QCD angular momentum in baryon transitions

C. Weiss (Jefferson Lab), Exploring resonance structure with transition GPDs, ECT* Trento, 21-25 Aug 2023 [Webpage]

Angular momentum and density
Energy-momentum tensor and AM operators
AM light-front density

Transition angular momentum $B \rightarrow B^{\prime}$
Definition through light-front density
$N \rightarrow \Delta$ transition AM - isovector $\quad \rightarrow$ Talk J.-Y Kim

Dynamical properties
Separation of spin and orbital AM
Peripheral AM density $N \rightarrow N$ from chiral dynamics

AM: Operators

Invariance of action \rightarrow conserved local currents \rightarrow charges
Space-time translations \rightarrow EM tensor $T^{\mu \nu}(x) \rightarrow$ total momentum $P^{i}=\int d^{3} x T^{0 i}(x)$
Rotations \rightarrow AM tensor $J^{\mu \alpha \beta}(x) \rightarrow$ total AM $J^{i}=\frac{1}{2} \epsilon^{i j k} \int d^{3} x T^{j k}(x)$

AM tensor

$$
\begin{array}{ll}
J^{\mu \alpha \beta}=J_{q}^{\mu \alpha \beta}+J_{g}^{\mu \alpha \beta} & J_{q, g}^{\mu \alpha \beta}(x)=x^{\alpha} T_{q, g}^{\mu \beta}(x)-x^{\beta} T_{q, g}^{\mu \alpha}(x)
\end{array} \quad \text { Quark/gluon AM from EMT }
$$

Here: Use symmetric part of quark EMT \rightarrow total quark AM J_{q}
Later: Non-symmetric EMT \rightarrow separate orbital and spin quark AM L_{q}, S_{q}
Definitions see e.g. Lorce, Mantovani, Pasquini 2017

Only total EMT is conserved, not individual quark/gluon/flavor contributions

AM: EMT matrix elements

Invariant form factors
$A, B, D, \bar{C}(t)$

Light-front components
$T^{++}, T^{+i}, T^{i j}\left(\boldsymbol{\Delta}_{T}\right)$
($\Delta^{+}=0$ frame)

3D components $T^{00}, T^{0 k}, T^{k l}(\boldsymbol{\Delta})$
($\Delta^{0}=0$ frame)

AM can be evaluated in any representation
e.g. GPDs $\rightarrow A+B \rightarrow J$ Ji 1996
GPDs $\rightarrow[A+B](t) \rightarrow T^{0 k}(\mathbf{r})$ density \quad Polyakov 2003

Each representation has its uses/advantages

Here: Use representation by LF components in $\Delta^{+}=0$ frame
\rightarrow Generalization $\left\langle B^{\prime}\right| \ldots|B\rangle$

AM: Transverse density

$$
\begin{aligned}
& p^{\prime+}=p^{+}, \Delta^{+}=0, \Delta_{T} \neq 0 \\
& T^{+i}\left(\Delta_{T} \mid \sigma^{\prime}, \sigma\right)=\left\langle p^{\prime}, \sigma^{\prime}\right| T^{+i}(0)|p, \sigma\rangle
\end{aligned}
$$

$$
\Delta^{+}=0 \text { frame }
$$

$$
T^{+i}\left(\mathbf{b} \mid \sigma^{\prime}, \sigma\right)=\int \frac{d^{2} \Delta_{T}}{(2 \pi)^{2}} e^{-i \boldsymbol{\Delta}_{T} \mathbf{b}}\left\langle p^{\prime}, \sigma^{\prime}\right| T^{+i}(0)|p, \sigma\rangle
$$

$$
2 S^{z}\left(\sigma^{\prime}, \sigma\right) J_{q}=\frac{1}{2 p^{+}} \int d^{2} b\left[\mathbf{b} \times \mathbf{T}^{+T}\left(\mathbf{b} \mid \sigma^{\prime}, \sigma\right)\right]^{z}
$$

$$
J_{q}+J_{g}=\frac{1}{2}
$$

Nucleon spin states: Light-front helicity states, prepared by LF boost from rest frame

AM: Transverse density

Advantages of LF formulation

LF density: Boost-invariant/covariant, frame independent, appropriate for relativistic systems

Mechanical interpretation: $\mathbf{r} \times \mathbf{p}$ in transverse plane
Relation to invariant form factors: $\left[\mathbf{b} \times \mathbf{T}^{+T}\left(\mathbf{b} \mid \sigma^{\prime}, \sigma\right)\right]^{z}=2 S^{z}\left(\sigma^{\prime}, \sigma\right) \frac{b}{2} \frac{d}{d b}\left[\rho_{A}(b)+\rho_{B}(b)\right]$

