Coupled-channel analyses to extract the baryon resonance spectrum

ECT*-APCTP joint workshop: exploring resonance structure with transition GPDs

August 23, 2023 | Deborah Rönchen | Institute for Advanced Simulation, Forschungszentrum Jülich

In collaboration with: M. Döring, M. Mai, Ulf-G. Meißner, C.-W. Shen, Y.-F. Wang, R. Workman (Jülich-Bonn and Jülich-Bonn-Washington collaborations)

Supported by DFG, NSFC, MKW NRW
HPC support by Jülich Supercomputing Centre

The excited baryon spectrum:

Connection between experiment and QCD in the non-perturbative regime

Experimental study of hadronic reactions

source: ELSA; data: ELSA, JLab, MAMI
Theoretical predictions of excited hadrons
e.g. from relativistic quark models:

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000

Major source of information:
In the past: elastic or charge exchange πN scattering

- "missing resonance problem"

In recent years: photoproduction reactions

- large data base, high quality (double) polarization observables, towards a complete experiment Reviews: Prog.Part.Nucl.Phys. 125, 103949 (2022), Prog.Part.Nucl.Phys. 111 (2020) 103752
In the future: electroproduction reactions
- 10^{5} data points for $\pi N, \eta N, K Y, \pi \pi N$ Review: e.g. Prog.Part.Nucl.Phys. 67 (2012)

The excited baryon spectrum:

Connection between experiment and QCD in the non-perturbative regime

Experimental study of hadronic reactions

source: ELSA; data: ELSA, JLab, MAMI
\Rightarrow Partial wave decomposition:
decompose data with respect to a conserved quantum number:
total angular momentum and parity J^{P}

Theoretical predictions of excited hadrons e.g. from relativistic quark models:

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000
\Rightarrow search for resonances/excited states in those partial waves: poles on the $2^{\text {nd }}$ Riemann sheet
(Breit-Wigner problematic in baryon spectroscopy)

From experimental data to the resonance spectrum

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000

Different modern analyses frameworks:

- (multi-channel) K-matrix: GWU/SAID, BnGa (phenomenological), Gießen (microscopic Bgd)
- dynamical coupled-channel (DCC): 3d scattering eq., off-shell intermediate states ANL-Osaka (EBAC), Dubna-Mainz-Taipeh, Jülich-Bonn
- unitary isobar models: unitary amplitudes + Breit-Wigner resonances

MAID, Yerevan/JLab, KSU

- other groups: JPAC (amplitude analysis with Regge phenomenology), Mainz-Tuzla-Zagreb PWA (MAID + fixed-t dispersion relations, L+P), Ghent (Regge-plus-resonance), truncated PWA

From experimental data to the resonance spectrum

Löring et al. EPJ A 10, 395 (2001), experimental spectrum: PDG 2000

Different modern analyses frameworks:

- (multi-channel) K-matrix: GWU/SAID, BnGa (phenomenological), Gießen (microscopic Bgd)
- dynamical coupled-channel (DCC): 3d scattering eq., off-shell intermediate states ANL-Osaka (EBAC), Dubna-Mainz-Taipeh, Jülich-Bonn
- unitary isobar models: unitary amplitudes + Breit-Wigner resonances

MAID, Yerevan/JLab, KSU

- other groups: JPAC (amplitude analysis with Regge phenomenology), Mainz-Tuzla-Zagreb PWA (MAID + fixed-t dispersion relations, L+P), Ghent (Regge-plus-resonance), truncated PWA

Jülich-Bonn DCC approach for hadronic reactions

The Jülich-Bonn DCC approach for N^{*} and Δ resonances

 pion-induced reactionsDynamical coupled-channels (DCC): simultaneous analysis of different reactions

