

(some) Exclusive Physics Opportunities with Far-Forward Detectors at the EIC

Alex Jentsch, †Brookhaven National Lab ajentsch@bnl.gov

ECT*-APCTP Joint Workshop: Exploring resonance structure with transition GPDs

August 21st- 25 th .2023
ECT*: Trento, Italy

Office of Science

What is meant by Far-Forward?

(some) Far-Forward Processes at the EIC

e+d exclusive J/Psi with p / n tagging

Quasi-elastic electron scattering

...and MANY more!
spectator tagging in light

coherent/incoherent J / ψ production in e+A

u-channel backward exclusive electroproduction

(some) Far-Forward Physics at the EIC

Sullivan process

e+d exclusive J/Psi with p / n tagging

Quasi-elastic electron scattering

...and MANY more!
spectator tagging in light nuclei
-)

coherent/incoherent J / ψ production in e+A
[2] I. Friscic, D. Nguyen, J. R. Pybus, A. Jentsch, et al., Phys. Lett. B, Volume 823, 136726 (2021) [3] W. Chang, E.C. Aschenauer, M. D. Baker, A. Jentsch,
J.H. Lee, Z. Tu, Z. Yin, and L.Zheng, Phys. Rev. D 104 114030 (2021)
[4] A. Jentsch, Z. Tu, and C. Weiss, Phys. Rev. C 104, 065205, (2021) (Editor's Suggestion)

(some) Far-Forward Physics at the EIC

>Physics channels require tagging of charged hadrons (protons, pions) or neutral particles (neutrons, photons) at very-forward rapidities ($\eta>4.5$).
$>$ Different final states \rightarrow tailored detector subsystems.
$>$ Various beams and energies ($\mathrm{h}: 41,100-275 \mathrm{GeV}$, e: $5-18 \mathrm{GeV}$; e+p, e+d, e+Au, etc.).
$>$ Placing and operation of far-forward detectors uniquely challenging due to integration with accelerator.

BOpf combined function magnet

Where do the particles go past the BO ?

Where do the particles go past the BO ?

- Off-momentum protons \rightarrow smaller magnetic rigidity \rightarrow greater bending in dipole fields.
- Important for any measurement with nuclear breakup!

Protons with ~ 50
60% momentum
masnets.
longitudinal momentum fraction

$$
\boldsymbol{x}_{L}=\frac{\boldsymbol{p}_{z, \text { proton }}}{\boldsymbol{p}_{\text {z,beam }}}
$$

OMD

Where do the particles go past the BO ?

- Off-momentum protons \rightarrow smaller magnetic rigidity \rightarrow greater bending in dipole fields.
- Important for any measurement with nuclear breakup!

Protons with ~ 50
60% momentum

Protons with $\sim 35-50 \% ~ m$
w.r.t. steering magnets.
B1apf

OMD

Where do the particles go past the BO?

- Off-momentum protons \rightarrow smaller magnetic rigidity \rightarrow greater bending in dipole fields.
- Important for any measurement with nuclear breakup!

Roman Pots and OMD

Protons

$\mathrm{E}=275 \mathrm{GeV}$
$0<\boldsymbol{\theta}<5 \mathrm{mrad}$

Full GEANT4 simulation.

RP
OMD

Protons
123.75 < E < 151.25 GeV
($45 \%<x L<55 \%$)
$0<\boldsymbol{\theta}<5$ mrad (kind of)
RP
High-angle ($\theta>2 \mathrm{mrad}$) particles lost in aperture.

My Interest: Deuterons as an unexpected QCD laboratory at the EIC.

Deuteron tagged DIS as a tool at the EIC

- Tagged DIS measurements on light nuclei \rightarrow "tag" (generally) far-forward particles in final state for useful kinematic information!
- Provides more information than inclusive cross sections!
- Lots of topics!
- Short-range correlations.
- Gluon distributions in nuclei.
- Free neutron structure functions.
- Nuclear modifications of nucleons in light nuclei.
- EMC effect, anti-shadowing, etc.

"spectator"

Tagged DIS with deuterons

- Spectator kinematics \rightarrow determines nuclear configuration.
$>$ Loosely bound configuration - enables extraction of free nucleon structure via pole extrapolation (previous study ${ }^{2}$).
$>$ Configuration with strongly-interacting nucleons opens up study of nuclear modifications.
> Differential study of transition region where nuclear effects manifest!

> Tagged DIS on the deuteron enables study of free and modified nuclear structure in a single nucleus!

Full Detector Simulations - Tagged Spectators

Deuterons: Gluons and Short-Range Correlations

Monte Carlo for all e+d studies presented here

General-purpose eA DIS MC generator https://eic.github.io/software/beagle.htm|

Wan Chang, Elke-Caroline Aschenauer, Mark D. Baker, Alexander Jentsch, Jeong-Hun Lee, Zhoudunming Tu, Zhongbao Yin, and Liang Zheng Phys. Rev. D 106, 012007 (2022)

- Use BeAGLE to simulate the hard $e+$ (active) nucleon scattering and primary process (e.g. J / ψ production, DIS, etc.)
- For heavy A: DPMJET and FLUKA
- For deuteron: Spectator momentum spectra calculated via deuteron spectral function, using parametrization of Ciofi and Simula.
- C. Ciofi degli Atti and S. Simula, Phys. Rev. C 53, 1689 (1996)
- BeAGLE MC samples passed through full detector simulations, including beam effects to study prospects for future analysis!

