QCD angular momentum in baryon transitions

C. Weiss (Jefferson Lab), Exploring resonance structure with transition GPDs, ECT* Trento, 21-25 Aug 2023 [Webpage]

Based on

J.-Y. Kim, H.-Y. Won, J. Goity, C. Weiss, Phys. Lett. B 844, 138083 (2023) [INSPIRE]

C. Granados, C. Weiss, Phys. Lett. B 797, 134847 (2019) [INSPIRE]

Angular momentum and density

Energy-momentum tensor and AM operators

AM light-front density

Transition angular momentum $B \rightarrow B'$

Definition through light-front density

 $N \rightarrow \Delta$ transition AM - isovector \rightarrow Talk J.-Y Kim

Dynamical properties

Separation of spin and orbital AM

Peripheral AM density $N \rightarrow N$ from chiral dynamics

AM: Operators

Invariance of action \rightarrow conserved local currents \rightarrow charges

Space-time translations \rightarrow EM tensor $T^{\mu\nu}(x) \rightarrow$ total momentum $P^i = \int d^3x T^{0i}(x)$

Rotations
$$\rightarrow$$
 AM tensor $J^{\mu\alpha\beta}(x) \rightarrow$ total AM $J^{i} = \frac{1}{2} \epsilon^{ijk} \int d^{3}x T^{jk}(x)$

AM tensor

Here: Use symmetric part of quark EMT \rightarrow total quark AM J_q Later: Non-symmetric EMT \rightarrow separate orbital and spin quark AM L_q , S_q Definitions see e.g. Lorce, Mantovani, Pasquini 2017

Only total EMT is conserved, not individual quark/gluon/flavor contributions

AM: EMT matrix elements

AM can be evaluated in any representation

e.g. GPDs $\rightarrow A + B \rightarrow J$ Ji 1996 GPDs $\rightarrow [A + B](t) \rightarrow T^{0k}(\mathbf{r})$ density Polyakov 2003

Each representation has its uses/advantages

Here: Use representation by LF components in $\Delta^+ = 0$ frame \rightarrow Generalization $\langle B' | \dots | B \rangle$

AM: Transverse density

$$p'^{+} = p^{+}, \ \Delta^{+} = 0, \ \Delta_{T} \neq 0$$

 $T^{+i}(\Delta_{T} | \sigma', \sigma) = \langle p', \sigma' | T^{+i}(0) | p, \sigma \rangle$ EMT transition matrix element

$$T^{+i}(\mathbf{b} \mid \sigma', \sigma) = \int \frac{d^2 \Delta_T}{(2\pi)^2} e^{-i \Delta_T \mathbf{b}} \langle p', \sigma' \mid T^{+i}(0) \mid p, \sigma \rangle \qquad \text{transverse coordinate representation}$$

$$2S^{z}(\sigma',\sigma)J_{q} = \frac{1}{2p^{+}}\int d^{2}b \left[\mathbf{b}\times\mathbf{T}^{+T}(\mathbf{b}\,|\,\sigma',\sigma)\right]^{z}$$

AM transverse density and integral

Spin sum rule (quarks + gluons)

Nucleon spin states: Light-front helicity states, prepared by LF boost from rest frame

$$T^{+T}(b)$$

$$J_q + J_g = \frac{1}{2}$$

$$\Delta^+ = 0, \ \mathbf{\Delta}_T \neq 0$$

Advantages of LF formulation

LF density: Boost-invariant/covariant, frame independent, appropriate for relativistic systems

Mechanical interpretation: $\mathbf{r} \times \mathbf{p}$ in transverse plane

Relation to invariant form factors: $\left[\mathbf{b} \times \mathbf{T}^{+T}(\mathbf{b} \mid \sigma', \sigma)\right]^{z} = 2S^{z}(\sigma', \sigma) \frac{b}{2} \frac{d}{db} \left[\rho_{A}(b) + \rho_{B}(b)\right]$

Can be generalized to transitions $B \rightarrow B'$

LF quantization: Transverse motion Galilean - nonrelativistic. Transverse localization does not depend on mass of state (cf. 3D Breit frame densities)