The scattering equation in partial-wave basis

$$
\begin{aligned}
&\left\langle L^{\prime} S^{\prime} p^{\prime}\right| T_{\mu \nu}^{\prime \prime}|L S p\rangle=\left\langle L^{\prime} S^{\prime} p^{\prime}\right| V_{\mu \nu}^{\prime \prime}|L S p\rangle+ \\
& \sum_{\gamma, L^{\prime \prime} S^{\prime \prime}} \int_{0}^{\infty} d q q^{2} \quad\left\langle L^{\prime} S^{\prime} p^{\prime}\right| V_{\mu \gamma}^{\prime \prime}\left|L^{\prime \prime} S^{\prime \prime} q\right\rangle \frac{1}{E-E_{\gamma}(q)+i \epsilon}\left\langle L^{\prime \prime} S^{\prime \prime} q\right| T_{\gamma \nu}^{\prime \prime}|L S p\rangle
\end{aligned}
$$

- channels ν, μ, γ :

The Jülich-Bonn DCC approach for N^{*} and Δ resonances

 pion-induced reactions
Dynamical coupled-channels (DCC): simultaneous analysis of different reactions

The scattering equation in partial-wave basis

$$
\begin{aligned}
\left\langle L^{\prime} S^{\prime} p^{\prime}\right| T_{\mu \nu}^{\prime \prime}|L S p\rangle & =\left\langle L^{\prime} S^{\prime} p^{\prime}\right| V_{\mu \nu}^{\prime \prime}|L S p\rangle+ \\
& \sum_{\gamma, L^{\prime \prime} S^{\prime \prime}} \int_{0}^{\infty} d q q^{2}\left\langle L^{\prime} S^{\prime} p^{\prime}\right| V_{\mu \gamma}^{\prime \prime}\left|L^{\prime \prime} S^{\prime \prime} q\right\rangle \frac{1}{E-E_{\gamma}(q)+i \epsilon}\left\langle L^{\prime \prime} S^{\prime \prime} q\right| T_{\gamma \nu}^{\prime \prime}|L S p\rangle
\end{aligned}
$$

- potentials V constructed from effective \mathcal{L}
- s-channel diagrams: T^{P} genuine resonance states
- t - and u-channel: $T^{N P}$ dynamical generation of poles partial waves strongly correlated
- contact terms

Resonance states

- (2 body) unitarity and analyticity respected (no on-shell factorization, dispersive parts included)
- opening of inelastic channels \Rightarrow branch point and new Riemann sheet

Resonances: poles in the full T-matrix

- Pole position E_{0} is the same in all channels
- $\operatorname{Re}\left(E_{0}\right)=$ "mass", $-2 \operatorname{lm}\left(E_{0}\right)=$ "width" residues \rightarrow branching ratios

3-body $\pi \pi N$ channel:

- parameterized effectively as $\pi \Delta, \sigma N, \rho N$
- $\pi N / \pi \pi$ subsystems fit the respective phase shifts
\square branch points move into complex plane

Photoproduction

Photoproduction in a semi-phenomenological approach

Multipole amplitude

$$
M_{\mu \gamma}^{\prime \prime}=V_{\mu \gamma}^{\prime \prime}+\sum_{\kappa} T_{\mu \kappa}^{\prime \prime} G_{\kappa} V_{\kappa \gamma}^{\prime \prime}
$$

(partial wave basis)

$T_{\mu \kappa}$: full hadronic T-matrix as in pion-induced reactions
Photoproduction potential: approximated by energy-dependent polynomials (field-theoretical description numerically too expensive)

$$
=\frac{\tilde{\gamma}_{\mu}^{a}(q)}{m_{N}} P_{\mu}^{\mathrm{NP}}(E)+\sum_{i} \frac{\gamma_{\mu ; i}^{a}(q) P_{i}^{P}(E)}{E-m_{i}^{b}}
$$

Simultaneous fit of pion- \& photon-induced reactions

Free parameters

- $\pi N \rightarrow \pi N, \eta N, K Y:$ s-channel: resonances (T^{P})

- $\gamma p \rightarrow \pi N, \eta N, K Y$: couplings of the polynomials and s-channel parameters