Short-Range Correlations in Deuterons

- J/ ψ produced at mid-rapidity.
- Sensitive to gluons!
- Tagging active and spectator nucleons allow for experimental control of nuclear configuration \rightarrow study transition into SRC region (e.g. where nuclear effects become larger).
- Tagging both nucleons allows for full reconstruction of momentum transfer!

Short-Range Correlations in Deuterons

Z. Tu, A. Jentsch et al., Phys. Lett. B, 811 (2020)

Neutron "spectator" case.

Short-Range Correlations in Deuterons

Z. Tu, A. Jentsch et al., Phys. Lett. B, 811 (2020)

Off-momentum protons lost in quadrupole magnets.

Protons lost in transition between very farforward detectors and BO spectrometer.

Short-Range Correlations in Deuterons
Z. Tu, A. Jentsch et al., Phys. Lett. B, 811 (2020)

t-reconstruction using doubletagging (both proton and neutron reconstructed).

Spectator information is the "dial" for the SRC region.

Deuterons: Free Neutron Structure

Neutron Structure

- Protons well-studied at HERA -> So...why the neutron?
- Flavor separation, baseline for studies of nuclear modifications.

Neutron Structure

- Protons well-studied at HERA -> So...why the neutron?

- Flavor separation, baseline for studies of nuclear modifications.
-What makes the free neutron structure hard to measure?
- Can only access neutrons in a nucleus.
- Includes nuclear binding effects, Fermi motion, etc.

Neutron Structure

- Protons well-studied at HERA -> So...why the neutron?
- Flavor separation, baseline for studies of nuclear modifications.
-What makes the free neutron structure hard to measure?
- Can only access neutrons in a nucleus.
- Includes nuclear binding effects, Fermi motion, etc.
- Two options:

1. Inclusive measurements \rightarrow Average over all nuclear configurations, use theory input to correct for nuclear binding effects.
2. Tagged measurements \rightarrow Select nuclear configuration via spectator kinematics, allows for differential study.

- Spectator kinematics provide a knob to dial in different regions of interest for study (i.e. high p_{T} \rightarrow SRC physics; very low $p_{T} \sim 0 \mathrm{GeV} / \mathrm{c}$ yields access to on-shell extrapolation).
- On-shell extrapolation enables access to free nucleon structure.
- M. Sargsian, M. Strikman PLB 639 (iss. 3-4) 223231 (2006)

Neutron Structure

- Previous fixed target experiments with tagging have measured the neutron F_{2} at high-x.
- CLAS - Phys. Rev. Lett. 108, 199902 (2012)
- CLAS + BONUS - Phys. Rev. C 89, 045206 (2014)
- measurement had a lower p_{T} cutoff $\sim 70 \mathrm{MeV} / \mathrm{c}$.
- Future JLAB 12 GeV studies planned.
- ALERT - https://arxiv.org/abs/1708.00891
-CLAS - https://www.jlab.org/exp_prog/proposals/10/PR12-06-113-pac36.pdf
- Tagged DIS @ the EIC:
- In a collider, can tag spectators down to $p_{T} \sim 0 \mathrm{MeV} / \mathrm{c} \rightarrow$ Enables extraction of free neutron structure function via pole extrapolation.
- Can extend tagged DIS measurement to $x \lesssim 0.1$.

Tagged Deuteron Cross Section

spectator nucleon $\left(p_{p T}, \alpha_{p}\right)$
Total cross section $d \sigma=F l u x\left(x, Q^{2}\right) \times \sigma_{r e d, d} \times \frac{d x}{2} d Q^{2} \frac{d \phi_{e \prime}}{2 \pi}\left[2(2 \pi)^{3}\right]^{-1} \frac{d \alpha_{p}}{\alpha_{p}} \frac{d p_{p T}^{2}}{2} d \phi_{p}$

Tagged Deuteron Cross Section

$$
d \sigma=\operatorname{Flux}\left(x, Q^{2}\right) \times \sigma_{r e d, d} \times \frac{d x}{2} d Q^{2} \frac{d \phi_{e \prime}}{2 \pi}\left[2(2 \pi)^{3}\right]^{-1} \frac{d \alpha_{p}}{\alpha_{p}} \frac{d p_{p T}^{2}}{2} d \phi_{p}
$$

Total cross section $\quad d \sigma=\operatorname{Flux}\left(x, Q^{2}\right) \times \sigma_{r e d, d} \times \frac{d x}{2} d Q^{2} \frac{d \phi_{e \prime}}{2 \pi}\left[2(2 \pi)^{3}\right]^{-1} \frac{d \alpha_{p}}{\alpha_{p}} \frac{d p_{p T}^{2}}{2} d \phi_{p}$

- Measure the cross-section differential on the spectator kinematics.
- Spectator kinematics provide control knob on the nuclear configuration.
- Solve for the deuteron reduced cross section.

$$
\alpha_{p} \equiv \frac{2 p_{p}^{+}}{p_{d}^{+}}=\frac{2\left(E_{p}+p_{z, p}\right)}{M_{d}}
$$

S_{d} : deuteron spectral function pole

$$
\text { spectator nucleon }\left(p_{p T}, \alpha_{p}\right)
$$

Solve for the deuteron reduce

$$
\text { spectator nucleon }\left(p_{p T}, \alpha_{p}\right)
$$

$$
\alpha_{p} \equiv \frac{2 p_{p}^{+}}{p_{d}^{+}}=\frac{2\left(E_{p}+p_{z, p}\right)}{M_{d}}
$$