Can be generalized to transitions $B \rightarrow B^{\prime}$

LF quantization: Transverse motion Galilean - nonrelativistic. Transverse localization does not depend on mass of state (cf. 3D Breit frame densities)

Transition AM: Definition

$$
\begin{aligned}
& m^{\prime} \neq m \quad B=\left\{S, S_{3}, I, I_{3}\right\}, B^{\prime}=\left\{S^{\prime}, S_{3}^{\prime}, I^{\prime}, I_{3}^{\prime}\right\} \\
& p^{\prime+}=p^{+}, \Delta^{+}=0, \Delta_{T} \neq 0, \Delta^{-}=\frac{m^{\prime 2}-m^{2}}{p^{+}} \neq 0 \\
& T^{+i}\left(\boldsymbol{\Delta}_{T} \mid B^{\prime}, B\right)=\left\langle p^{\prime}, B^{\prime}\right| T^{+i}(0)|p, B\rangle
\end{aligned}
$$

Baryon states, spin/isospin quantum numbers

$$
\Delta^{+}=0 \text { frame }
$$

Transition matrix element isoscalar/isocvector operator

Transition AM $B \rightarrow B^{\prime}$

Kinematic spin dependence factored out:
Reduced matrix element

Transitions as allowed by quantum numbers of states:
Isoscalar/isovector component of quark operator

Transition AM: $N \rightarrow \Delta$

$$
\left(T^{V}\right)^{\alpha \beta} \equiv T_{u}^{\alpha \beta}-T_{d}^{\alpha \beta}
$$

"Isovector quark EMT" : New operator, not conserved, not related to symmetry

$$
\left\langle B^{\prime}, p\right|\left(T^{V}\right)^{\alpha \beta}|B, p\rangle \quad \rightarrow \quad J_{B \rightarrow B^{\prime}}
$$

Isovector transition AM

$$
N \rightarrow N, N \rightarrow \Delta, \Delta \rightarrow \Delta
$$

Analysis using 1/Nc expansion

$1 / N_{c}$ expansion of 3D multipole form factors of EMT in $\Delta^{0}=0$ frame
Light-front components from "matching" in frame where $\Delta^{+}=0$ and $\Delta^{0}=0$

LO relations: $J_{p \rightarrow p}^{V}=\frac{1}{\sqrt{2}} J_{p \rightarrow \Delta^{+}}^{V}$
Numerical estimates using Lattice QCD results for $J_{p \rightarrow p}^{V} \equiv J^{u-d}$ in proton

Kim, Won, Goity, Weiss 2023

Lattice QCD	$J_{p \rightarrow p}^{S}$	$J_{\Delta^{+} \rightarrow \Delta^{+}}^{S}$	$J_{p \rightarrow p}^{V}$	$J_{p \rightarrow \Delta^{+}}^{V}$	$J_{\Delta^{+} \rightarrow \Delta^{+}}^{V}$
$[9] \mu^{2}=4 \mathrm{GeV}^{2}$	0.33^{*}	0.33	0.41^{*}	0.58	0.08
$[10] \mu^{2}=4 \mathrm{GeV}^{2}$	0.21^{*}	0.21	0.22^{*}	0.30	0.04
$[11] \mu^{2}=4 \mathrm{GeV}^{2}$	0.24^{*}	0.24	0.23^{*}	0.33	0.05
$[12] \mu^{2}=1 \mathrm{GeV}^{2}$	-	-	0.23^{*}	0.33	0.05
$[13] \mu^{2}=4 \mathrm{GeV}^{2}$	-	-	0.17^{*}	0.24	0.03

[9] Göckeler 2004. [10] Hägler 2008. [11] Bratt 2010. [12] Bali 2019. [13] Alexandrou 2020

Dynamics: Orbital and spin AM

$$
\begin{aligned}
& T_{q}^{\alpha \beta}=T_{q}^{\{\alpha \beta\}}+T_{q}^{[\alpha \beta]} \\
& \bar{\psi}(x) \gamma^{[\alpha} i \nabla^{\beta]} \psi(x)=-2 \epsilon^{\alpha \beta \mu \nu} \partial_{\mu}\left[\bar{\psi}(x) \gamma_{\nu} \gamma_{5} \psi(x)\right] \\
& J_{q}^{\mu \alpha \beta}=L_{q}^{\mu \alpha \beta}+S_{q}^{\mu \alpha \beta} \\
& L_{q}^{\mu \alpha \beta}(x)=x^{\alpha} T_{q}^{\mu \beta}(x)-x^{\beta} T_{q}^{\mu \alpha}(x) \\
& S^{\alpha \beta \mu}=\frac{1}{2} \epsilon^{\alpha \beta \mu \nu} \bar{\psi}(x) \gamma_{\nu} \gamma_{5} \psi(x)
\end{aligned}
$$

