Theory of DVCS and DVMP

Simonetta Liuti

Deeply Virtual Exclusive Experiments

A new paradigm that will allow us to both penetrate and visualize the deep structure of visible matter, answering questions that we couldn't even afford asking before

Fourier transforms of GPDs (image M. Defurne)

Imaging the nuclear initial state

Flavor separated form factors (G. Cates et al.)

T_{23}

> Gluon dynamics and flavor/color symmetries

Imaging the nuclear initial state

3D Coordinate Space Representation - Gluon Results

$$
\mathcal{H}^{q}\left(X, 0, b_{T}\right)=\int \frac{d^{2} \Delta_{T}}{(2 \pi)^{2}} H^{q}\left(X, 0, \Delta_{T}\right) e^{-i \Delta_{T} \cdot b_{T}}
$$

UVA's parametrization constrained by lattice QCD and experiment:
B. Kriesten. P. Velie, E. Yeats, F. Yepes Lopez, \& SL Phys.Rev.D 105 (2022) 5, 056022

- Expectation value of the transverse impact parameter distance
- The radius of the gluon matter density is smaller than the quark radius

Average Distance

 spanned by quarks and gluons

Compare to lattice and AdS/CFT results
K. Mamo and I. Zaeed PRD106, 086004 (2022)

LQCD: Detmold and Shanahan

"Dynamic" images of gluon
distributions forming hot-spots: can we connect them to GPDs?

Recent development
A more differential imaging, describing the event-by-event quantum fluctuations in the wave function of the colliding hadron
H. Mantysaari, B. Schenke, F. Salazar et al. , arXiv 2001.10705 [hep-ph]

Traini and Blaizot, PRD(2019)

From one-body to two-body densities

Zaki Panjsheeri, Joshua Bautista

- We can see a lot just from the onebody densities, but is that enough for imaging the proton's internal structure?
- We want to also understand how partons are situated relative to one another.

QCD Energy

Momentum Tensor content

Deeply virtual exclusive experiments: quark and gluon angular momentum and the origin of the spin crisis

$$
J_{q}+J_{g}=L_{q}+\frac{1}{2} \Sigma_{q}+J_{g}=\frac{1}{2}
$$

$>$ This sum rule has both longitudinal and transverse components
$>$ How do we access them through observables?
$>$ Twist-two or twist-three quark and gluon distributions and why??

Quark OAM Integral Relation for $\xi \longrightarrow 0$

J_{L}	$=$	L_{L}	$+\quad S_{L}$
$\frac{1}{2} \int d x x(H+E)$	$=\int d x x\left(\widetilde{E}_{2 T}+H+E\right)$	$+\frac{1}{2} \int d x \widetilde{H}$	
	$=$	$-\int d x F_{14}^{(1)}$	$+\frac{1}{2} \int d x \widetilde{H}$

- A. Rajan, A. Courtoy, M. Engelhardt, S.L., PRD (2016)
- A. Rajan, M. Engelhardt, S.L., PRD (2018)
- Twist 3 GPD notation from Meissner, Metz and Schlegel, JHEP(2009)
For $\xi \neq 0$

Generalized Lorentz Invariance Relation (LIR)

Putting this all together: what we know from measurements and lattice
lattice

experiment vs. lattice

M. Engelhardt, Lattice 2023

- B. Kriesten and S. Liuti, Phys.Rev. D105 (2022), arXiv
GPD
$\mathrm{J}_{\mathrm{L}}\left\{\begin{array}{cc|c|c|}\hline P_{q} P_{p} & \text { TMD } & \text { Ref. 1 } \\ \hline H^{\perp} & \mathrm{UU} & f^{\perp} & 2 \widetilde{H}_{2 T}+E_{2 T} \\ \hline \widetilde{H}_{L}^{\perp} & \mathrm{LL} & g_{L}^{\perp} & 2 \widetilde{H}_{2 T}^{\prime}+E_{2 T}^{\prime} \\ \hline H_{L}^{\perp} & \mathrm{UL} & f_{L}^{\perp(*)} & \widetilde{E}_{2 T}-\xi E_{2 T} \\ \hline \widetilde{H}^{\perp} & \mathrm{LU} & g^{\perp(*)} & \widetilde{E}_{2 T}^{\prime}-\xi E_{2 T}^{\prime} \\ \hline H_{T}^{(3)} & \mathrm{UT} & f_{T}^{(*)} & H_{2 T}+\tau \widetilde{H}_{2 T} \\ \hline \widetilde{H}_{T}^{(3)} & \mathrm{LT} & g_{T}^{\prime} & H_{2 T}^{\prime}+\tau \widetilde{H}_{2 T}^{\prime} \\ \hline\end{array}\right.$ 2004.08890
$\square 1 / \mathrm{Q}$ correction to H