S_{d} : deuteron spectral function pole

Total cross section $\quad d \sigma=F l u x\left(x, Q^{2}\right) \times \sigma_{r e d, d} \times \frac{d x}{2} d Q^{2} \frac{d \phi_{e \prime}}{2 \pi}\left[2(2 \pi)^{3}\right]^{-1} \frac{d \alpha_{p}}{\alpha_{p}} \frac{d p_{p T}^{2}}{2} d \phi_{p}$

- Measure the cross-section differential on the spectator kinematics.
- Spectator kinematics provide control knob on the nuclear configuration.
- Solve for the deuteron reduced cross section.
- Deuteron reduced cross section related to the struck nucleon reduced cross section via the deuteron spectral function.

$$
\sigma_{r e d, d}\left(x, Q^{2} ; p_{p T}, \alpha_{p}\right)=\left[2(2 \pi)^{3}\right] \times S_{d}\left(p_{p T}, \alpha_{p}\right)[p o l e] \times \sigma_{r e d, n}\left(x, Q^{2}\right)
$$

Measurement of the deuteron reduced cross section yields access to the struck nucleon structure via the tagged spectator!

$p_{p T}^{2}>0$
physical region

$p_{p T}^{2} \rightarrow-a_{T}^{2}$
pole extrapolation

- Divide by deuteron spectral function (nucleon pole).
- The resulting distribution is the active nucleon reduced cross section as a function of $p_{p T}^{2}$.

$$
\sigma_{r e d, n}\left(x, Q^{2}\right)=\frac{\sigma_{r e d, d}\left(x, Q^{2} ; p_{p T}, \alpha_{p}\right)}{\left[2(2 \pi)^{3}\right] S_{d}\left(p_{p T}, \alpha_{p}\right)[p o l e]}
$$

$S_{d}\left(p_{p T}, \alpha_{p}\right)[p o l e]=\frac{R}{\left(p_{p T}^{2}+a_{T}^{2}\right)^{2}}$
Deuteron spectral function

$$
\begin{aligned}
& R=2 \alpha_{p}^{2} m_{N} \Gamma^{2}\left(2-\alpha_{p}\right) \\
& a_{T}^{2}=m_{N}^{2}-\alpha_{p}\left(2-\alpha_{p}\right) \frac{M_{d}^{2}}{4} \\
& R=\text { residue of spectral function } \\
& a_{T}^{2}=\text { position of pole }
\end{aligned}
$$

$p_{p T}^{2}>0$
physical region

$p_{p T}^{2} \rightarrow-a_{T}^{2}$
pole extrapolation

- Divide by deuteron spectral function (nucleon pole).
- The resulting distribution is the active nucleon reduced cross section as a function of $p_{p T}^{2}$.

$$
\sigma_{r e d, n}\left(x, Q^{2}\right)=\frac{\sigma_{r e d, d}\left(x, Q^{2} ; p_{p T}, \alpha_{p}\right)}{\left[2(2 \pi)^{3}\right] S_{d}\left(p_{p T}, \alpha_{p}\right)[p o l e]}
$$

$$
S_{d}\left(p_{p T}, \alpha_{p}\right)[p o l e]=\frac{R}{\left(p_{p T}^{2}+a_{T}^{2}\right)^{2}}
$$

Deuteron spectral function

- Extrapolate to $p_{p T}^{2} \rightarrow-a_{T}^{2}$ to extract F_{2} to extract free nucleon F_{2}.
- Pole extrapolation selects large-size pn configurations where nuclear binding and FSI are absent.

Free Neutron F_{2} Extraction

A. Jentsch, Z. Tu, and C. Weiss, Phys. Rev. C 104, 065205, (2021) (Editor's Suggestion)

- Start with the deuteron reduced cross section \rightarrow direct measurement!

Free Neutron F_{2} Extraction

A. Jentsch, Z. Tu, and C. Weiss, Phys. Rev. C 104, 065205, (2021) (Editor's Suggestion)

- Start with the deuteron reduced cross section \rightarrow direct measurement!
- Multiply by the inverse of the deuteron spectral function pole.

$$
\frac{1}{S_{d}\left(p_{p T}, \alpha_{p}\right)[p o l e]}
$$

(inverse pole of deuteron spectral function)

Free Neutron F_{2} Extraction

RESULT: Reduced cross section on the active nucleon.

$$
\frac{1}{S_{d}\left(p_{p T}, \alpha_{p}\right)[p o l e]}
$$

(inverse pole of deuteron spectral function)

(Active nucleon reduced cross section)

$$
\sigma_{r e d, n}\left(x, Q^{2}\right)=\frac{\sigma_{r e d, d}}{\left[2(2 \pi)^{3}\right] S_{d}\left(p_{p T}, \alpha_{p}\right)}
$$

A. Jentsch, Z. Tu, and C. Weiss, Phys. Rev. C 104, 065205, (2021) (Editor's Suggestion)

$$
\sigma_{r e d, p}\left(x, Q^{2}\right)=\frac{\sigma_{r e d, d}}{\left[2(2 \pi)^{3}\right] S_{d}\left(p_{n T}, \alpha_{n}\right)}
$$

Deuterons: The EMC Effect (on-going study)

The EMC Effect

- Discovered by the European Muon Collaboration ~ 40 years ago.
- Puzzle: why the dip?
- Still an unanswered question, and one we hope the EIC can aid in answering.
- Established via measurements with different nuclear targets!

Nuclear effects

deuteron

Understanding the origin of the EMC effect and nuclear modifications of prime interest in nuclear physics!

