

Measurement of $e + p \rightarrow e' + \pi^+ + \Delta^0$ reaction at Jefferson Lab Hall C

Ali Usman

University of Regina

ECT* - APCTP Joint Workshop (Trento 202

Contents

- Introduction & Motivation
- Experiment
- Beam Spin Asymmetry
- L/T Separated Cross-Section
- Summary

Where is Regina?

Kaon-LT and Pion-LT Collaboration

Spokespeople

Garth Huber, Dave Gaskell, Tanja Horn, Pete Markowitz

Key Members

<u>**Richard Trotta, Alicia Postuma, Portia Switzer,</u> Stephen Kay, Vijay Kumar, Nathan Heinrich, Muhammad Junaid, Jacob Murphy</u>**

> Institutions

Introduction

Pion is the lightest meson with two valence quarks.

Pion electroproduction reaction is studied through "Exclusive Pion Electroproduction".

 $e+p \rightarrow e'+\pi^++n \ or \ \Delta^0$

- To study hadron structure, need a precise measurement of this rection.
- Important Kinematic Quantities
 Q², W, -t and φ

Physics Motivation

- Meson production can be described by the tchannel meson pole term.
- > At sufficiently high Q^2 , the process should be understandable in terms of the "handbag" diagram.
- Non-perturbative (soft) physics is represented by GPDs.
 - Factorized from QCD perturbative (hard) processes for longitudinal photons.
- Measurements of GPDs require
 - > Confirmation of applicability of hard-soft QCD factorization mechanism at intermediate Q^2 .

8/24/2023

Factorization and Q^n Scaling

QCD counting rule predicts 1/Qⁿ dependence of p(e, e'π⁺)n cross-section in Hard Scattering Regime.

 σ_L to leading order, scales as 1/Q⁶

 σ_T expected to scale at least as 1/Q⁸

 At large Q², σ_L ≫ σ_T

Is this empirically true for $p(e, e'\pi^+)\Delta^0$?

Study hard-soft factorization for GPD extraction
 if σ_L becomes large, would allow leading twist GPD study.
 If σ_T becomes large, could allow for transversity GPD study

 $p(e,e'\pi^+)n$

L/T Separated Cross Section

Exclusive pion electroproduction reaction

 $e+p \rightarrow e'+\pi^++n \ or \ \Delta^0$

 $> \text{ Differential cross-section is dictated by virtual photon polarization } \epsilon.$ $<math>2\pi \frac{d^2 \sigma}{dt d\phi} = \epsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\epsilon(\epsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \epsilon \frac{d\sigma_{TT}}{dt} \cos2\phi$

 \succ " ϵ " is polarization of virtual photon

$$\epsilon = \left[1 + 2\frac{(E_e - E_{e'})^2 + Q^2}{Q^2} \cdot tan^2 \frac{\theta_{e'}}{2}\right]^{-2}$$

> Cross-section is separated by performing two scattering measurements at different " ϵ " value with fixed Q^2 and W.

Hall C at Jefferson Lab is capable of doing L/T separated cross-section and scaling study measurements at wide range of kinematics (Q^2 , W, -t)

Thomas Jefferson National Accelerator Facility

Hall C

- Specifically designed to measure precise cross-sections.
- Two advanced rotatable magnetic spectrometers (HMS and SHMS).
- Particles of specific momentum are studied by using a magnet system.

- Consists of two superconducting electron LINACs.
- Capable of delivering high luminosity beam to four halls.
- Variable beam energies and high current (critical for L/T separation).