NEW!! Orbital Angular Momentum L
NEW!! Spin Orbit correlation L•S
NEW!! Transverse OAM L_{T}
Transverse spin
(*) T-odd
[1] Meissner, Metz and Schlegel, JHEP(2009)

8/8/23
A. Rajan, A. Courtoy, M. Engelhardt, S.L., PRD (2016)
A. Rajan, M. Engelhardt, S.L., PRD (2018)
A. Rajan, O. Alkassasbeh, M. Engelhardt, S.L., (2023)

Defining the Benchmarks for a Global Analysis of Deeply Virtual Exclusive

Experiments

graph from M. Defurne
M. Almaeen et al. arXiv 2207.10766

A multi-step, multi-prong process that compares to imaging a black hole

Images courtesy of Kent Yagi, UVA

Event Horizon

 Telescope
Event Horizon Telescope (EHT)

M87*

\checkmark Main idea: Very Long Baseline Interferometry (VLBI), an array of smaller telescopes synchronized to focus on the same object and act as a giant telescope
\checkmark Precision: large aperture (many telescopes widely spaced) and high frequency radio waves
\checkmark Data Analysis: Data from all eight sites were combined to create a composite set of images, revealing for the first time M87*'s event horizon.

It took nearly two decades to achieve !

Jefferson Lab@12 GeV + EIC studies

\checkmark Main idea: use DVCS, TCS, DVMP, DDVCS and many more related processes as probes
\checkmark Precision: high luminosity in a wide kinematic range is key
\checkmark Data Analysis: unprecedented range of multidimensional data need new approaches including Al based techniques to handle the image making

Harnessing/coordinating information from all channels

Exclusive pion induced DY (EDY), T. Sawada et al., PRD93 (2016)

Adding an extended set: Single Diffractive Hard Exclusive processes

J. Qiu and Z. Yu, PRD 107 (2023)

Pion-photon photoproduction

By treating these processes as "two-step" = diffractive plus deeply virtual scattering, factorization theorems can be proven!

Two-photon photoproduction

Adding an extended set: Transition GPDs

C. Weiss et al. (Towards Improved Tomography Workshop)

SL and G.

Goldstein: to measure kT dependence or GTMDs

The EXCLAIM project
(EXCLusives with Artificial Intelligence and Machine learning)
DOE funded collaboration, Co-PIs:
Computer Science: Gia Wei Chern, Yaohang Li
Experiment: Marie Boer
Lattice QCD: Michel Engelhardt, Huey Wen Lin
Phenomenology/ Theory: Gary Goldstein, SL, Matt Sievert

Affiliates:
Aurore Courtoy, Tanja Horn, Brandon Kriesten, Pawel Nadolsky, Dennis Sivers
UVA students: Joshua Bautista, Adil Khawaja, Zaki Panjsheeri

OUR PROGRAM

1. To develop physics informed networks that include theory constraints in deep learning models.
2. ML is not treated as a set of "black boxes" whose working is not fully controllable
3. Utilize concepts in information theory and quantum information theory to interpret the working of ML algorithms necessary to extract information from data
4. At the same time, use ML methods as a testing ground for the working of quantum information theory in deeply virtual exclusive processes, as well as for inclusive processes

Theory constraints

Hard constraints
"built into the architecture of the network"

- network invertibility
- choice of activation functions
- defining customized neural network layers

Soft constraints

"adding additional terms to the loss function that can be learned
to minimize and generate physics weighted parameters"

1. Cross section structure
2. Lorentz invariance
3. Positivity constraints
4. Forward kinematic limit, defined by $\xi, \mathrm{t} \rightarrow 0$, to PDFs, when applicable
5. Re-J̃m connection of CFFs through dispersion relations with proper consideration of threshold effects

