Measurement of diffractive dissociative J/ ψ production at ALICE

Michael Winn

Department of Nuclear Physics IRFU/CEA, university Paris-Saclay

ECT*, 24.08.2023

Outline

Motivation

 pPb analysis: proof-of-principle for proton dissociation at the LHC arxiv:2304.12403, submitted to PRD

thesis by A. Glaenzer for details link

Discussion of limitations

Perspectives, conclusions and questions

Motivation

- background for exclusive vector-meson production at the LHC measured by ALICE, CMS, LHCb, see presentation by Ronan
- similar size of exclusive and dissociative cross section at HERA, see e.g. H1 EPJC 73 (2013) 6, 2466
- Why should we be interested in dissociation?

Focus on heavy quarkonium: hard scale via produced mass; focus on $\gamma(^*)p$, also results on $\gamma^* Pb \rightarrow J/\psi X$

Ronan's talk: exclusive vector meson production in ultra-peripheral collisions

- sensitive to generalised gluon distributions (GPD) for $x \in 10^{-2} 10^{-6}$
- measurements for protons and nuclei
- exclusive photoproduction at small t \approx interaction with full wavepackage of target hadron
 - \rightarrow coherent interaction

Coherent production: measuring the 'average' size

$$coherent: \frac{d\sigma^{\gamma^* p \to p J/\psi}}{dt} = \frac{1}{16\pi} |\langle \mathcal{A}^{\gamma^* p \to p J/\psi} \rangle|^2$$

p: proton (also valid for nuclei), J/ ψ could be any vector, e.g. in H. Mäntisaary Rep. Prog. Phys. 83 (2020).

Good-Walker formalism PRD 120 (1960)

- average over interactions of states that make up the incoming particle and diagonalise the interaction matrix
- high energy: Fock states of the incoming virtual photon with frozen number of partons and frozen configuration of the target
 relates to the fact that GPDs are single-particle distributions, see discussion in Z. Panjsheeri, Luiti group

Incoherent production: measure fluctuations

incoherent case: incoming $(|i\rangle)$ and outgoing state $(|f\rangle)$ different

$$use : \sum_{f \neq i} |\langle f|A|i \rangle|^{2} = \sum_{f} \langle i|A^{*}|f \rangle \langle f|A|i \rangle - \langle i|A|i \rangle \langle i|A^{*}|i \rangle$$
$$= \langle i|A^{*}A|i \rangle - |\langle i|A|i \rangle|^{2}$$
average over *i* :
$$\frac{d\sigma^{\gamma^{*}p \to p^{*}J/\psi}}{dt} = \frac{1}{16\pi} \left(\langle |\mathcal{A}^{\gamma^{*}p \to pJ/\psi}|^{2} \rangle - |\langle \mathcal{A}^{\gamma^{*}p \to pJ/\psi} \rangle|^{2} \right)$$

p: proton (also valid for nuclei), p^* proton excited, J/ ψ could be any vector, recent review in H. Mäntisaary Rep. Prog. Phys. 83 (2020), so-called 'Good-Walker' formalism, also in Frankfurt, Strikman, Treleani, WeissPRL 101 (2008) 202003.

- ightarrow incoherent: variance $< x^2 > < x >^2$, not average $< x >^2$
 - γp : dissociative production \rightarrow fluctuations of the proton
 - HERA data does not reach full kinematics accessible at the LHC due to higher energies
 - \rightarrow measure at the LHC!

A QGP motivation to constrain hadrons beyond the average with dissociation

CP violation in charm decays SKA and treaty-based science Reports from Moriond shape fluctuations crucial to understand azimuthal anisotropies

Initial state shape and hydrodynamic response

Initial transverse The single-particle distribution is essentially Final distribution **Expansion** density profile independent of rapidity n but depends on azimuthal angle, ϕ in each event Elliptic flow v2 • Fourier decomposition : $f(\phi) = \sum_{n} V_n e^{-in\phi}$ • $v_n = |V_n|$ = anisotropic flow fluctuates event to event Triangular flow V3 In hydrodynamics, anisotropic flow is a response to the anisotropy of the initial density profile. V2 ٧a ۷₄

taken from from J.-Y. Olltrault's talk at Epiphany conference '19

- transverse collision-zone geometry in coordinate space: azimuthal particle correlations in final state in momentum space
- hydrodynamic properties (viscosities) measured as response of this shape
- ► constraining shape: central to QGP physics → mechanism exploited to constrain nuclear structure, see thesis of G. Giuliano

Proton 'geometry' in proton-nucleus collisions

geometry response observed in proton-nucleus collisions
 Zaijc, Nagle Ann.Rev.Nucl.Part.Sci. 68 (2018) 211

▶ require sub-nucleonic geometry fluctuations with n > 1 hot-spots → "the proton snapshot with multi-parton interactions is not round" e.g. discussed in PLB 774 (2017) PLB 772 (2017)

Side remark (or naïve dreaming?): if theory connection, hadron correlation measurements may be used to learn about hadron fluctuations, not only nuclear structure