The Deuteron - a stand-alone lab for nuclear physics

- Off-shellness in deuterons as a probe of nuclear effects.

Deuteron: nucleon internal momentum

$$
-t^{\prime 2}=M_{N}^{2}-\left(p_{d}-p_{p}\right)^{2}
$$

Virtuality/off-shellness in the deuteron

Simulating the EMC Effect in BeAGLE

Use EMC effect slope measurements from data with different nuclear targets.
*Data from J. Seely et al. Phys. Rev. Lett. 103, 202301 (2009)

Linear fit to virtuality dependence \rightarrow Minimal parametrization: Frankfurt and Strikman, Nuc. Phys. B 250 (1985)
C. Ciofi et al., Phys. Rev. C 76, 055206 (2007)

And others...

Simulating the EMC Effect in BeAGLE

BeAGLE

0.7 \begin{tabular}{l}
Applicable phase space

0.3

Event-by-event
weight to DIS cross
section

0

virtuality $-t^{\prime}\left(\mathrm{GeV}^{2}\right)$
\end{tabular}

$>$ Only apply to $0.3<\mathrm{x}_{\mathrm{bj}}<0.7$
$>\mathrm{Q}^{2}$ independent
$>$ Weight $=F_{2}$ (bound) $/ F_{2}($ free $)$

Add EMC effect according to the linear parametrization

Linear fit to virtuality dependence \rightarrow Minimal parametrization: Frankfurt and Strikman, Nuc. Phys. B 250 (1985)
C. Ciofi et al., Phys. Rev. C 76, 055206 (2007)

And others...

The EMC Effect @ the EIC

- Approach:
- Measure deuteron reduced crosssection σ_{D}, with and without the offshell effects included.
- No FSI included.
- Ratio of σ_{D} inside and outside the EMC region (e.g. $x \sim 0.5$ and $x \sim 0.2$)
$>$ Quantity allows direct comparison of cross section with and without EMC weight ($x \sim 0.2$ chosen to avoid antishadowing region).

$$
\frac{\sigma_{D}\left(\alpha_{p}, p_{T, p}, x_{n}=0.5\right)}{\sigma_{D}\left(\alpha_{p}, p_{T, p}, x_{n}=0.2\right)}
$$

5x41 GeV/n Integrated Luminosity ~25 fb-1

- Approach:

- Measure deuteron reduced crosssection σ_{D}, with and without the offshell effects included.
- No FSI included.
- Ratio of σ_{D} inside and outside the EMC region (e.g. $x \sim 0.5$ and $x \sim 0.2$)
- Establish required integrated luminosity.
- Challenging measurement \rightarrow high-x + low probability nuclear configuration + lower beam energies.
- Neutron spectator not possible in $5 \times 41 \mathrm{GeV} / \mathrm{n}$ due to detector acceptance.

The EMC Effect @ the EIC

$5 \times 110 \mathrm{GeV} / \mathrm{n}$ Integrated Luminosity $\sim 16 \mathrm{fb}^{-1}$

- EIC versatility \rightarrow different beam energy configurations!

- Higher energy configuration ($5 \times 110 \mathrm{GeV} / \mathrm{n}$).
- More favorable detector acceptance \rightarrow study of proton and neutron spectators with same beam configuration.
- Measurement of same observable with different beam energies/spectator reconstruction enables better understanding of experimental systematics.

Different nuclear configurations

- EIC kinematic coverage enables broad, differential study of effects.
- Spectator kinematic coverage \rightarrow varied deuteron nuclear configurations.

Integrate cross section over $p_{T, p}^{2}$ in each α bin.

Different nuclear configurations

Study of FSI and comparisons in-progress (see backup).

Integrate cross section over $p_{T, p}^{2}$ in each α bin.

What about e + (heavy)A?

J / ψ in e+A as a tool for nuclear imaging

EIC White Paper: golden channel

From K. Tu @ DIS 2023:
https://indico.cern.ch/event/1199314/c ontributions/5189840/attachments/262 1029/4531556/ePIC-exclusive-slides-Tuv3.pdf
EIC WP, Toll \& Ullrich (2012)

Fourier Transform

Vetoing Incoherent Background Using FF

Process in BeAGLE: incoherent J / Ψ production $\mathrm{e}+\mathrm{Pb} \rightarrow \mathrm{e}+\mathrm{J} / \Psi+\mathrm{X}(18 \times 110 \mathrm{GeV} / \mathrm{n})$

Production of protons, neutrons, and photons from breakup of lead nucleus using BeAGLE.
W. Chang, E.C. Aschenauer, M. D. Baker, A. Jentsch, J.H. Lee, Z. Tu, Z. Yin, and L.Zheng, Phys. Rev. D 104, 114030 (2021)

Vetoing Incoherent Background Using FF

Process in BeAGLE: incoherent J / Ψ production $\mathrm{e}+\mathrm{Pb} \rightarrow \mathrm{e}+\mathrm{J} / \psi+\mathrm{X}(18 \times 110 \mathrm{GeV} / \mathrm{n})$

Tagging of protons, neutrons, and photons from breakup of lead nucleus using BeAGLE in FF detectors.