- couplings in contact terms: one per PW, couplings to $\pi N, \eta N$, ($\pi \Delta$, $) K \Lambda, K \Sigma$
- t - \& u-channel parameters: cut-offs, mostly fixed to values of previous JüBo studies (couplings fixed from $\mathrm{SU}(3)$)
$\Rightarrow \sim 900$ fit parameters in total, $\sim 72,000$ data points
\square calculations on a supercomputer [JURECA, Juilich Supercomputing Centre, Jourral of large-scale research facilities, 2, A62 (2016)]

Extension to $K \Sigma$ photoproduction on the proton

JüBo2022 Eur.Phys.J.A 58 (2022) 229

Simultaneous analysis of $\pi N \rightarrow \pi N, \eta N, K \Lambda, K \Sigma$ and

$$
\gamma p \rightarrow \pi N, \eta N, K \Lambda, K \Sigma
$$

- almost 72,000 data points in total, $W_{\max }=2.4 \mathrm{GeV}$

$$
\begin{aligned}
& =\gamma p \rightarrow K^{+} \Sigma^{0}: d \sigma / d \Omega, P, \Sigma, T, C_{x^{\prime}, z^{\prime}}, O_{x, 2}=5,652 \\
& =\gamma p \rightarrow K^{0} \Sigma^{+}: d \sigma / d \Omega, P=448
\end{aligned}
$$

- polarizations scaled by new Λ decay constant α_{-}(Ireland PRL 123 (2019), 182301), if applicable
- χ^{2} minimization with MINUIT on JURECA [Julich

Supercomputing Centre, JURECA: JLSRF 2, A62 (2016)]

Resonance analysis:

- all 4 -star N and Δ states up to $J=9 / 2$ are seen (exception: $\left.N(1895) 1 / 2^{-}\right)+$some states rated less than 4 stars
- no additional s-channel diagram, but indications for new dyn. gen. poles

Selected fit results

New data for $\gamma p \rightarrow \eta p$ from CBELSA/TAPS

included in JüBo2O22

- T, P, H, G, E Müller PLB 803, 135323 (2020): very first data on H, G (and P) in this channel

- $\Sigma_{\text {Afzal PRL } 125,152002 \text { (2020): }}$ Backward peak in data
\rightarrow Observation of $\eta^{\prime} N$ cusp + importance of $N(1895) 1 / 2^{-}$(BnGa)

$N(1535) 1 / 2^{-}$	$\operatorname{Re} E_{0}$	$-2 \operatorname{lm} E_{0}$	$\frac{\Gamma_{\pi N}^{1 / 2} \Gamma_{\eta N}^{1 / 2}}{\Gamma_{\text {tot }}}$	$\theta_{\pi N \rightarrow K \Sigma}$
$* * * *$	$[\mathrm{MeV}]$	$[\mathrm{MeV}]$	$[\%]$	$[\mathrm{deg}]$
2022	$1504(0)$	$74(1)$	$50(3)$	$118(3)$
2017	$1495(2)$	$112(1)$	$51(1)$	$105(3)$
PDG 2022	1510 ± 10	130 ± 20	43 ± 3	-76 ± 5

$N(1650) 1 / 2^{-}$	$\operatorname{Re} E_{0}$	$-2 \operatorname{lm} E_{0}$	$\frac{\Gamma_{\pi N}^{1 / 2} \Gamma_{\eta N}^{1 / 2}}{\Gamma_{\text {tot }}}$	$\theta_{\pi N \rightarrow K \Sigma}$
$\quad * * *$	$[\mathrm{MeV}]$	$[\mathrm{MeV}]$	$[\%]$	$[\mathrm{deg}]$
2022	$1678(3)$	$127(3)$	$34(12)$	$71(45)$
2017	$1674(3)$	$130(9)$	$18(3)$	$28(5)$
PDG 2022	1655 ± 15	135 ± 35	29 ± 3	134 ± 10

$\rightarrow \eta N$ residue $N(1650) 1 / 2^{-}$much larger (similarly observed by BnGa)

