GPD sensitivity at the LHC

Ronan McNulty University College Dublin ECT*-APCTP workshop: Exploring resonance structure with transition GPDs 21/8- 25/8 Trento

This work has been supported by STRONG-2020 "The strong interaction at the frontier of knowledge: fundamental research and applications" which received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093.

Overview

- The LHC and the experiments
- How GPDs can be accessed at hadron collider experiments
 - 1. DVCS (?)
 - 2. TCS
 - 3. DVMP (ρ ,J/ ψ ,Y production in UPC)
 - 4. DPE (?)
- Summary

LHC and the detectors

- LHC collides pp, pPb and PbPb
- Also possible is fixed target mode of p or Pb on gas

- LHCb: full reconstruction $2 < \eta < 5$
- ATLAS, CMS, ALICE: 5<η<5
- All have vetos towards beam axis
- ATLAS, CMS, ALICE have ZDCs for neutrons
- ATLAS, CMS(+TOTEM) have roman pots close to beam (but generally do not detect recoil protons for low-mass objects)

x-Q² values probed at LHC

x-Q² values probed at LHC

Colourless propagators

Generally, to ensure no (colourful) QCD interaction, $d>R_1+R_2$ (1.5 - 6 fm).

1. DVCS

DVCS

Workhorse for current GPD extractions (through CFF)

- Boer, Guidal, JPG 42 no. 3, 034023 (2015)
- Shiells, Guo, Ji, JHEP 08 048 (2022)
- Kumericki, Liuti, Moutarde, Eur. Phys. J. A 52, no. 6, 157 (2016)
- Dupré, Guidal, Vanderhaeghen, PRD 95 no.1, 011501 (2017)
- Moutarde, Sznajder, Wagner, EPJC 78 11, 890 (2018)
- Moutarde, Sznajder, Wagner, EPJC 797, 614 (2019)
- Dutrieux et al., Eur.Phys.J.A 57 8, 250 (2021)

Data: Hermes, H1, Zeus, CLAS, Hall A, COMPASS

 γ^* originates from **lepton**

Can this come from hadron (LHC)?

In general, No, since $Q^2 < (\hbar c/d)^2$

2. TCS

DVCS-TCS

Phys.Rev.D 79 (2009) 014010

Can one measure timelike Compton scattering at LHC ?

B. $\rm Pire^1$ and L. Szymanowski and J. $\rm Wagner^2$

Final state of two leptons and nothing else. Q^2 given by mass of dilepton system t given by p_T^2 of dilepton system

Complication from Bethe-Heitler

Interference term

Use background to amplify signal

Bethe Heitler

$$\begin{split} & \frac{d\sigma_{\ell\ell}^{\gamma h \,\text{BH}}}{dQ^2 \, dq_T^2 \, d\cos\theta \, d\phi}(y_{\text{cms}}^{\ell\ell}) \approx J \frac{\alpha_{em}^3}{2\pi s_{\gamma h}^2} \frac{1}{-t} \frac{1 + \cos^2\theta}{\sin^2\theta} \\ & \times \left[\left(F_1^2(t) - \frac{t}{4M_N^2} F_2^2(t) \right) \frac{2(s_{\gamma h} - M_N^2)^2}{Q^4} \frac{q_T^2}{-t} + (F_1(t) + F_2(t))^2 \right] \bigg|_{t=t(y_{\text{cms}}^{\ell\ell}, q_T^2, Q, \epsilon)} \end{split}$$

Interference Bethe Heitler and Timelike Compton scattering

$$\frac{d\sigma_{\ell\ell}^{\gamma h \, \text{INT}}}{dQ^2 \, dt \, d \cos \theta \, d\phi} \approx -\frac{\alpha_{em}^3}{4\pi s_{\gamma h}^2} \frac{\sqrt{t_0 - t}}{-tQ} \frac{\sqrt{1 - \eta^2}}{\eta} \left(\cos \phi \, \frac{1 + \cos^2 \theta}{\sin \theta} \right)$$

$$\times \text{Re} \left[F_1(t) \mathcal{H}(\eta, t) - \eta (F_1(t) + F_2(t)) \, \tilde{\mathcal{H}}(\eta, t) - \frac{t}{4M^2} F_2(t) \, \mathcal{E}(\eta, t) \right]$$

$$+ \cos(2\phi) \text{ and } \cos(3\phi) \text{ contributions}$$

TCS accesible via interference. ${\rm |T_{TCS}|}^2$ has no ϕ dependence.

First efforts towards measurement

(Charlotte!)

 $\frac{|t_{Lo}|-p_T^2}{|t_{Lo}|}$ 0.05 30 25 0.02 20 0.0 15 -0.0 10 -0.02 -0.03 -0.04 -0.05n ln(|t_{Lo}|/GeV²) $\frac{|t_{Lo}|-p_T^2}{|t_{Lo}|}$ 12 Pbp 0. -0.5 0 2 $\ln(|t_{Lo}|/GeV^2)$

Fractional difference between true t and reconstructed p_T²

First efforts towards measurement

Relevant kinematics can be reconstructed albeit with some geometric effects 17

And the data exists.....