Particles tagged in all 4 far-forward detectors.
W. Chang, E.C. Aschenauer, M. D. Baker, A. Jentsch, J.H. Lee, Z. Tu, Z. Yin, and L.Zheng, Phys. Rev. D 104, 114030 (2021)

Vetoing Incoherent Background Using FF

Different t-distribution curves are shown with different FF detectors vetoing particles. All vetoes shown here assume an exclusivity cut in the main detector (scattered electron $+\mathrm{J} / \mathrm{psi}$).
ZDC neutron + RP proton + OMD proton
ZDC neutron + RP proton + OMD proton
+BO proton and photon
ZDC neutron + RP proton + OMD proton + BO
proton and photon + ZDC photon (> 50 MeV)
The "best" curve represents the FULL far-forward acceptance, but also includes an unoptimized beam pipe which can reduce the efficiency for the ZDC (especially low E photons).
W. Chang, E.C. Aschenauer, M. D. Baker, A. Jentsch, J.H. Lee, Z. Tu, Z. Yin, and L.Zheng, Phys. Rev. D 104, 114030 (2021)

ZDC \& neutral particle exit
Want to have as large an incident angle with the beam pipe as possible.

Neutrons
$\mathrm{E}=275 \mathrm{GeV}$
$0<\boldsymbol{\theta}<5 \mathrm{mrad}$

This is the problem area \rightarrow shallow incident angle can increase effective material thickness by ~ factor of 10!!

> This will reduce our detection efficiency beyond just the aperture limit! $>$ Updated design in-production.

Vetoing Incoherent Background Using FF

Optimizing the beam pipe exit for neutral particles will have a major impact on the vetoing efficiency (in-progress now!).

Measuring t-distribution \rightarrow Full ePIC simulations

From K. Tu @ DIS 2023:
https://indico.cern.ch/event/1199314/contributions/518 9840/attachments/2621029/4531556/ePIC-exclusive-slides-Tu-v3.pdf

Legend details:

- w. EEMC: electron energy from EEMC, electron mass (PDG), angle (eta,phi) from tracking; $\varphi \rightarrow$ KK from tracking.
- Track only: e', $\varphi \rightarrow$ KK, all from tracking
- Best: average of the above $2 \mathrm{E}-\mathrm{by}-\mathrm{E}$.

Improvements from algorithm:

- The two methods can be used together to further improve the $|t|$ resolution.

Prospects for FarFơrward Lambda

The importance of the B0 for the meson program

- Needed for measuring final states with $\theta>5.5$ mrad.
- Especially important at medium and low hadron beam energies at the EIC.
- Important for incoherent vetoing in e+A (heavy nuclear) collisions.
- Charged particles and photons.
- The B0 tracking system behaves like a normal spectrometer, so anything which decays with particles in its acceptance can be reconstructed just like in the forward tracking disks!

GEANT simulation: 100 GeV proton

The importance of the B0 for the meson program

- $\rho^{0} \rightarrow \pi^{+} \pi^{-}$decay studied with eSTARLight 5×41 events (generated by Zach Sweger).
- Reconstruction performed with EicRoot.

$\rho^{0} \rightarrow \pi^{+} \pi^{-}$decay
from u-channel production

Lambda Decay $\left(p+\pi^{-}\right)$

- Boost causes the lambda to be able to decay 10 s of meters from the IP.
- Significant problem since reconstruction of this displaced secondary vertex within the hadron magnets is very challenging.

Lambda Decay $\left(p+\pi^{-}\right)$

- Boost causes the lambda to be able to decay 10 s of meters from the IP.
- Significant problem since reconstruction of this displaced secondary vertex within the hadron magnets is very challenging.

Lambda Decay $\left(p+\pi^{-}\right)$

- Boost causes the lambda to be able to decay 10 s of meters from the IP.
- Significant problem since reconstruction of this displaced secondary vertex within the hadron magnets is very challenging.

"

(some) Far-Forward Physics at the EIC

Sullivan process

e+d exclusive J/Psi with p / n tagging

Quasi-elastic electron scattering

...and MANY more!
spectator tagging in light nuclei
-)

coherent/incoherent J / ψ production in e+A [2] I. Friscic, D. Nguyen, J. R. Pybus, A. Jentsch, et al., Phys. Lett. B, Volume 823, 136726 (2021) [3] W. Chang, E.C. Aschenauer, M. D. Baker, A. Jentsch,
J.H. Lee, Z. Tu, Z. Yin, and L.Zheng, Phys. Rev. D 104 114030 (2021)
[4] A. Jentsch, Z. Tu, and C. Weiss, Phys. Rev. C 104, 065205, (2021) (Editor's Suggestion)

(some) Far-Forward Physics at the EIC

[1] Z. Tu, A. Jentsch, et al., Physics Letters B, (2020) [2] I. Friscic, D. Nguyen, J. R. Pybus, A. Jentsch, et al., Phys. Lett. B, Volume 823, 136726 (2021) [3] W. Chang, E.C. Aschenauer, M. D. Baker, A. Jentsch
J.H. Lee, Z. Tu, Z. Yin, and L.Zheng, Phys. Rev. D 104 114030 (2021)
[4] A. Jentsch, Z. Tu, and C. Weiss, Phys. Rev. C 104, 065205, (2021) (Editor's Suggestion)
coherent/incoherent J / ψ production in e

u-channel backward exclusive electroproduction

...and MANY more!

Summary and Takeaways

- Far-forward physics characterized by exclusive+diffractive final states.
- Lots to unpack! - proton spin, neutron structure, saturation, partonic imaging, meson structure, etc.
- There is lots of interest in the EIC community in studying this physics via these final states!
- Exciting time to get involved!!

