1i|S 0S 03i hII3, 10|I0I03i. (22)

S i has only matrix elements between same spin/isospin, while
D3i can connect states with spin/isospin di↵ering by one.3 Thus
(T̂ )S in Eq. (19) contributes only to N ! N and � ! � transi-
tions, while N ! � transitions arise only from (T̂ )V in Eq. (20).
J

S ,V
1 (t) in Eqs. (19) and (20) are the isoscalar and isovector

dipole form factors. They are found to be of the order [36]

J
S
1 = O(N0

c ), J
V
1 = O(Nc). (23)

The matrix elements of T 3k are suppressed by 1/Nc compared to
those of T 0k in both the isoscalar and isovector sector. The light-
front component T+i is therefore given by T 0k in leading order
of the 1/Nc expansion, and we can compute the AM Eq. (8)
from Eqs. (20)–(23). We find:

2A similar procedure of matching light-front matrix elements with 3-
dimensional Breit frame matrix elements is used in the construction of current
operators in dynamical models of interacting few-body systems in light-front
quantization (so-called angular conditions); see Refs. [31, 32, 33, 34] and ref-
erences therein. In our study here we do not construct an EMT operator in terms
of constituent degrees of freedom but work directly with the matrix elements
provided by the 1/Nc expansion.

3The matrix elements Eq. (21) and (22) appear from the collective quan-
tization of the soliton rotations [3, 35]. In the formulation of the 1/Nc ex-
pansion based on the SU(4) spin-flavor symmetry [21, 22, 23], hDaiiB0B(i, a =
1, 2, 3) is related to the matrix element of the spin-flavor generator Gia, namely
hDaiiB0B = �4/(Nc + 2)hGiaiB0B + O(N�2

c ).

Lattice QCD JS
p!p JS

�+!�+ JV
p!p JV

p!�+ JV
�+!�+

[9] µ2 = 4 GeV2 0.33⇤ 0.33 0.41⇤ 0.58 0.08
[10] µ2 = 4 GeV2 0.21⇤ 0.21 0.22⇤ 0.30 0.04
[11] µ2 = 4 GeV2 0.24⇤ 0.24 0.23⇤ 0.33 0.05
[12] µ2 = 1 GeV2 � � 0.23⇤ 0.33 0.05
[13] µ2 = 4 GeV2 � � 0.17⇤ 0.24 0.03

Table 1: Estimates of the isoscalar and the isovector AM for p ! p, p ! �+
and �+ ! �+ obtained from lattice QCD data on JS

p!p and JV
p!p and the

relations provided by the leading-order 1/Nc expansion. Here S ,V ⌘ u ± d,
and the nucleon matrix elements are normalized as in Eq. (14). Input values are
marked by an asterisk ⇤.

(i) The isovector AM in the nucleon is leading in 1/Nc; the
isoscalar is subleading.

JS
N!N = J

S
1 (0) = O(N0

c ), JV
p!p = �

2
3
J

V
1 (0) = O(Nc). (24)

This explains the observed large flavor asymmetry of the AM.
Note that this scaling is consistent with that of the quark spin
contribution to the nucleon spin as given by the axial coupling,
gS

A = O(N0
c ) and gV

A = O(N1
c ).

(ii) The isoscalar component of the AM in the nucleon and �
are related by

JS
N!N = JS

�!� = J
S
1 (0). (25)

This provides insight into the spin structure of � resonance.
Note that this relation is consistent with the spin sum rule for
the � state.

(iii) The isovector AM in the nucleon, the AM in the N ! �
transitions, and the isovector AM in the � are related by

JV
p!p =

1p
2

JV
p!�+ = 5JV

�+!�+ = �
2
3
J

V
1 (0). (26)

This suggests that the N ! � transition AM is large and pro-
vides a way to probe the isovector nucleon AM with N ! �
transition measurements.

4. N ! � transition angular momentum from lattice QCD

We now evaluate the transition AM using the leading-order
1/Nc expansion relations together with lattice QCD results for
the EMT matrix elements. This provides a numerical estimate
of the transition AM and illustrates the dominance of the isovec-
tor component of the nucleon AM. Lattice QCD calculations
of N ! N matrix elements of the symmetric EMT Eq. (1)
have been performed in various setups (fermion implementa-
tion, normalization scale, pion mass) [9, 10, 11, 12, 13]. Using
these as input, we obtain the values listed in Table 1. One ob-
serves that a sizable isovector component of the nucleon AM
is obtained in all lattice calculations (similar large values are
obtained in the chiral quark-soliton model [37]). Note that the
lattice results for the isoscalar nucleon AM in Refs. [9, 10, 11]
are more uncertain than the isovector, as they involve discon-
nected diagrams and require careful treatment of the mixing of