"Kinetic" EMT, non-symmetric

Antisymmetric part = total derivative of axial current (for each flavor)

Transition AM $B \rightarrow B^{\prime}$ can be extended to separate orbital and spin AM

AM densities depend on choice of EMT (kinetic, improved)
Charge J_{q} independent of definition

Explore orbital—spin separation in dynamical models

Peripheral AM density from chiral dynamics

Densities at $b=\mathcal{O}\left(M_{\pi}^{-1}\right)$ governed by chiral dynamics

Computed using ChEFT: Systematic, model-independent

Pion EMT derived from Chiral Lagrangian + Noether Thm, uniquely determined

Peripheral densities from 2-pion cut of EMT matrix elements, evaluated using dispersion relation

Peripheral AM density $N \rightarrow N$

$L^{z}(b)$ leading - 2-pion cut
$S^{z}(b)$ suppressed - only 3-pion cut

AM density in nucleon's chiral periphery is mainly orbital Granados, Weiss, 2019

Peripheral AM density from chiral dynamics

$L^{z}(b)$ decays exponentially

$$
L^{z}(b) \sim e^{-2 M_{\pi} b} \times \text { function }\left(M_{\pi}, m ; b\right)
$$

$L^{z}(b)$ similar to charge density $\rho_{1}(b)$

Contributions of N and Δ intermediate states have opposite sign; cancel in large- N_{c} limit \rightarrow correct $1 / N_{c}$ scaling of peripheral density

Disclaimer: LO ChEFT result is not quantitatively realistic, relevant only at $b \sim$ few times M_{π}^{-1}. where densities are extremely small. Realistic results can be obtained with dispersive improvement Scalar and vector form factors: Alarcon, Weiss, 2017+

Peripheral AM density from chiral dynamics

Light-front formulation of ChEFT process:
Sequence in LF time x^{+}

Transition $N \rightarrow \pi N, \pi \Delta$ described by chiral LF wave function:

$$
\Psi_{N \rightarrow \pi N}\left(y, \mathbf{k}_{T} \mid \sigma^{\prime}, \sigma\right)=\frac{\langle\pi N| \mathscr{L}_{\text {chiral }}|N\rangle}{M_{\pi N}^{2}-m_{N}^{2}}
$$

Peripheral density as LF wave function overlap (transverse coordinate representation, $\mathbf{r}=\mathbf{b} / \bar{y}$)

$$
L^{z}(\mathbf{b})=\int \frac{d y}{y \bar{y}} \sum_{\sigma^{\prime}} \Psi_{N \rightarrow \pi N}^{*}\left(y, \mathbf{r}_{T} \mid \sigma^{\prime}, \sigma\right)\left[\mathbf{r}_{T} \times(-i) \frac{\partial}{\partial \mathbf{r}_{T}}\right] \Psi_{N \rightarrow \pi N}\left(y, \mathbf{r}_{T} \mid \sigma^{\prime}, \sigma\right)+(N \rightarrow \pi \Delta)
$$

First-quantized representation
AM operator is quantum mechanical angular momentum

Peripheral AM density from chiral dynamics

initial/final state

$\rightleftarrows \quad$ intermediate states
"Story" of peripheral AM
Original nucleon with spin $\sigma=+1 / 2$
Transition to intermediate $\pi N / \pi \Delta$ state with orbital AM $L^{z} \leftarrow$ intermediate N / Δ spin σ^{\prime}
Peripheral AM given by L^{z}, summed over all intermediate states

Light-front representation provides simple mechanical picture
Equivalent to result obtained from 2-pi cut in invariant EMT form factors
Based on ChEFT = "true" large-distance dynamics of QCD

Summary

EMT matrix elements can be characterized in several representations, each with distinct uses/advantages:

Invariant form factors
Light-front components in $\Delta^{+}=0$ frame
3D components in $\Delta=0$ frame
\rightarrow Analytic properties
\rightarrow Densities, mechanical interpretation, generalization to transitions $B \rightarrow B^{\prime}$
\rightarrow Multipoles, $1 / N_{c}$ expansion

AM definition as light-front density can be generalized to $B \rightarrow B^{\prime}$ transitions
$N \rightarrow \Delta$ transition AM pure isovector, connected with J^{u-d} in nucleon in large- N_{c} limit

Peripheral AM density at $b=\mathcal{O}\left(M_{\pi}^{-1}\right)$ can be computed in Chiral EFT
Peripheral $N \rightarrow N$ isoscalar AM density mostly orbital, spin density suppressed