3. DVMP

The LHCb detector

Fully instrumented: $2 < \eta < 5$ Veto region (Run 2): $-10 < \eta < -5$, $5 < \eta < 10$

The LHCb detector

Discrimination power of Herschel

23

dt

Purity for CEP of J/ψ

Differential cross-section pp->pJ/ψp

HERA measured power-law: $\sigma_{\gamma p o J/\psi \, p}(W) \,=\, 81 (W/90 \, {
m GeV})^{0.67} \, {
m nb}$

Photoproduction cross-section

29

Which projectile produced the photon?

Which projectile produced the photon?

31

J/ψ production in pPb and Pbp

Eur.Phys.J. C79 (2019) no.5, 402

Question to theorists/global fitters

- Do we have LHC predictions for $\sigma_{VM}(GPD)$? – LHC data has not yet been used to constrain GPDs
- Quite some work has been done recently on $\sigma_{\text{VM}}(\text{PDF})....$

Implications: gluon PDF

Ryskin, Z. Phys. C 57 (1993) 89

Flett, Martin, Ryskin, Teubner. Phys.Rev.D 102 (2020) 114021 Flett, Jones, Martin, Ryskin, Teubner. Phys.Rev.D 101 (2020) 9, 094011

GPD v PDF: it matters

Dutrieux, Winn, Bertone, Phys.Rev.D 107 (2023) 11, 114019

Figure 2: Evolution of the MMHT2014 LO PDF [44] from $\mu_0 = 1$ GeV to 4.7 GeV using the DGLAP evolution (blue curve) and the GPD evolution at $\xi = 10^{-4}$ (orange curve). On the left, we show the non-singlet u PDF defined by $u^-(x) = u(x) - \bar{u}(x)$. On the right, the gluon PDF. The difference between the two curves becomes sizeable for $x \leq 3\xi$.

(1. DVCS)

DVCS @ LHC?

Workhorse for current GPD extractions Data: Hermes, H1, Zeus, CLAS, Hall A, COMPASS, where γ^* originates from **lepton**

DVCS @ LHC?

Workhorse for current GPD extractions Data: Hermes, H1, Zeus, CLAS, Hall A, COMPASS, where γ^* originates from **lepton**

Can this come from hadron (LHC)?

- Yes, but for large Q² γ* we have small impact parameter and hadronic QCD interaction will usually be superimposed
- Low multiplicity when hadrons remain intact
 - Ultraperipheral collisions (UPC)
 - Projectiles separated $d > R_1 + R_2$
 - Large impact parameters => small $Q^2 \gamma^*$. [$Q^2 < (\hbar c/d)^2$]

Impact parameter

DVCS @ LHC?

- Use pPb collisions to enhance photon flux (factor 82²)
- Signal is single photon and no other activity
 - Most γ^* quasi-real so γ down beam line
 - For higher Q², QCD interaction usually superimposed (but not always)
 - Machine backgrounds / beam gas / acceptance make reliable identification of single photon difficult
- Look difficult but maybe not impossible.
- No full study. For discussion?

Light-by-light scattering

Forbidden in classical EM Text-book illustration of QM

ATLAS collab., Nature Physics 13 (2017) 852

ATLAS collab., arXiv: 2008.05355

CMS. collab., Phys.Lett.B 797 (2019) 134826

Light-by-light scattering

M. Klusek-Gawenda, R. McNulty, R. Schicker, A. Szczurek, Phys.Rev. D99 (2019) no.9, 093013

LHCb and ALICE have potential to observe this at low mass. Important in searches for new particle decaying to photons

Double pomeron exchange

Plenty of data from LHC

In principle this is two GPDs?

Should be some sensitivity by measuring this?

Problem of measuring kinematic variables?

Double pomeron exchange

Example of dipion spectrum and for comparison with what Stefan showed this morning

Maybe reconstruct outgoing proton

ATLAS: EPJ C 83 (2023) 627

Special high $\beta^*=90$ m runs creates optics that allow deflected proton to be measured. Independent measurements of p_T of protons that balance p_T of pions.

(Limited data for the moment due to low-lumi running)

Summary: topics for discussion

	+	-	
DVCS	Direct measurement of CFF	Clean single photon detection difficult. σ too low?	Experimentally probably impossible
TCS	Clean 'easy' measurement	Indirect GPD constraint Interference from Bethe-Heitler	No experimental measurements yet
DVMP	Measurements have been performed	Even more indirect constraint	Theory predictions?
DPE	Measurements have been performed	Little sensitivity to GPD?	Theoretically probably insensitive

Complementary x-Q² to EIC