4



8Dynamics: Orbital and spin AM

  Jμαβ
q = Lμαβ

q + Sμαβ
q

  Lμαβ
q (x) = xαTμβ

q (x) − xβTμα
q (x)

Separate orbital and spin AM operators

  Tαβ
q = T{αβ}

q + T[αβ]
q

Transition AM  can be extended to separate orbital and spin AMB → B′￼

AM densities depend on choice of EMT (kinetic, improved) 
Charge  independent of definitionJq

Explore orbital—spin separation in dynamical models

  ψ̄(x) γ[αi∇β] ψ(x) = − 2ϵαβμν ∂μ [ψ̄(x)γνγ5ψ(x)]

“Kinetic” EMT, non-symmetric

Antisymmetric part  =  
total derivative of axial current  

(for each flavor)

  Sαβμ = 1
2 ϵαβμν ψ̄(x)γνγ5ψ(x) Ji 1996. Discussion in Lorce, Mantovani, Pasquini 2017



9Peripheral AM density from chiral dynamics

〈 b)

b

S
L

(b)
〉

〉〈

(

∼ 1/Mπ

z

periphery

z

chiral

N∆

π π

T
µν

N N,

Densities at  governed by chiral dynamicsb = 𝒪(M−1
π )

Computed using ChEFT: Systematic, model-independent

Pion EMT derived from Chiral Lagrangian + Noether Thm, 
uniquely determined

Peripheral densities from 2-pion cut of EMT matrix elements, 
evaluated using dispersion relation

Peripheral AM density N → N

 leading — 2-pion cutLz(b)

 suppressed — only 3-pion cutSz(b)

Granados, Weiss, 2019
AM density in nucleon’s chiral periphery is mainly orbital



10Peripheral AM density from chiral dynamics

 decays exponentiallyLz(b)

10-5

10-4

10-3

10-2

10-1

 1  2  3  4  5

〈L
z 〉

 (b
)  
× 

ex
p 

(2
 M

πb
) 

 [M
π2 ]

b  [Mπ
−1]

〈Lz〉,  intermed. N

− 〈Lz〉,  intermed. ∆
(3/2) ρ1

V,  intermed. N Lz(b) ∼ e−2Mπb × function(Mπ, m; b)

 similar to charge density Lz(b) ρ1(b)

Contributions of  and  intermediate states 
have opposite sign; cancel in large-  limit 
→ correct  scaling of peripheral density

N Δ
Nc

1/Nc

Disclaimer: LO ChEFT result is not quantitatively realistic, relevant only at few times . 
where densities are extremely small. Realistic results can be obtained with dispersive improvement

b ∼ M−1
π

Scalar and vector form factors: Alarcon, Weiss, 2017+



11Peripheral AM density from chiral dynamics

Light-front formulation of ChEFT process:  
Sequence in LF time x+

Transition  described by chiral LF wave function:N → πN, πΔ

Granados, Weiss, 2019

∆T,p+ /2 ∆T,p+ /2−

∆T
TT

LF time

+

ΨN→πN(y, kT |σ′￼, σ) =
⟨πN |ℒchiral |N⟩

M2
πN − m2

N

Peripheral density as LF wave function overlap (transverse coordinate representation, )r = b/ȳ

Lz(b) = ∫
dy
yȳ ∑

σ′￼

Ψ*N→πN(y, rT |σ′￼, σ) [rT × (−i)
∂
∂rT] ΨN→πN(y, rT |σ′￼, σ) + (N → πΔ)

First-quantized representation

AM operator is quantum mechanical angular momentum 



12Peripheral AM density from chiral dynamics

Granados, Weiss, 2019

b

z

zz

z z

intermediate statesinitial/final state

L L =1,0

σ

2,1,
0,−1

= 1/2

N N ∆

=

Original nucleon with spin σ = + 1/2
Transition to intermediate  state with orbital AM    ←   intermediate  spin πN/πΔ Lz N/Δ σ′￼

Peripheral AM given by  , summed over all intermediate statesLz

“Story” of peripheral AM

Light-front representation provides simple mechanical picture

Equivalent to result obtained from 2-pi cut in invariant EMT form factors

Based on ChEFT = “true” large-distance dynamics of QCD



13Summary

EMT matrix elements can be characterized in several representations,  
each with distinct uses/advantages:

Invariant form factors → Analytic properties

Light-front components in  frameΔ+ = 0 → Densities, mechanical interpretation, 
     generalization to transitions B → B′￼

3D components in  frameΔ = 0 → Multipoles,  expansion1/Nc

AM definition as light-front density can be generalized to    transitionsB → B′￼

 transition AM pure isovector, connected with  in nucleon in large-  limitN → Δ Ju−d Nc

Peripheral AM density at  can be computed in Chiral EFT 
Peripheral  isoscalar AM density mostly orbital, spin density suppressed

b = 𝒪(M−1
π )

N → N

 Talk J.-Y Kim→


