DVCS measurements with CLAS12

Hyon-Suk Jo

Kyungpook National University

ECT*-APCTP Joint Workshop: Exploring resonance structure with transition GPDs

ECT*, Villazzano (Trento) - 2023.08.21

- GPDs and Deeply virtual Compton scattering (DVCS)
- Selected DVCS results from CLAS
- DVCS measurements with CLAS12
- Overview

Generalized parton distributions (GPDs)

Proton spin puzzle : The origin of the proton spin is still unknown

$$\frac{1}{2} = J^{q} + J^{g} = \frac{1}{2}\Delta\Sigma + \Delta G + L_{q} + L_{g}$$
Orbital angular momentum

GPDs H and E provide access to the total angular momentum of the partons in the nucleon

Ji's angular momentum sum rule:

$$\mathsf{J}^{\mathbf{q},\mathbf{g}} = \frac{1}{2} \int_{-1}^{1} x dx (\mathsf{H}^{\mathbf{q},\mathbf{g}}(x,\xi,t=0) + \mathsf{E}^{\mathbf{q},\mathbf{g}}(x,\xi,t=0))$$

Deeply Virtual Compton Scattering (DVCS) and GPDs

High Q², small t

$e N \longrightarrow e' N' \gamma$

DVCS is the key reaction to access the GPDs as it offers the simplest interpretation in terms of GPDs x longitudinal momentum fraction carried by the active quark.

 $\xi \sim \frac{x_B}{2-x_B}$ the longitudinal momentum transfer.

 $t = (p' - p)^2$ squared momentum transfer to the nucleon.

Deeply Virtual Compton Scattering (DVCS) and GPDs

 $e N \longrightarrow e' N' \gamma$

DVCS is the key reaction to access the GPDs as it offers the simplest interpretation in terms of GPDs At leading-order QCD, there are 4 chiral-even (parton helicity is conserved) GPDs for each parton

nucleon helicity nucleon helicity conserved changed

DVCS and Bethe-Heitler processes

Compton Form Factors (CFFs) and DVCS observables

Compton
Form Factors
(CFFs)
$$Re\mathcal{H}_{q} = e_{q}^{2}P \int_{0}^{+1} (H^{q}(x,\xi,t) - H^{q}(-x,\xi,t)) \left[\frac{1}{\xi - x} + \frac{1}{\xi + x} \right] dx \quad \text{Integrals of GPDs over } x$$

$$Im\mathcal{H}_{q} = \pi e_{q}^{2} \left[H^{q}(\xi,\xi,t) - H^{q}(-\xi,\xi,t) \right] \quad \text{GPDs at } x = \pm \xi$$

Each DVCS observable is sensitive to a different combination of CFFs

 $\xi = x_{\rm B}/(2-x_{\rm B})$ k = t/4M²

Proton Neutron Polarized beam, unpolarized target: $\Delta \sigma_{LU} \sim \sin \phi \operatorname{Im} \{F_{1}\mathcal{H} + \xi(F_{1}+F_{2})\widetilde{\mathcal{H}} - kF_{2}\mathcal{E} + ...\} \longrightarrow \lim \{\mathcal{H}_{p}, \widetilde{\mathcal{H}}_{p}, \mathcal{E}_{p}\}$ Unpolarized beam, longitudinal target: $\Delta \sigma_{UL} \sim \sin \phi \operatorname{Im} \{F_{1}\widetilde{\mathcal{H}} + \xi(F_{1}+F_{2})(\mathcal{H} + x_{B}/2\mathcal{E}) - \xi kF_{2}\widetilde{\mathcal{E}}\} \longrightarrow \lim \{\mathcal{H}_{p}, \widetilde{\mathcal{H}}_{p}\}$ Polarized beam, longitudinal target: $\Delta \sigma_{LL} \sim (A + B \cos \phi) \operatorname{Re} \{F_{1}\widetilde{\mathcal{H}} + \xi(F_{1}+F_{2})(\mathcal{H} + x_{B}/2\mathcal{E}) + ...\} \longrightarrow \frac{Re \{\mathcal{H}_{p}, \widetilde{\mathcal{H}}_{p}\}}{Re \{\mathcal{H}_{n}, \mathcal{E}_{n}\}}$ Unpolarized beam, transverse target: $\Delta \sigma_{UT} \sim \cos \phi \sin(\phi_{s} - \phi) \operatorname{Im} \{k(F_{2}\mathcal{H} - F_{1}\mathcal{E}) + ...\} \longrightarrow \lim \{\mathcal{H}_{n}\}$ The extraction of the quark GPDs which requires a quark-flavor separation of GPDs can be done through a combined analysis of DVCS observables for the proton and the neutron (deuterium target)