Email me if you have any questions: ajentsch@bnl.gov

```
Want to get involved?? Join our meetings and learn how!
Meeting time: Tuesdays @ 9am EDT (bi-weekly, or weekly, as needed)
Indico: https://indico.bnl.gov/category/407/
Wiki: https://wiki.bnl.gov/eic-project-detector/index.php?title=Collaboration
Email-list: eic-projdet-FarForw-I@lists.bnl.gov
Subscribe to mailing list through: https://lists.bnl.gov/mailman/listinfo/eic-projdet-farforw-I
Subscribe to mailing list through: https://lists.bnl.gov/mailman/listinfo/eic-projdet-farforw-I
```


Backup

Neutron Structure

- Protons well-studied at HERA -> So...why the neutron?
- Flavor separation, baseline for studies of nuclear modifications.

$\sigma_{r}=\frac{Q^{4} x}{2 \pi \alpha^{2}\left[1+(1-y)^{2}\right]} \cdot \frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} x \mathrm{~d} Q^{2}}=F_{2}\left(x, Q^{2}\right)-f(y) \cdot F_{L}\left(x, Q^{2}\right) \quad$ Reduced cross section

Structure functions

Some useful HERA references for measurements on proton

- F. Aaron et al. (H1 Collaboration), The European Physical Journal C volume 63, Article number: 625 (2009)
- V. Andreev et al. (H1 Collaboration), Eur.Phys.J.C 74 (2014) 4, 2814
- H. Abramowicz et al. (H1 and ZEUS Collaborations) The European Physical Journal C volume 75, Article number: 580 (2015)

A. Jentsch, Z. Tu, and C. Weiss, Phys. Rev. C 104, 065205, (2021) (Editor's Suggestion)

- Similar kinds of high-precision results achievable as was done for proton F_{2} at HERA!

Simulating the EMC Effect in BeAGLE

EMC Weight Distribution, $0.45<x_{n}<0.55$

Result \rightarrow EMC Weight in BeaGLE

- Weight factor simulates the EMC effect from the virtuality in the deuteron.
- Applied event-by-event to compare with and without weight \rightarrow enables study of sensitivity to EMC effect in various observables.

Final-State Interaction: Physical Picture

Momentum distribution of slow hadrons in nucleon rest frame: Cone in virtual photon direction.

Space-time picture in deuteron rest-frame

- $v \gg$ hadronic scale: large phase space for hadron production.
- "Fast" hadrons $E_{h}=\mathcal{O}(v) \rightarrow$ current fragmentation region: Formed outside the nucleus, interaction with the spectator suppressed.
- "Slow" hadrons $E_{h}=\mathcal{O}(1 \mathrm{GeV}) \rightarrow$ target fragmentation region: Formed inside the nucleus, interact with hadronic cross sections.

> Source of FSI in tagged DIS!

Implementation

- Distributions of slow hadrons in DIS on nucleon: kinematic dependence, empirical distributions
- Hadron-nucleon scattering amplitudes: Re/lm
- Calculation of rescattering process: phase space integral
- Study kinematic dependences: $x, \alpha_{p}, p_{p T}$

FSI: Kinematic Dependence

- FSI Ratio $S_{d}[\mathrm{FSI}] / S_{d}[\mathrm{IA}]$
- $p_{p T}$ dependence: weak up to $\sim 0.3 \mathrm{GeV}$, strong rise above
- α_{p} dependence: FSI increases with $\alpha_{p}-1$ at small $p_{p T}$
- x dependence: FSI decreases with increasing x due to depletion of slow hadrons

FSI: pT-integrated cross-section

- $p_{p T}$ - integrated cross section:

$$
\sigma=\int_{\left.p_{p r} T \max \right]} d^{2} p_{p T} S_{d}\left(\alpha_{p}, p_{p r}\right) \sigma_{n}\left(x_{n}\right)
$$

- Here: Plotted as a function of $x_{n}=x /\left(2-\alpha_{p}\right)$
- Simple dependence of α_{p} and x_{n}.
- FSI effect typically 10-20\%

FSI: Initial state vs. final-state modification

- Here: $p_{p T}$ - integrated cross section, $p_{p T}[\max]=0.4 \mathrm{GeV}$
- EMC Effect: virtuality-dependent model

$$
\begin{gathered}
\frac{\sigma_{n}[\text { bound }]}{\sigma_{n}[\text { free }]}=1+\frac{t}{\langle t\rangle} f_{E M C}\left(x_{n}\right) \\
t=t\left(\alpha_{p,} p_{p T}\right)
\end{gathered}
$$

- Compare EMC and FSI
\rightarrow Currently in-progress!

Measuring t-distribution

Reconstruction method of $-t$

- Method Exact (E):
- Method Approximate (A) (UPCs)

$$
\begin{aligned}
& -t=-\left(\boldsymbol{p}_{\mathrm{e}}-\boldsymbol{p}_{\mathrm{e}}-\boldsymbol{p}_{\mathrm{VM}}\right)^{2}=-\left(\boldsymbol{p}_{\mathrm{A}^{\prime}}-\boldsymbol{p}_{\mathrm{A}}\right)^{2} \\
& -t=\left(p_{\mathrm{T}, \mathrm{e}^{\prime}}+p_{\mathrm{T}, \mathrm{VM}}\right)^{2} \\
& -t=-\left(\boldsymbol{p}_{\mathrm{A}^{\prime}, \text { corr }}-\boldsymbol{p}_{\mathrm{A}}\right)^{2},
\end{aligned}
$$

- Method with exclusivity corrected (L):
where $\boldsymbol{p}_{\mathrm{A}^{\prime}, \text { corr }}$ is constrained by exclusive reaction.