- We need a robust framework for DVES processes cross section, where kinematic limits are under control

$$
\frac{d^{5} \sigma}{d x_{B j} d Q^{2} d|t| d \phi d \phi_{S}}=\frac{\alpha^{3}}{16 \pi^{2}\left(s-M^{2}\right)^{2} \sqrt{1+\gamma^{2}}}|T|^{2}
$$

$$
T\left(k, p, k^{\prime}, q^{\prime}, p^{\prime}\right)=T_{D V C S}\left(k, p, k^{\prime}, q^{\prime}, p^{\prime}\right)+T_{B H}\left(k, p, k^{\prime}, q^{\prime}, p^{\prime}\right),
$$

To understand the cross section we need to understand the ϕ dependence

The hadronic tensor is evaluated in the rotated frame

How are the polarization vectors evaluated?

DVCS

In lepton plane

$$
\begin{aligned}
\varepsilon^{\Lambda_{\gamma^{*}}= \pm 1} & \equiv \frac{1}{\sqrt{2}}(0 ; \mp 1, i, 0) \\
\varepsilon^{\Lambda_{\gamma^{*}}=0} & \equiv \frac{1}{Q}\left(|\vec{q}| ; 0,0, q_{0}\right)=\frac{1}{\gamma}\left(\sqrt{1+\gamma^{2}} ; 0,0,1\right)
\end{aligned}
$$

In rotated plane a phase ϕ appears
$\varepsilon^{\Lambda_{\gamma^{*}}= \pm 1} \rightarrow \frac{e^{-i \Lambda_{\gamma^{*}} \phi}}{\sqrt{2}}(0, \mp 1, i, 0)$

1) We differ from the BKM formalism (and all who who followed) by a QED phase in the interference term
2) The QED phase is important because it demarcates QCD genuine twist-two from twist-three effects

Example: Parametrization of Unpolarized DVCS cross section

$$
\begin{aligned}
\left|T_{U U}^{B H}\right|^{2} & =\frac{\Gamma}{t}\left[A_{U U}^{B H}\left(F_{1}^{2}+\tau F_{2}^{2}\right)+B_{U U}^{B H} \tau G_{M}^{2}(t)\right] \\
\left|T_{U U}^{\mathcal{I}}\right|^{2} & =\frac{\Gamma}{Q^{2} t}\left[A_{U U}^{\mathcal{I}} \Re e\left(F_{1} \mathcal{H}+\tau F_{2} \mathcal{E}\right)+B_{U U}^{\mathcal{I}} G_{M} \Re e_{\|}(\mathcal{H}+\mathcal{E})^{\prime}+C_{U U^{\prime}}^{\mathcal{I}} G_{M} \Re e \widetilde{\mathcal{H}}\right] \\
\left|T_{L U}^{\mathcal{I}}\right|^{2} & \left.=\frac{\Gamma}{Q^{2} t}\left[A_{L U}^{\mathcal{I}} \Im m F_{1} \mathcal{H}+\tau F_{2} \mathcal{E}\right)+B_{L U}^{\mathcal{I}} G_{M} \Im m(\mathcal{H}+\mathcal{E})^{2}+C_{L U}^{\mathcal{I}} G_{M} \Im m \widetilde{\mathcal{H}}\right] \\
\left|T_{U U}^{D V C S}\right|^{2} & =\frac{\Gamma}{Q^{2}} \frac{2}{1-\epsilon}\left[\left(1-\xi^{2}\right)\left[(\Re e \mathcal{H})^{2}+(\Im m \mathcal{H})^{2}+(\Re e \widetilde{\mathcal{H}})^{2}+(\Im m \widetilde{\mathcal{H}})^{2}\right]\right. \\
& +\frac{t_{o}-t}{4 M^{2}}\left[(\Re e \mathcal{E})^{2}+(\Im m \mathcal{E})^{2}+\xi^{2}(\Re e \widetilde{\mathcal{E}})^{2}+\xi^{2}(\Im m \widetilde{\mathcal{E}})^{2}\right] \\
& \left.-2 \xi^{2}(\Re e \mathcal{H} \Re e \mathcal{E}+\Im m \mathcal{H} \Im m \mathcal{E}+\Re e \widetilde{\mathcal{H}} \Re e \widetilde{\mathcal{E}}+\Im m \widetilde{\mathcal{H}} \Im m \widetilde{\mathcal{E}})\right]
\end{aligned}
$$