8/24/2023

Schematic View of Hall C

SHMS Detector System

DETECTOR	PURPOSE	NOTES		
S1XY, S2XY Hodoscopes	Lowest-level Trigger. Time reference			
Aerogel Cerenkov	Particle ID, K+/p discrimination	n= 1.011,1.015, 1.03,1.05		
Heavy-Gas Cerenkov	Particle ID, Trigger. π [±] /K [±] discrimination	C ₄ F ₁₀ - Kept at roughly 1 atm pressure		
Drift Chambers	Momentum Measurement. Tracking.	5mm max. drift 300 micron resolution		
Preshower / Shower Counters	Particle ID, Trigger. Electron tag			
window Drift Chambe	rs S1 Hodoscopes Heavy Gas Cherenkov	Aerogel S2 Hodoscopes Pre-Shower/		

Direction of motion of particles

Kaon-LT Experiment (E12-09-011)

- First dedicated experiment of study exclusive kaon electroproduction reaction.
 - Data collected 2018-2019 (~ 60 % complete)
- > $p(e, e'K^+)$ Λ cross-section is ~ 1/10 times $p(e, e'\pi^+)n$ cross-section.
 - Give access to high statistic exclusive pion electroproduction data.
- > Ideal dataset to study $p(e, e'\pi^+)\Delta^0$ reaction.

Kaon-LT Experiment (E12-09-011)

- First dedicated experiment of study exclusive kaon electroproduction reaction.
 - Data collected 2018-2019 (~ 60 % complete)
- > $p(e, e'K^+)$ Λ cross-section is ~ 1/10 times $p(e, e'π^+)n$ cross-section.
 - Give access to high statistic exclusive pion electroproduction data.
- > Ideal dataset to study $p(e, e'\pi^+)\Delta^0$ reaction.

E (GeV)	Q² (GeV²)	W (GeV)	x _B	ε _{High} / ε _{Low}
10.6/8.2	5.5	3.02	0.40	0.53/0.18
10.6/8.2	4.4	2.74	0.40	0.72/0.48
10.6/8.2	3.0	3.14	0.25	0.67/0.39
10.6/6.2	3.0	2.32	0.40	0.88/0.57
10.6/6.2	2.115	2.95	0.21	0.79/0.25
4.9/3.8	0.5	2.40	0.09	0.70/0.45

Particle ID

Pion Selection

Electron Selection

$Q^2 = 2.\,115$, $W = 2.\,95$

Event Selection

 $ightarrow e' - \pi^+$ Coincidence

 $e' - \pi^+ Coin Time = HMS_{time} - SHMS_{time}$

Event Selection

$$M_m = \sqrt{\left(E_e + m_p - E_{e'} - E_{\pi^+}\right)^2 - (p_e - p_{e'} - p_{\pi^+})^2}$$

 $Q^2 = 2.\,115$, $W = 2.\,95$

Beam Spin Asymmetry

Goals

Calculate asymmetry for high ε data
 High statistics and full φ coverage
 Study and estimate SIDIS background
 Extract σ_{LT}' for a wide range of kinematics

Beam Spin Asymmetry

- > Difference in cross-section based on helicity (+1, -1) of incident electron.
- Caused by interference between transversely and longitudinally polarized virtual photons.
- > Beam polarization "P" is measured at source ($P = 89^{+1}_{-3}$ %)
- Acceptance and efficiencies cancel in the ratio.

BSA - $p(e, e'\pi^+)n$

8/24/2023

Event Selection - Δ^0

$$M_m = \sqrt{\left(E_e + m_p - E_{e'} - E_{\pi^+}\right)^2 - (p_e - p_{e'} - p_{\pi^+})^2}$$

 $Q^2 = 2.\,115$, $W = 2.\,95$

SIDIS MC provided by P. Bosted (Hall C SIDIS collaboration)

Δ^0 Shape Study (Helicity +1)

 $Q^2 = 2.115$, W = 2.95

Δ^0 Shape Study (Helicity -1)

 $Q^2=2.\,115$, WAli Usman

8/24/2023

BSA - $p(e, e'\pi^+)\Delta^0$

- > BSA is calculated by integrating $p(e, e'\pi^+)\Delta^0$ MC missing mass.
- Small asymmetry observed
 - \succ ~ 1.5 σ from zero.
- Only statistical errors shown here.

 $Q^2 = 2.115$, W = 2.95

8/24/2023

Outlook - BSA

> Full kinematics for BSA analysis

E (GeV)	Q² (GeV²)	W (GeV)	x _B
10.6	5.5	3.02	0.40
10.6	4.4	2.74	0.40
10.6	3.0	3.14	0.25
10.6	3.0	2.32	0.40
10.6	2.115	2.95	0.21

Extract the $\frac{\sigma_{LT'}}{\sigma_0}$ and compare it with theory models

- Regge based models
- GPD based models

Compare $p(e, e'\pi^+)\Delta^0$ results with parallel BSA analysis of $p(e, e'\pi^+)n$. Also compare with CLAS12 results.