 \rightarrow double-GPDs or double-PDFs distributions the best way? Michael Winn (Irfu/CEA), ECT*, 24.08.2023

Saturation physics motivation

Left: Cepila, Contreras, Takaki PLB766 (2017) 186, right: Schenke, Mäntisaary PRD 98 (2018) 3, 034013

- ► at asymptotically large energies: system becomes black disk → fluctuations vanish and hence dissociative production
- seen in model calculations

Measurement in pPb collisions

- 6.5 TeV proton-beam, $6.5 \cdot Z^{Pb} (= 82)$ TeV lead beam
- \blacktriangleright only J/ ψ measurement in spectrometer with momentum information
- ► $W_{\gamma*p} = 2E_p M_{J/\psi} e^{-y}$, y rapidity of J/ψ w.r.t. proton beam
- ▶ $t \approx -p_{T,jpsi}^2$, (photon- $k_T \approx 1/R_{Pb}$) \rightarrow t hence in principle accessible, however, muon-arm resolution modest \rightarrow measurement not differential in t see PbPb t-differential measurements by ALICE at midrapidity,http://arxiv.org/abs/2305.06169(incoherent),PLB 817 (2021) 136280(coherent)
 - pPb luminosity: 7.62 nb^{-1}

pPb Kinematics in ALICE

 \blacktriangleright The J/ ψ goes in the direction of the proton, y > 0:

Courtesy by A. Glaenzer

Analysis strategy

standard selection and methods for muon analyses in ALICE and UPC

new:

- \rightarrow exclusive selection to fix exclusive contribution shape
- \rightarrow more open selection including dissociative and exclusive to do fit
- \rightarrow 2-D loglikelihood fit of mass and p_{T} to extract signals

► analysis of $\gamma\gamma \rightarrow \mu^+\mu^-$ as test of QED part & photon fluxes as bonus (not covered here), ingredient for TCS feasibility

Key aspect: exclusive selection vetos

• selection used to derive p_T distribution of exclusive production

also used as cross check

Exclusive selection

tight selection used for exclusive shape determination

Michael Winn (Irfu/CEA), ECT*, 24.08.2023

Key aspect: exclusive selection vetos

- selection used for cross section determination
- verified via RapGap simulation that V0C vetoes do not introduce inefficiency for dissociative process
- largest systematic uncertainties for dissociative: V0C veto & exclusive shape

Analysis key aspect: signal extraction

- Exclusive: shape fixed with pure exclusive sample
- Dissociative J/ ψ parameterisation following H1
- γ-Pb production fixed from PbPb measurement

From UPC cross section to photoproduction cross section

$\frac{\mathrm{d}\sigma}{\mathrm{d}y}(\mathbf{p}+\mathbf{P}\mathbf{b}\to\mathbf{p}^{(*)}+\mathbf{P}\mathbf{b}+\mathbf{J}/\psi)=k\frac{\mathrm{d}n}{\mathrm{d}k}\sigma(\gamma+\mathbf{p}\to\mathbf{J}/\psi+\mathbf{p}^{(*)}).$							
Rapidity range	$N_{{ m J}/\psi}^{ m exc}, \ N_{{ m J}/\psi}^{ m diss}$	${ m d}\sigma^{ m exc}_{J/\psi}/{ m d}y, \ { m d}\sigma^{ m diss}_{J/\psi}/{ m d}y~(\mu b)$	kdn/dk	W _{γp} (GeV)	$\langle W_{\gamma p} \rangle$ (GeV)	$\begin{split} \sigma(\gamma\!+\!p &\!\rightarrow J/\psi\!+\!p) \text{ (nb),} \\ \sigma(\gamma\!+\!p &\!\rightarrow J/\psi\!+\!p^{(*)}) \text{ (nb)} \end{split}$	
(2.5, 4)	$\frac{1180 \pm 84}{1515 \pm 83}$	$\begin{array}{c} 8.13 \pm 0.58 \pm 0.43 \\ 10.43 \pm 0.57 \pm 1.39 \end{array}$	$209\pm\!4$	(27, 57)	39.9	$\begin{array}{c} 39.0 \pm 2.8 \pm 2.2 \\ 50.0 \pm 2.7 \pm 6.7 \end{array}$	
(3.25, 4)	$\begin{array}{c} 564\pm53\\ 733\pm52 \end{array}$	$\begin{array}{c} 7.16 \pm 0.67 \pm 0.48 \\ 9.31 \pm 0.66 \pm 1.28 \end{array}$	$220\pm\!4$	(27, 39)	32.8	$\begin{array}{c} 32.51 \pm 3.0 \pm 2.3 \\ 42.3 \pm 3.0 \pm 5.9 \end{array}$	
(2.5, 3.25)	$\begin{array}{c} 629\pm54\\ 768\pm55 \end{array}$	$\begin{array}{c} 9.21 \pm 0.80 \pm 0.51 \\ 11.26 \pm 0.80 \pm 1.53 \end{array}$	$197\pm\!4$	(39, 57)	47.7	$\begin{array}{c} 46.8 \pm 4.1 \pm 2.8 \\ 57.2 \pm 4.1 \pm 7.8 \end{array}$	