$$(H,E)_{u}(\xi,\xi,t) = \frac{9}{15} \Big[4 \big(H,E\big)_{p}(\xi,\xi,t) - \big(H,E\big)_{n}(\xi,\xi,t) \Big] (H,E)_{d}(\xi,\xi,t) = \frac{9}{15} \Big[4 \big(H,E\big)_{n}(\xi,\xi,t) - \big(H,E\big)_{p}(\xi,\xi,t) \Big]$$

DVCS experiment at Jefferson Lab 6 GeV in Hall B with CLAS

Jefferson Lab

DVCS unpolarized and beam-polarized cross sections from CLAS data

DVCS on longitudinally polarized target from CLAS 6 GeV data

DVCS on longitudinally polarized target from CLAS 6 GeV data

Jefferson Lab upgrade to 12 GeV

Jefferson Lab 12 GeV and the CLAS12 detector

Data taking with the new CLAS12 detector started in 2018

The CLAS12 detector in Hall B

Typical DVCS event in CLAS12

- Electron: measured in the Forward Detector or in the Forward Calorimeter
- Photon: in the FT (or FD) calorimeter
- Proton: most often in the Central Detector

Proton DVCS A_{LU} with CLAS12

- Beam spin asymmetry extracted in a much wider phase space than at 6 GeV with CLAS
- Based on 25% of the total beam time allocated to CLAS12 DVCS experiment on unpolarized proton

G. Christiaens *et al.* (CLAS Collaboration) Phys. Rev. Lett. 130, 211902 (2023)

Proton DVCS A_{LU} with CLAS12

Small sample of the numerous results

Results compared with VGG, GK, KM15 models

G. Christiaens *et al.* (CLAS Collaboration) Phys. Rev. Lett. 130, 211902 (2023)

Preliminary neutron DVCS A_{LU} with CLAS12

Analysis under collaboration review

Preliminary DVCS cross sections on the proton with CLAS12

Analysis under collaboration review

Transition GPDs with CLAS12

 γ^2 / ndf = 8.63/8

50 100 150 200 250 300 350

 ϕ [°]

First measurement of hard exclusive $\pi^- \Delta^{++}$ electroproduction beam-spin asymmetries off the proton

See Stefan Diehl's talk

BSA

-0.1

-0.2[⊾]

50

100 150 200 250 300 350

 ϕ [°]

Access to $p-\Delta$ transition GPDs

- Data taken with CLAS12 in 2018 and 2019
- Electron beam energy : 10.6 GeV / 10.2 GeV
- Electron beam polarization : ~86%
- Target : LH₂ target

S. Diehl *et al.* (CLAS Collaboration), Phys. Rev. Lett. 131, 021901 (2023)

Published last month (July 2023)

$$BSA = \frac{\sqrt{2\epsilon(1-\epsilon)\sigma_{LT}}}{1+\sqrt{2\epsilon(1+\epsilon)}\sigma_{0}}\sin\phi}$$
$$+ \epsilon \frac{\sigma_{TT}}{\sigma_{0}}\cos\phi + \epsilon \frac{\sigma_{TT}}{\sigma_{0}}\cos2\phi}$$

Transition GPDs with CLAS12

Timelike Compton scattering (TCS) with CLAS12

See Pierre Chatagnon's talk on Wednesday

P. Chatagnon *et al.* (CLAS Collaboration), Phys. Rev. Lett. 127, 262501 (2021)

- Proton and neutron DVCS beam-spin asymmetries (BSA) and target-spin asymmetries (TSA) on a longitudinally polarized target
- DVCS on deuterium
- DVMP beam-spin asymmetries \rightarrow
- DVMP cross sections
- Etc...

See Andrey Kim's talk on Thursday

Overview

- CLAS12 offers the possibility to measure a large range of exclusive reactions using different experimental configurations (different beam energies and different targets) over a large kinematic range with its large acceptance.
- Several high-impact results have already been published (DVCS BSA on the proton, TCS, Transition GPDs).
- Stay tuned for many more exciting results !

Thank you