- B. Kriesten et al, Phys.Rev. D 101 (2020)
- B. Kriesten and S. Liuti, Phys.Rev. D105 (2022), arXiv
2004.08890
- B. Kriesten and S. Liuti, Phys. Lett. B829 (2022), arXiv:2011.04484

Such a phase does not appear in BH because the virtual photon, Δ, and the scattering products are always on the same plane

$$
\begin{aligned}
& \left|T_{B H}\right|^{2}=\frac{1}{t^{2}\left(1-\epsilon_{B H}\right)} B_{B H}\left[F_{T}+\epsilon_{B H} F_{L}\right] \\
& \epsilon_{B H}=\left(1+\frac{B_{B H}}{A_{B H}}(1+\tau)\right)^{-1} \\
& \quad=\frac{1}{1+\left[\frac{2 \tau}{1+\tau} \frac{(k P)^{2}+\left(k^{\prime} P\right)^{2}}{(k \Delta)^{2}+\left(k^{\prime} \Delta\right)^{2}}-\frac{1}{2}\right]^{-1}}
\end{aligned}
$$

Rosenbluth separation

$\mathrm{A}_{\mathrm{BH}} / \mathrm{B}_{\mathrm{BH}}$

Brandon Kriesten and SL, in preparation

$$
\begin{aligned}
& A=\frac{16 M^{2}}{t\left(k q^{\prime}\right)\left(k^{\prime} q^{\prime}\right)}\left[4 \tau\left((k P)^{2}+\left(k^{\prime} P\right)^{2}\right)-(\tau+1)\left((k \Delta)^{2}+\left(k^{\prime} \Delta\right)^{2}\right)\right] \\
& B=\frac{\left.32 M^{2}\right)}{t\left(k q^{\prime}\right)\left(k^{\prime} q^{\prime}\right)}\left[(k \Delta)^{2}+\left(k^{\prime} \Delta\right)^{2}\right],
\end{aligned}
$$

...compared to ELASTIC SCATTERING

$$
\left(\frac{d \sigma}{d \Omega}\right)_{0}=\left(\frac{d \sigma}{d \Omega}\right)_{\mathrm{Mott}} \frac{\epsilon\left(G_{E}^{N}\right)^{2}+\tau\left(G_{M}^{N}\right)^{2}}{\epsilon(1+\tau)},
$$

where $N=p$ for a proton and $N=n$ for a neutron, the recoil-corrected relativistic point-particle (Mott) and τ, ϵ are dimensionless kinematic variables:

$$
\tau=\frac{Q^{2}}{4 m_{N}^{2}}, \quad \epsilon=\left[1+2(1+\tau) \tan ^{2} \frac{\theta}{2}\right]^{-1}
$$

J. Arrington, G. Cates, S. Riordan, Z. Ye, B. Wojsetowski, A. Puckett ..

rure 3.2: The E05-017 nominal kinematic coverage. The solid and dashed lines are constan ars.
M. Yurov, Ph.D. thesis
...compared to BKM, NPB (2001)

$$
\begin{aligned}
\left|\mathcal{T}_{\mathrm{BH}}\right|^{2}= & \frac{e^{6}}{x_{\mathrm{B}}^{2} y^{2}\left(1+\epsilon^{2}\right)^{2} \Delta^{2} \mathcal{P}_{1}(\phi) \mathcal{P}_{2}(\phi)} \\
& \times\left\{c_{0}^{\mathrm{BH}}+\sum_{n=1}^{2} c_{n}^{\mathrm{BH}} \cos (n \phi)+s_{1}^{\mathrm{BH}} \sin (\phi)\right\},
\end{aligned}
$$