L/T Separated Cross-Section

Goals

- Carefully understand all systematics
 - > Acceptance, Efficiencies
- Calculate Normalized yield
- Perform an L/T separation for a wide range of kinematics.

$oldsymbol{\phi}$ Coverage for L/T Separation

- Hall C 12 GeV upgrade was motivated by extreme forward angle requirements for L/T separation experiments.
- To get a full φ coverage, data is taken three degrees on the left and right of the Q-vector (in pion arm).
- Measurements are only possible due to small angle capibilities of SHMS.

$oldsymbol{\phi}$ Coverage for L/T Separation

- ➢ To get a full φ coverage, data is taken three degrees on the left and right of the *Q*-vector (in pion arm).
- To control systematics, an excellent understanding of spectrometer is required
 - Over constrained p(e, e'p) elastic scattering is used to calibrate spectrometer acceptance, momenta, kinematic offset and efficiencies.

 $oldsymbol{Q}^2=4.4$, W=2.74

Radial axis – tAzimuthal angle - ϕ

Rosenbluth (L/T) Separation

 $\succ \sigma_L$ and σ_T are separated through Rosenbluth Separation technique

$$2\pi \frac{d^2 \sigma}{dt d\phi} = \epsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\epsilon(\epsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \epsilon \frac{d\sigma_{TT}}{dt} \cos2\phi$$

- Cross-section is separated by performing two scattering measurements at different "ε" value with fixed Q² and W.
- > Cuts are placed on low and high ϵ setting to select overlap region in Q^2 and W.
- Total uncertainty budget is very small due large error amplification.
 - Error amplification by a factor ~ 2-4.

$$\frac{\Delta \sigma_L}{\sigma_L} = \frac{1}{\epsilon_1 - \epsilon_2} \frac{1}{\sigma_L} \sqrt{\Delta \sigma_1^2 + \Delta \sigma_2^2}$$

Systematic Studies - Acceptance

- Target quantities are reconstructed from the focal plane quantities.
 - > Xptar \rightarrow vertical euler angle
 - \succ Yptar \rightarrow Horizontal euler angle
- Both HMS and SHMS show reliable comparison between data and simulation.

$$\succ E_{beam} = 8.2 \ GeV$$

Relative Yield

 $Q^2 = 2.115$, W = 2.95

Ali Usman

Phi (deg)

Next Steps - L/T/LT/TT Separated Cross-Section

$$2\pi \frac{d^2\sigma}{dtd\phi} = \epsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\epsilon(\epsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \epsilon \frac{d\sigma_{TT}}{dt} \cos2\phi$$

- ➤ Differential cross-section is calculated for each ϵ setting with fixed value of Q^2 , W and -t.
- Rosenbluth equation is fitted to the data to extract separated cross-sections.

Horn et al. (PRL 97, 192001)

Summary and Outlook

- Kaon-LT Experiment is gives access to high statistic exclusive pion electroproduction data.
- > Analysis in progress for $p(e, e'\pi^+)\Delta^0$ Beam spin asymmetry and L/T separated cross-section.
 - \succ Shape study for Δ^0 missing mass has been done to understand SIDIS contribution.
 - ➤ A large number of systematic studies are completed.
- Solution Will be the first measurement of $p(e, e'\pi^+)\Delta^0$ L/T separated cross-section. The n/ Δ^0 ratio of separated cross-section can give access to transition GPDs.
- > Need theory support for both BSA and L/T separated cross-section.
- Potential to increase statistics and kinematic range with JLab upgrade and EIC.

Thank You !!!

asia pacific center for theoretical physics

This research is funded by Natural Sciences and Engineering Research Council of Canada (NSERC) FRN: SAPIN-2021-00026 and the National Science Foundation of USA (NSF), PHY1714133 and PHY2012430