JüBo2022:

- no $\eta^{\prime} N$ channel (or cusp), to be included in the future
- no $N(1895) 1 / 2^{-}$(not needed)
- backward peak from $N(1720) \& N(1900) 3 / 2^{+}$

New data for $\gamma p \rightarrow \eta p$ from CBELSA/TAPS

included in JüBo2O22
Eur.Phys.J.A 58 (2022) 229

- T, P, H, G, E Müller PLB 803, 135323 (2020): very first data on H, G (and P) in this channel

- $\sum_{\text {Afzal PRL 125, } 152002 \text { (2020): }}$ Backward peak in data
\rightarrow Observation of $\eta^{\prime} N$ cusp + importance of $N(1895) 1 / 2^{-}$(BnGa)

$\begin{gathered} N(1535) 1 / 2^{-} \\ * * * * \end{gathered}$	$\operatorname{Re} E_{0}$ [MeV]	$-2 \operatorname{Im} E_{0}$ [MeV]	$\frac{\Gamma_{\pi N}^{1 / 2} \Gamma_{\eta N}^{1 / 2}}{\Gamma_{\text {tot }}}$ [\%]	$\begin{aligned} & \theta_{\pi N \rightarrow K \Sigma} \\ & {[\mathrm{deg}]} \\ & \hline \end{aligned}$
2022	1504(0)	74 (1)	50(3)	118(3)
2017	1495(2)	112(1)	51(1)	105(3)
PDG 2022	1510 ± 10	130 ± 20	43 ± 3	-76 ± 5
$\begin{gathered} N(1650) 1 / 2^{-} \\ * * * * \end{gathered}$	$\operatorname{Re} E_{0}$ [MeV]	$-2 \operatorname{Im} E_{0}$ [MeV]	$\frac{\Gamma_{\pi N}^{1 / 2} \Gamma_{\eta N}^{1 / 2}}{\Gamma_{\text {tot }}}$ [\%]	$\begin{aligned} & \theta_{\pi N \rightarrow K \Sigma} \\ & {[\mathrm{deg}]} \end{aligned}$
2022	1678(3)	127(3)	34(12)	71(45)
2017	1674(3)	130(9)	18(3)	28(5)
PDG 2022	1655 ± 15	135 ± 35	29 ± 3	134 ± 10

$\rightarrow \eta N$ residue $N(1650) 1 / 2^{-}$much larger (similarly observed by BnGa)

JüBo2022:

- no $\eta^{\prime} N$ channel (or cusp), to be included in the future
- no $N(1895) 1 / 2^{-}$(not needed)
- backward peak from $N(1720) \& N(1900) 3 / 2^{+}$ (turquoise lines: both states off) $\underset{\text { Forschungszentrum }}{ }$ UOI

Electroproduction

Experimental studies of electroproduction:

major progress in recent years, e.g., from JLab, MAMI, .. .

- 10^{5} data points for $\pi N, \eta N, K Y, \pi \pi N$ electroproduction
- access the Q^{2} dependence of the amplitude
\rightarrow expected to provide a link between perturbative QCD and the region where quark confinement sets in
- so far, no new N^{*} or Δ^{*} established from electroproduction: data not yet analyzed on the same level as photoproduction Reviews: Prog.Part.Nucl.Phys. 67 (2012); Few. Body Syst. 63 (2022) 3, 59

Single-channels analyses, e.g.:

- MAID: π, η, kaon electroproduction (EPJA 34, 69 (2007), NPA 700, 429 (2002),)
- JLab: π electroproduction covering the resonance region (PRC 80 (2009) 055203)

Figure and data from Markov et al. (CLAS) PRC 101 (2020), resonance contribution: JLab/YerPhl

Coupled-channels analyses:

- ANL-Osaka: extension of DCC analysis of pion electroproduction (PRC 80, 025207 (2009)) in progress (Few Body Syst. 59 (2018) 3, 24)
- Jülich-Bonn-Washington approach M. Mai et al. PRC 103 (2021): $\gamma^{*} p \rightarrow \pi^{0} p, \pi^{+} n, \eta p, K \Lambda$