Best method concluded from the EIC Yellow Report is with exclusivity corrected:

- Insensitive to beam effects, e.g., angular divergence and momentum spread.
- More precise than Method A for electroproduction

B0 Detectors

$>$ Detector subsystem embedded in an accelerator magnet.

Hadrons

B0 Detectors

$>$ Detector subsystem embedded in an accelerator magnet.

Karim Hamdi and Ron Lassiter

Hadrons

B0 Tracking and EMCAL Detectors

Design for two detectors is converging:

Si Tracker:

- 4 Layers of AC-LGAD \rightarrow provide ~20um spatial resolution (with charge sharing) and 20-40ps timing resolution.
- Technology overlap w/ Roman pots EM Calorimeter:
- $1352 \times 2 \times 7^{*} \mathrm{~cm}^{3}$ LYSO crystals
- Good timing and position resolution
- Technology overlap with ZDC

* ZDC wants slightly longer crystals, ideally, we will use the same length in both detectors

B? Detectors - Simulation Studies

Si Tracker:

- Resolution plots made by Alex Jentsch with standalone setup (more here and here)
- ACTS Tracking (a long-standing problem) was recently solved and is implemented in the simulation (see recent Sakib R slides), we expect more results soon

EM Calorimeter:

- Caveat - studies performed with PbWO4 crystals, LYSO crystals still to be implemented in the simulation.
- General performance studies by Michael Pitt (more in FF weekly meeting)
- Sensitivity to soft photons (see Eden Mautner talk at the EICUG EC workshop early this week)

- $\quad 27 \mathrm{~cm}$ spacing with fully AC-LGAD system and 5\% radiation length may be the most-realistic option.
- Reduced spacing (from 30 cm) to make room for EMCAL.
- Needs to be looked at with proper field map and layout.
- Resolution impact on physics still being evaluated.

Note: momentum resolution (dp / p) is $\sim 2-4 \%$, depending on configuration.

- Acceptance $5.5<\theta<23 \mathrm{mrad}$
- Very low material budget in $5<\eta<5.5$
$\square-8$

Particles within $5.5<\theta<15$ mrad don't cross the beampipe

Photons:

> High acceptance in a broad energy range (> 100s MeV), including $\sim \mathrm{MeV}$ de-excitation photons

- Energy resolution of 6-7\%
> Position resolution of $\sim 3 \mathrm{~mm}$
Neutrons:
> 50% detection efficiency (λ is almost 1)
electron beampipe

Roman Pots and OMD

Roman Pots and OMD

CAD Look credit: Ron Lassiter

Roman Pots and OMD

Roman Pots and OMD

Roman Pots and OMD

लf(x)

Roman Pots and OMD

- Technology
- "Potless" design concept with thin RF foils surrounding detector components.
- 500 um, pixilated AC -LGAD sensor, with $30-40$ ps timing resolution \rightarrow High-precision space and time information!
- Similar concept for the OMD, just different active area and shape.

More engineering work is currently underway to optimize the layout, support structure, cooling, and movement systems for inserting the detectors into the beamline.

Roman "Pots" @ the EIC
25.6 cm

$\sigma(z)$ is the Gaussian width of the beam, $\beta(z)$ is the RMS transverse beam size, ε is the beam emittance, and D is the momentum dispersion.

$$
\sigma_{x, y}=\sqrt{\beta(z)_{x, y} \epsilon_{x, y}+\left(D_{x, y} \frac{\Delta p}{p}\right)^{2}}
$$

Simulation

Low-pT cutoff determined by beam optics.
$>$ The safe distance is $\sim 10 \sigma$ from the beam center.
$>1 \sigma \sim 1 \mathrm{~mm}$
$>$ These optics choices change with energy, but can also be changed within a single energy to maximize either acceptance at the RP, or the luminosity.

Digression: Machine Optics (IP6)

275 GeV DVCS Proton Acceptance

High Divergence: smaller β^{*} at IP, but bigger $\beta(z=30 m)$-> higher lumi., larger beam at RP

Digression: Machine Optics (IP6)
275 GeV DVCS Proton Acceptance

High Divergence: smaller β^{*} at IP, but bigger $\beta(z=30 m)$-> higher lumi., larger beam at RP

High Acceptance: larger β^{*} at IP, smaller $\beta(z=30 m)$-> lower lumi., smaller beam at RP

Digression: Machine Optics (IP6)

275 GeV DVCS Proton Acceptance

High Acceptance: larger β^{*} at IP, smaller $\beta(z=30 \mathrm{~m})$->
lower lumi., smaller beam at RP

Digression: Machine Optics (IP6)

(c(c(1))

Digression: Machine Optics (IP6)

Improves low p_{t} acceptance.

Summary of Detector Performance

- All beam effects included!
- Angular divergence.
- Crossing angle.
- Crab rotation/vertex smearing.

Beam effects the dominant source of momentum

 smearing!
Zero-Degree Calorimeter

- Need a calorimeter which can accurately reconstruct neutral particles
- Neutrons and photons react differently in materials - need both an EMCAL and an HCAL!

Zero-Degree Calorimeter

- Need a calorimeter which can accurately reconstruct neutral particles
- Neutrons and photons react differently in materials - need both an EMCAL and an HCAL!

ZDC - What's New

- $1^{\text {st }}$ Silicon \& crystal calorimeter (PbWO4 or LYSO):
- Smaller lateral dimension $(x, y)=(56,54) \mathrm{cm}$.

