

ECT*-APCTP joint workshop: Exploring resonance structure with transition GPDs

August 21 - 25 2023, Trento

Perspectives for the measurement of the N→N* DVCS process with CLAS12 at JLAB

JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN

Stefan Diehl

Justus Liebig University Giessen University of Connecticut

08/21/2022

CLAS12 experimental setup in hall B at JLAB

→ 10.2 - 10.6 GeV e⁻ beam → ~87 % average polarization

→ liquid H_2 target (RG-A) + Deuterium target (RG-B) + polarized targets

CLAS12 experimental setup in hall B at JLAB

Forward tagger (2.5° < θ < 4.5°): Calorimeter, hodoscope and tracker		
Forward detector: - 6 sector torus magnet with drift chamber system for tracking $5^{\circ} < \theta < 35^{\circ}$ - FTOF and Cherenkov detectors for PID - Calorimeter for neutrals and e ⁻ PID		
Central detector: - 35° < θ < 135°	 Solenoid magnet with CTOF for PID and 	n tracking system CND for neutron detection

The N \rightarrow N* DVCS process

$$\gamma * p \rightarrow N * \gamma \rightarrow N meson \gamma$$

factorisation for: -t/Q² small, x_B fixed, Q² > M²_{N*}

- Access to the helicity non-flip (twist-2) transition GPDs
- Detailed models for CLAS12 kinematics became available recently (see Marcs and Kirills talks)

Expected distributions and studied reactions

→ With the CLAS12 resolutions, we need to detect all particles to identify the process

$$e \ p \rightarrow e' \ \Delta^+ \ \gamma \rightarrow e' \ p \ \pi^0 \ \gamma$$

Hard to measure, since γ_s from π^0 are mostly > 35° \rightarrow No EMC in CD

MC simulation of $p \rightarrow \Delta^+$ DVCS

→ Realistic simulation with ∆ mass distribution and DVCS cross section

Stefan Diehl, JLU + UConn

Exp data: Identification of exclusive N \rightarrow **N*** **DVCS events**

· A series of exclusivity cuts has been applied for event selection

Non-resonant background in the exclusive sample

 $M(\pi^+ \gamma)$ vs $M(\pi^+ n)$

Suppression of the ρ^+ background

 $e \ p \rightarrow e` \Delta^{+} \ \gamma \rightarrow e` n \ \pi^{+} \ \gamma$

Resonance spectra

Stefan Diehl, JLU + UConn

Accessible kinematics

A first look on raw BSA based on pass 1

- Raw asymmetry (no backgrounds considered ...)
- Background subtracted asymmtries will be released for pass 2 (this fall)
- So far results from pilot studies look very promissing and are in agreement with theory

Resonance spectra: pass 1 vs pass 2

$$e \; p \to e^{\text{`}} \; \Delta^{\!+} \; \gamma \to e^{\text{`}} \; n \; \pi^{\!+} \; \gamma$$

pass 1

pass 2 (small fraction)

- → Improved resolution
- → Increased efficiency (statistics)
- → Cooking of the full dataset is ongoing

Perspectives for a 22 GeV JLAB upgrade

$$ep \rightarrow e \Delta^+ \gamma \rightarrow e n \pi^+ \gamma$$

→ Advantage for factorisation

Better signal / background separation

➔ Higher efficiency

Conclusion and Outlook

- $N \rightarrow N^*$ DVCS can be well measured with CLAS12
- BSAs from the N \rightarrow N* DVCS process will be published based on RG-A pass 2
- The fesability of cross section measurements is under inevestigation (precise models and MC needed)
- Background from e p \rightarrow e' $\Delta^+ \pi^0 \rightarrow$ e' (n π^+) ($\gamma \gamma$) is under investigation (suppression / subtraction)
- A JLAB energy and luminosity upgrade will help to significantly improve these measurements and the extraction of transition GPDs
- Potential studies with COMPASS / AMBER are under investigation