Jülich-Bonn-Washington parametrization

M. Mai et al. Phys. Rev. C 103, 065204 (2021), arXiv:2307.10051 [nucl-th]

$$
\mathcal{M}_{\mu \gamma^{*}}\left(k, W, Q^{2}\right)=R_{\ell^{\prime}}\left(\lambda, q / q_{\gamma}\right)\left(V_{\mu \gamma^{*}}\left(k, W, Q^{2}\right)+\sum_{\kappa} \int_{0}^{\infty} d p p^{2} T_{\mu \kappa}(k, p, W) G_{\kappa}(p, W) V_{\kappa \gamma^{*}}\left(p, W, Q^{2}\right)\right)
$$

For $Q^{2}=0$ (real photons) identical to Jülich-Bonn photoproduction amplitude

$$
\begin{aligned}
& V_{\mu \gamma^{*}}\left(k, W, Q^{2}\right)=V_{\mu \gamma}^{\mathrm{JUBO}}(k, W) \cdot \tilde{F}_{D}\left(Q^{2}\right) . \\
& \quad e^{-\beta_{\mu}^{0} Q^{2} / m_{p}^{2}}\left(1+Q^{2} / m_{p}^{2} \beta_{\mu}^{1}+\left(Q^{2} / m_{p}^{2}\right)^{2} \beta_{\mu}^{2}\right)
\end{aligned}
$$

Siegerts's theorem siegert(1973)
Amaldi et al.(1979) Tiator(2016)

$$
V^{L_{\ell \pm}}=(\text { const. }) \cdot V^{E_{\ell \pm}}
$$

...at pseudo-threshold

- simultaneous fit to $\pi N, \eta N, K \Lambda$ electroproduction off proton
- 533 fit parameters, 110.281 data points
- Input from JüBo: $V_{\mu \gamma}\left(k, W, Q^{2}=0\right), T_{\mu \kappa}(k, p, W)$, $G_{\kappa}(p, W)$
\rightarrow universal pole positions and residues (fixed in this study)
- long-term goal: fit pion-, photo- and electron-induced reactions simultaneously
$\gamma^{*} p \rightarrow K \Lambda$ at $W=1.7 \mathrm{GeV}$

to conclude

PDG N^{*} ratings 2009 (left) vs 2020 (right)

- New states, e.g. $N(1900) 3 / 2^{+}, N(1895) 1 / 2^{-}$, observed especially in kaon and eta photoproduction by several groups e.g. PRL 119, 062004 (2017), PRL 125, 152002 (2020)

PDG Δ ratings 2009 (left) vs 2020 (right)

- no new states observed
- more data from $I=3 / 2$ channels could be helpful, e.g $\gamma p \rightarrow K^{0} \Sigma^{+}, K^{+} \Sigma^{0}$