Transition AM: Definition

$$\begin{split} m' \neq m & B = \{S, S_3, I, I_3\}, \ B' = \{S', S'_3, I', I'_3\} \\ p'^+ = p^+, \ \Delta^+ = 0, \ \Delta_T \neq 0, \ \Delta^- = \frac{m'^2 - m^2}{p^+} \neq 0 \\ T^{+i}(\Delta_T | B', B) = \langle p', B' | T^{+i}(0) | p, B \rangle \\ \end{split}$$
Baryon states, spin/isospin quantum numbers
$$\Delta^+ = 0 \text{ frame}$$
Transition matrix element isoscalar/isocvector operator

$$2S^{z}(B',B)J_{B\to B'} = \frac{1}{2p^{+}} \int d^{2}b \left[\mathbf{b} \times \mathbf{T}^{+T}(\mathbf{b} \mid B',B) \right]^{z}$$
 Transition AM $B \to B'$

Kinematic spin dependence factored out: Reduced matrix element

Transitions as allowed by quantum numbers of states: Isoscalar/isovector component of quark operator

Kim, Won, Goity, Weiss 2023

$$(T^V)^{\alpha\beta} \equiv T_u^{\alpha\beta} - T_d^{\alpha\beta}$$

"Isovector quark EMT" : New operator, not conserved, not related to symmetry

 $\langle B', p | (T^V)^{\alpha\beta} | B, p \rangle \rightarrow J_{B \rightarrow B'}$

Isovector transition AM $N \rightarrow N, N \rightarrow \Delta, \Delta \rightarrow \Delta$

Analysis using 1/Nc expansion

 $1/N_c$ expansion of 3D multipole form factors of EMT in $\Delta^0 = 0$ frame

Light-front components from "matching" in frame where $\Delta^+ = 0$ and $\Delta^0 = 0$

LO relations:
$$J_{p \to p}^V = \frac{1}{\sqrt{2}} J_{p \to \Delta^+}^V$$

Numerical estimates using Lattice QCD results for $J^V_{p \rightarrow p} \equiv J^{u-d}$ in proton

Kim, Won, Goity, Weiss 2023

Lattice QCD	$J^{S}_{p \to p}$	$J^S_{\Delta^+ o \Delta^+}$	$J^V_{p \to p}$	$J^V_{p o \Delta^+}$	$J^V_{\Delta^+ o \Delta^+}$
$[9] \mu^2 = 4 \mathrm{GeV}^2$	0.33*	0.33	0.41*	0.58	0.08
$[10] \mu^2 = 4 \mathrm{GeV}^2$	0.21*	0.21	0.22*	0.30	0.04
$[11] \mu^2 = 4 \mathrm{GeV}^2$	0.24*	0.24	0.23*	0.33	0.05
$[12] \mu^2 = 1 \mathrm{GeV}^2$	_	_	0.23*	0.33	0.05
$[13] \mu^2 = 4 \mathrm{GeV}^2$	_	_	0.17*	0.24	0.03

[9] Göckeler 2004. [10] Hägler 2008. [11] Bratt 2010. [12] Bali 2019. [13] Alexandrou 2020

Dynamics: Orbital and spin AM

 $T_{q}^{\alpha\beta} = T_{q}^{\{\alpha\beta\}} + T_{q}^{[\alpha\beta]}$ $\bar{\psi}(x)\gamma^{[\alpha}i\nabla^{\beta]}\psi(x) = -2\epsilon^{\alpha\beta\mu\nu}\partial_{\mu}\left[\bar{\psi}(x)\gamma_{\nu}\gamma_{5}\psi(x)\right]$ $J_{q}^{\mu\alpha\beta} = L_{q}^{\mu\alpha\beta} + S_{q}^{\mu\alpha\beta}$ $L_{q}^{\mu\alpha\beta}(x) = x^{\alpha}T_{q}^{\mu\beta}(x) - x^{\beta}T_{q}^{\mu\alpha}(x)$ $S^{\alpha\beta\mu} = \frac{1}{2}\epsilon^{\alpha\beta\mu\nu}\bar{\psi}(x)\gamma_{\nu}\gamma_{5}\psi(x)$