$$
\begin{aligned}
c_{0, \text { unp }}^{\mathrm{BH}}= & 8 K^{2}\left\{\left(2+3 \epsilon^{2}\right) \frac{\mathcal{Q}^{2}}{\Delta^{2}}\left(F_{1}^{2}-\frac{\Delta^{2}}{4 M^{2}} F_{2}^{2}\right)+2 x_{\mathrm{B}}^{2}\left(F_{1}+F_{2}\right)^{2}\right\} \\
+ & (2-y)^{2}\left\{(2 + \epsilon ^ { 2 }) \left[\frac{\left[x_{\mathrm{B}}^{2} M^{2}\right.}{\Delta^{2}}\left(1+\frac{\Delta^{2}}{\mathcal{Q}^{2}}\right)^{2}\right.\right. \\
& \left.+4\left(1-x_{\mathrm{B}}\right)\left(1+x_{\mathrm{B}} \frac{\Delta^{2}}{\mathcal{Q}^{2}}\right)\right]\left(F_{1}^{2}-\frac{\Delta^{2}}{4 M^{2}} F_{2}^{2}\right) \\
& +4 x_{\mathrm{B}}^{2}\left[x_{\mathrm{B}}+\left(1-x_{\mathrm{B}}+\frac{\epsilon^{2}}{2}\right)\left(1-\frac{\Delta^{2}}{Q^{2}}\right)^{2}\right. \\
& \left.\left.-x_{\mathrm{B}}\left(1-2 x_{\mathrm{B}}\right) \frac{\Delta^{4}}{Q^{4}}\right]\left(F_{1}+F_{2}\right)^{2}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& c_{1, \text { unp }}^{\mathrm{BH}}=8 K(2-y)\left\{\left(\frac{4 x_{\mathrm{B}}^{2} M^{2}}{\Delta^{2}}-2 x_{\mathrm{B}}-\epsilon^{2}\right)\left(F_{1}^{2}-\frac{\Delta^{2}}{4 M^{2}} F_{2}^{2}\right)\right. \\
&\left.+2 x_{\mathrm{B}}^{2}\left(1-\left(1-2 x_{\mathrm{B}}\right) \frac{\Delta^{2}}{\mathcal{Q}^{2}}\right)\left(F_{1}+F_{2}\right)^{2}\right\}, \\
& c_{2, \text { unp }}^{\mathrm{BH}}=8 x_{\mathrm{B}}^{2} K^{2}\left\{\frac{4 M^{2}}{\Delta^{2}}\left(F_{1}^{2}-\frac{\Delta^{2}}{4 M^{2}} F_{2}^{2}\right)+2\left(F_{1}+F_{2}\right)^{2}\right\} .
\end{aligned}
$$

BH-DVCS interference

$$
F_{U U}^{\mathcal{I}, t w 2}=A_{U U}^{\mathcal{I}} \Re e^{\mathbb{I}}\left(F_{1} \mathcal{H}+\tau F_{2} \mathcal{E}\right)
$$

$\frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left(1+\frac{\gamma^{2}}{2 x}\right)\left\{F_{U U, T}+\varepsilon F_{U U, L}+\sqrt{2 \varepsilon(1+\varepsilon)} \cos \phi_{h} F_{U U}^{\cos \phi_{h}}\right.$
$+\varepsilon \cos \left(2 \phi_{h}\right) F_{U U}^{\cos 2 \phi_{h}}+\lambda_{e} \sqrt{2 \varepsilon(1-\varepsilon)} \sin \phi_{h} F_{L U}^{\sin \phi_{h}}$
$+S_{\|}\left[\sqrt{2 \varepsilon(1+\varepsilon)} \sin \phi_{h} F_{U L}^{\sin \phi_{h}}+\varepsilon \sin \left(2 \phi_{h}\right) F_{U L}^{\sin 2 \phi_{h}}\right]$
${ }^{1}$ The polarizations S_{L} and S_{T} in [27] have been renamed to $S_{\|}$and $\left|S_{\perp}\right|$ here. This is to avoid a clash
of notation with section $\mid 3$, where subscripts L and T refer to a different z-axis than in Fig. 1]. of notation with section $[3$, where subscripts L and T refer to a different z-axis than in Fig. [l].

SIDIS

ReH

Re H

What GPDs are we extracting?

CONCLUSIONS

- To obtain interesting new physical information on the spatial structure of the proton and atomic nuclei from exclusive experiments requires extending the number and type of deeply virtual exclusive reactions with multiple particles in the final state.
- Extracting information from data requires new methodologies and frameworks.
- Different efforts need to be benchmarked and coordinated
- I focused on the QED PHASE part of the cross section which plays a crucial role for distinguishing genuine twist-two from twist-three effects.
- If the cross section is written in terms of physically meaningful terms, we can understand more, and perform precise extractions as compared to a simple mathematical framework based on Fourier harmonics

Backup

Accessing transverse distances through Fourier transformation