			Status as seen in					
Particle	J^{P}	overall	$N \gamma$	$N \pi$	$\Delta \pi$	ΣK	$N \rho$	$\Delta \eta$
$\Delta(1232)$	$3 / 2^{+}$	$* * * *$	$* * * *$	$* * * *$				
$\Delta(1600)$	$3 / 2^{+}$	$* * * *$	$* * * *$	$* * *$	$* * * *$			
$\Delta(1620)$	$1 / 2^{-}$	$* * * *$	$* * * *$	$* * * *$	$* * * *$			
$\Delta(1700)$	$3 / 2^{-}$	$* * * *$	$* * * *$	$* * * *$	$* * * *$	$*$	$*$	
$\Delta(1750)$	$1 / 2^{+}$	$*$	$*$	$*$		$*$		
$\Delta(1900)$	$1 / 2^{-}$	$* * *$	$* * *$	$* * *$	$*$	$* *$	$*$	
$\Delta(1905)$	$5 / 2^{+}$	$* * * *$	$* * * *$	$* * * *$	$* *$	$*$	$*$	$* *$
$\Delta(1910)$	$1 / 2^{+}$	$* * * *$	$* * *$	$* * * *$	$* *$	$* *$		$*$
$\Delta(1920)$	$3 / 2^{+}$	$* * *$	$* * *$	$* * *$	$* * *$	$* *$		$* *$
$\Delta(1930)$	$5 / 2^{-}$	$* * *$	$*$	$* * *$	$*$	$*$		
$\Delta(1940)$	$3 / 2^{-}$	$* *$	$*$	$* *$	$*$			$*$
$\Delta(1950)$	$7 / 2^{+}$	$* * * *$	$* * * *$	$* * * *$	$* *$	$* * *$		
$\Delta(2000)$	$5 / 2^{+}$	$* *$	$*$	$* *$	$*$		$*$	
$\Delta(2150)$	$1 / 2^{-}$	$*$		$*$				
$\Delta(2200)$	$7 / 2^{-}$	$* * *$	$* * *$	$* *$	$* * *$	$* *$		
$\Delta(2300)$	$9 / 2^{+}$	$* *$		$* *$				
$\Delta(2350)$	$5 / 2^{-}$	$*$		$*$				
$\Delta(2390)$	$7 / 2^{+}$	$*$		$*$				
$\Delta(2400)$	$9 / 2^{-}$	$* *$	$* *$	$* *$				
$\Delta(2420)$	$11 / 2^{+}$	$* * * *$	$*$	$* * * *$				

Uncertainties of extracted resonance parameters

Challenges in determining resonance uncertainties, e.g.:

- elastic πN channel: not data but GWU SAID PWA are used by most groups
\rightarrow correlated χ^{2} fit including the covariance matrix $\hat{\Sigma}$ [PRC 93, 065205 (2016)]

$$
\chi^{2}(A)=\chi^{2}(\hat{A})+(A-\hat{A})^{T} \hat{\Sigma}^{-1}(A-\hat{A})
$$

$A \sim$ vector of fitted PWs, $\hat{A} \sim$ vector of SAID SE PWs
\rightarrow same χ^{2} as fitting to data up to nonlinear and normalization corrections

- error propagation data \rightarrow fit parameters \rightarrow derived quantities: bootstrap method: generate pseudo data around actual data, repeat fit
\rightarrow numerically very challenging
- model selection, significance of resonance signals:
determine minimal resonance content using Bayesian evidence [PRL 108, 182002; PRC 86, 015212 (2012)] or the LASSO method (J. R. Stat. Soc. B 58,267 (1996), PRC 95, 015203 (2017)):

$$
\chi_{T}^{2}=\chi^{2}+\lambda \sum_{i=1}^{i_{\max }}\left|a_{i}\right|, \quad \lambda \sim \text { penalty factor, } a_{i} \sim \text { fit parameter }
$$

\Rightarrow very challenging for coupled-channel analyses!

Summary and Outlook

Extraction of the N^{*} and Δ spectrum from experimental data: major progress in last decade

- new information from photoproduction data \rightarrow new and upgraded states in PDG table
- wealth of high-quality electroproduction data, more at high Q^{2} in the future (CLAS12)
\rightarrow to be included in modern coupled-channel analyses (in progress)

Jülich-Bonn DCC analysis:

- Extraction of the N^{*} and Δ spectrum in a simultaneous analysis of pion- and photon-induced reactions [Eur.Phys.J.A 58 (2022) 229]
- $\pi N \rightarrow \omega N$ channel included, prerequisite for ω photoproduction [Wang et al. PRD 106 (2022), 094031]
- Electroproduction: Jülich-Bonn-Washington approach [Mai et al. PRC 103 (2021), PRC 106 (2022), 2307.10051 [nucl-th]]
- In progress: Baryon transition form factors
- New interactive web interface: https://jbw.phys.gwu.edu (under construction)
\rightarrow multipoles, observables, data

Thank you for your attention!