Overall length within 2m limit

- W/Silicon Imaging EMCAL
- Transverse size $(\mathrm{x}, \mathrm{y})=$ $(56,54) \mathrm{cm}$
- 12 layers $\left(\sim 24 \chi_{0}\right)$

ZDC - Performance

Neutron Energy Resolution

$\lceil\square|\square| \theta$

- Energy resolution in the new design acceptable \rightarrow Optimization, test of different ideas within the size limit.
- Next steps:
- Implementation of reconstruction
- Position resolution \& shower development study ongoing for the imaging part of HCAL
C. Weiss and W. Cosyn

$p_{p T}^{2}>0$
physical region

Short-Range Correlations

"The nucleus can often be approximated as an independent collection of protons and neutrons confined in a volume, but for short periods of time, the nucleons in the nucleus can strongly overlap.
This quantum mechanical overlapping, known as a nucleon-nucleon short-range correlation, is a manifestation of the nuclear strong force, which produces not only the long-range attraction that holds matter together, but also the short-range repulsion that keeps it from collapsing."

Excerpt from: https://www.jlab.org/research/nucleon_nucleon
Lots of SRC pairs!!! -> Really tough!

Use deuteron as "SRC laboratory", where nucleon kinematics are readily accessible.

Short-Range Correlations in Deuterons

Z. Tu, A. Jentsch et al., Phys. Lett. B, 811 (2020)

Protons

Protons

Proton "spectator" case.
Particular process in BeAGLE: incoherent diffractive J / ψ
 production off bounded nucleons.

MC generated events shown in black - "accepted" protons in red. Acceptance refers to particles which are actually captured by the detector.

Short-Range Correlations in Deuterons

Z. Tu, A. Jentsch et al., Phys. Lett. B, 811 (2020)

Proton "spectator" case.

- Spectator kinematic variables reconstructed over a broad range.
- All detector and beam effects included in the full GEANT simulations!
- Bin migration is observed due to smearing in the reconstruction.
$>$ In the proton spectator case, essentially all spectators tagged up to $\mathrm{pT} \sim \mathbf{~} \mathbf{0 0 0} \mathrm{MeV} / \mathrm{c}$.
$>$ Active neutrons only tagged up to $4.5 \mathrm{mrad} \rightarrow$ double-tagging efficiency very low.

e+d Spectator Tagging
 Protons
 Protons

Z. Tu, A. Jentsch et al., Phys. Lett. B, 811 (2020)

BeAGLE

BeAGLE

Proton spectator case.
Particular process in BeAGLE: incoherent diffractive J/psi production off bounded nucleons.

Spectator kinematic variables reconstructed over a broad range. Bin migration is observed due to smearing in the reconstruction. Each plot shows the MC (closed circles), acceptance effects only (open circles), and full reconstruction (open squares).
$>$ In the proton spectator case, essentially all spectators tagged.
$>$ Active neutrons only tagged up to 4.5 mrad .

Light nuclei - Helium-3: Neutron ${ }^{+}$Spin Structure

Neutron Spin Structure in He3

- Studies of neutron structure with a polarized neutron.
- More challenging final state tagging since both protons must be tagged.
- MC events generated with CLASDIS in fixed-target frame, and then boosted to collider frame.

Neutron Spin Structure in He3

- Spin structure probed via spin asymmetries!

$$
A_{1}^{3} \mathrm{He}=\underbrace{P_{n} \frac{F_{2}^{n}}{F_{2}^{3} \mathrm{He}} A_{1}^{n}}_{\text {Neutron }}+\underbrace{2 P_{p} \frac{F_{2}^{p}}{F_{2}^{3} \mathrm{He}} A_{1}^{p}}_{\text {Protons }}
$$

- (double) Tagged DIS measurement capable of measuring A_{1}^{n} directly!
- Complementary to measurements at JLAB.

Neutron Spin Structure in He 3

- Neutron spin asymmetries can be measured from kinematics of the tagged protons.
- EIC can build upon measurements at JLAB by reducing polarization uncertainties, and opening a broader Q^{2} range for study.
- Can aid in our understanding of quark orbital angular momentum in nucleons.

Closure Test - Event by Event Pole Removal

- Pole factor removed using "event by event (EbE)" approach.
- Pole factor calculated and applied for each event (i.e. pole factor calculated for each exact nuclear configuration).
- Solved discrepancy at generator level.
- This was also checked using an independent toy MC to confirm there was nothing related to our analysis code causing an issue.
- Remaining differences due to fitting and statistics.

Effects of momentum smearing on pole factor

- Detector smearing has a drastic impact when the EbE method is used.
- If you calculate the pole factor on an EbE basis with smeared spectator kinematic values, you now remove the pole factor for the wrong nuclear configuration!

Kinematic Distributions and Smearing

$\begin{array}{llllllllll}0 & 0.05 & 0.1 & 0.15 & 0.2 & 0.25 & 0.3 & 0.35 & 0.4 & 0.45\end{array}$
$\mathrm{p}_{\mathrm{T}}[\mathrm{GeV} / \mathrm{c}]$

- Event sub-sample passed through full GEANT4 simulations.
- Smearing parametrizations extracted for (p_{x}, p_{y}, p_{z}, E).
- Larger overall smearing observed for neutrons, consistent with previous study.
- Anomalous proton smearing at high pT and p>120 GeV/c and $p<100 \mathrm{GeV} / \mathrm{c}$ due to linear transfer matrix assumption.
- Will be fixed in the future for TDR studies.