- to get from measured cross section to photoproduction, need photon-flux from Pb nucleus as input
- extracted from Starlight event generator

Uncertainties

Signal	Source	Mass range (GeV/c ²)	Value (%)
All	Luminosity		1.8%
	Tracking efficiency		1%
	Matching efficiency		1%
	Pile-up correction		0.2%
	Total common		2.3%
γγ only		(1.0, 1.5)	from 2.1% to 3.4%
	Muon trigger efficiency	(1.5, 2.0)	from 2.5% to 5.0%
		(2.0, 2.5)	from 1.6% to 3.3%
	$\phi \rightarrow \mu^+ \mu^-$ contamination	(1.0, 1.5)	1.5%
		(1.0, 1.5)	1.2%
	V0C veto	(1.5, 2.0)	1.7%
		(2.0, 2.5)	0.5%
		(1.0, 1.5)	from 3.2% to 3.9%
	Signal extraction	(1.5, 2.0)	from 3.3% to 4.4%
		(2.0, 2.5)	from 4.9% to 7.6%
		(1.0, 1.5)	from 4.9% to 6.0%
	Total	(1.5, 2.0)	from 5.5% to 7.1%
		(2.0, 2.5)	from 6.0% to 8.6%
J/ψ only	Muon trigger efficiency		1.1%
	Branching ratio		0.55%
	Photon flux		2%
	$\delta(1+f_D)$		1.1%
	V0C veto		2.6% (excl.), 12.7% (diss.)
	Signal autreation	(25.25)	from 3.6% to 5.5% (excl.),
	Signal extraction	(2.3, 5.3)	from 2.9% to 4.4% (diss.)
	Tatal		from 5.6% to 7.0% (excl.),
	Total	from 13.5% to 13.9% (diss.)	
$\frac{\sigma^{diss}}{\sigma^{exc}}$	V0C veto		12.7%
	Signal extraction		from 6.2% to 7.6%
	Total	from 14.1% to 14.8%	

exclusive production still statistically limited, dissociative systematically limited

Exclusive analysis results

results of this analysis well in line with previous results

Dissociative results compared with H1 results and models

• measured dissociative production in $\gamma - p \rightarrow$ consistent with H1

Michael Winn (Irfu/CEA), ECT*, 24.08.2023

Dissociative results compared with H1 results and models

next steps:

ightarrow future data sets up to $W_{\gamma p} pprox 1.5$ TeV at the LHC

ightarrow transverse momentum dependence ($p_t^2 \approx -|t|$)

- input for hydrodynamic QGP simulations
- future studies parallel to electron-ion-collider at higher energy

Limitations

- ► not yet ultimate pPb LHC luminosity, see HL-LHC Yellow Report for discussion and projections CERN Yellow Rep.Monogr. 7 (2019) 1159 → need to push for pPb run with high luminosity, many other topics to cover in this data set
- ► Main limitation: incomplete reconstruction of final state → limits accessible *t*-range, measure only where S/B is sufficiently good for given process & avalaible selections → control of veto efficiency limiting systematic uncertainty
 - \rightarrow not capable to reconstruct dissociative system
- improvement without new instrumentation for better quantification of uncertainties: better MC-generators
 - \rightarrow HERA data very good benchmark
 - \rightarrow UPCs can profit from EIC developments with minor additional effort

Perspectives

Dream for LHC :

roman pots for diffractive masses between 3 and 30 GeV

 \rightarrow at the LHC not available for this mass-range (beam particle inelasticity and pt in ATLAS/CMS for BSM)

Zero-degree-calorimeters for low-x high-resolution LHCb would be already a great gain

 \blacktriangleright Electron-ion-collider: \rightarrow good forward instrumentation central, see talks by Alex Jentsch

Conclusions

- Dissociative quarkonium photoproduction interesting:
 - \rightarrow fluctuations of hadrons with connection to QGP physics
 - \rightarrow saturation physics
- ► LHC: higher energy as HERA & EIC, experimentally less clean
- first measurement at the LHC compatible with HERA results with good precision
- interesting future measurements at the LHC:
 - \rightarrow higher energy data points
 - \rightarrow t-dependence as in PbPb
- better event class/observable definition/conception & simulations:

 \rightarrow reduce uncertainties in future & go further in experiment/theory exchange

Questions for discussion

Can the relation between dissociation and fluctations be formalised in a way that it can be carried over to hadron-hadron collisions without reference to a model ansatz, i.e. at operator level? → via GPD formalism or other means? What are the limits of applicability/uncertainties of this connection?

- What do we learn from the dissociative system in this kinematic regime with fully reconstructed final state?
- In principle, the concepts carry over to nuclear collisions, very interesting for QGP physics & saturation

 \rightarrow however: what do we treat nuclear excitation & coherence in inelastic collisions?

see questions posed by Spencer Klein on caveats/problems arXiv:2301.01408

What do we know about the quarkonium wave function that can also fluctuate and may not be very 'small' w.r.t. the target, see Demirci, Lappi, Schlichting PRD 106 (2022) 7, 074025?