"Kinetic" EMT, non-symmetric

Antisymmetric part = total derivative of axial current (for each flavor)

Separate orbital and spin AM operators

Ji 1996. Discussion in Lorce, Mantovani, Pasquini 2017

Transition AM $B \rightarrow B'$ can be extended to separate orbital and spin AM

AM densities depend on choice of EMT (kinetic, improved) Charge J_q independent of definition

Explore orbital-spin separation in dynamical models

Densities at $b = \mathcal{O}(M_{\pi}^{-1})$ governed by chiral dynamics

Computed using ChEFT: Systematic, model-independent

Pion EMT derived from Chiral Lagrangian + Noether Thm, uniquely determined

Peripheral densities from 2-pion cut of EMT matrix elements, evaluated using dispersion relation

Peripheral AM density $N \rightarrow N$

 $L^{z}(b)$ leading – 2-pion cut

 $S^{z}(b)$ suppressed — only 3-pion cut

AM density in nucleon's chiral periphery is mainly orbital Granados, Weiss, 2019

 $L^{z}(b)$ decays exponentially

$$L^{z}(b) \sim e^{-2M_{\pi}b} \times \text{function}(M_{\pi}, m; b)$$

 $L^{z}(b)$ similar to charge density $\rho_{1}(b)$

Contributions of N and Δ intermediate states have opposite sign; cancel in large- N_c limit \rightarrow correct $1/N_c$ scaling of peripheral density

Disclaimer: LO ChEFT result is not quantitatively realistic, relevant only at $b \sim$ few times M_{π}^{-1} . where densities are extremely small. Realistic results can be obtained with dispersive improvement Scalar and vector form factors: Alarcon, Weiss, 2017+

Light-front formulation of ChEFT process: Sequence in LF time x^+

Transition $N \rightarrow \pi N, \pi \Delta$ described by chiral LF wave function:

$$\Psi_{N \to \pi N}(y, \mathbf{k}_T | \sigma', \sigma) = \frac{\langle \pi N | \mathscr{L}_{\text{chiral}} | N \rangle}{M_{\pi N}^2 - m_N^2}$$

Peripheral density as LF wave function overlap (transverse coordinate representation, $\mathbf{r} = \mathbf{b}/\bar{y}$)

$$L^{z}(\mathbf{b}) = \int \frac{dy}{y\bar{y}} \sum_{\sigma'} \Psi_{N \to \pi N}^{*}(y, \mathbf{r}_{T} | \sigma', \sigma) \left[\mathbf{r}_{T} \times (-i) \frac{\partial}{\partial \mathbf{r}_{T}} \right] \Psi_{N \to \pi N}(y, \mathbf{r}_{T} | \sigma', \sigma) + (N \to \pi \Delta)$$

First-quantized representation

AM operator is quantum mechanical angular momentum

"Story" of peripheral AM

Original nucleon with spin $\sigma = +1/2$

Transition to intermediate $\pi N/\pi\Delta$ state with orbital AM $L^z \leftarrow$ intermediate N/Δ spin σ'

Peripheral AM given by L^{z} , summed over all intermediate states

Light-front representation provides simple mechanical picture

Equivalent to result obtained from 2-pi cut in invariant EMT form factors

Based on ChEFT = "true" large-distance dynamics of QCD

Summary

EMT matrix elements can be characterized in several representations, each with distinct uses/advantages:

Invariant form factors

Light-front components in $\Delta^+ = 0$ frame

3D components in $\Delta = 0$ frame

- → Analytic properties
- → Densities, mechanical interpretation, generalization to transitions $B \rightarrow B'$
- \rightarrow Multipoles, $1/N_c$ expansion

 \rightarrow Talk J.-Y Kim

AM definition as light-front density can be generalized to $B \rightarrow B'$ transitions

 $N \rightarrow \Delta$ transition AM pure isovector, connected with J^{u-d} in nucleon in large- N_c limit

Peripheral AM density at $b = \mathcal{O}(M_{\pi}^{-1})$ can be computed in Chiral EFT Peripheral $N \to N$ isoscalar AM density mostly orbital, spin density suppressed