

Spin-controlled interference of quantum rotors & Non-reciprocal optical binding of nanoparticles

Benjamin A. Stickler

Context

...read-out and manipulation of mechanical motion

trapping field induces polarization

scattered field for detection

Context

...read-out and manipulation of mechanical motion

trapping field induces polarization

scattered field for detection

...levitated particles rotate

Quantum rotors

Nat. Rev. Phys. 3, 589 (2021)

Quantum rotors

Nat. Rev. Phys. 3, 589 (2021)

Quantum rotors

Magnetic rotors

...magnetic moment tied to body

Magnetic rotors

...magnetic moment tied to body

Newtonian equations

 $\frac{d}{dt} \sum$ (angular momenta) = \sum (external torques)

$$\frac{d}{dt}\left(I\boldsymbol{\omega}-\frac{1}{\gamma_0}\boldsymbol{m}\right)=\boldsymbol{m}\times\boldsymbol{B}$$

gyromagnetic ratio

magnetic torque

Magnetic rotors

...magnetic moment tied to body

Newtonian equations

d

$$\frac{d}{dt} \sum (\text{angular momenta}) = \sum (\text{external torques})$$
$$\frac{d}{dt} \left(I\omega - \frac{1}{\gamma_0} m \right) = m \times B$$

gyromagnetic ratio

magnetic torque

 $\omega_z(t) = \frac{m_z(t)}{v_o I}$

 $\omega = \frac{\hbar}{I} \gtrsim \text{kHz}$

Einstein-de Haas effect see also Rusconi PRL 119, 167202 (2016) Jackson Kimball PRL 116, 190801 (2016) Band PRL 121, 160801 (2018) Vinante PRL 127, 070801 (2021)

Einstein-de Haas & Barnett effect:

$$H = \frac{(J_1 - S_1)^2}{2I_1} + \frac{(J_2 - S_2)^2}{2I_2} + \frac{(J_3 - S_3)^2}{2I_3}$$

work with Y Ma, M Kim

PRB 104, 134310 (2021)

PRB 104, 134310 (2021)

PRB 104, 134310 (2021)

$$\begin{split} H &= \frac{(J_1 - S_1)^2}{2I_1} + \frac{(J_2 - S_2)^2}{2I_2} + \frac{(J_3 - S_3)^2}{2I_3} \\ &+ \frac{D_{\rm nv}}{\hbar} S_1^2 + \gamma_0 B S_z + V(t) \end{split}$$

work with C Rusconi, M Perdriat, G Hetet, O Romero-Isart

PRL 129, 093605 (2022); NJP 23, 093001 (2021)

PRL 129, 093605 (2022); NJP 23, 093001 (2021)

work with C Rusconi, M Perdriat, G Hetet, O Romero-Isart

charged particle near a surface at temperature T...

$$\varepsilon_r(\boldsymbol{r},\omega)$$

charged particle near a surface at temperature T...

charged particle near a surface at temperature T...

$$t \rightarrow \mathbf{x} + \mathbf{y} + \mathbf{y} \rightarrow \mathbf{x}$$

$$t \rightarrow \mathbf{x} + \mathbf{y} \rightarrow \mathbf{x}$$

$$\varepsilon_r(\mathbf{r}, \omega) = -\mathbf{x} + \mathbf{y}$$

 $\langle \boldsymbol{P}_N^*(\boldsymbol{r},\omega) \otimes \boldsymbol{P}_N(\boldsymbol{r}',\omega') \rangle \propto n_T(\omega) \operatorname{Im}[\varepsilon_r(\boldsymbol{r},\omega)] \\ \times \delta(\omega-\omega')\delta(\boldsymbol{r}-\boldsymbol{r}')$

 $\langle \boldsymbol{P}_N^*(\boldsymbol{r},\omega) \otimes \boldsymbol{P}_N(\boldsymbol{r}',\omega') \rangle \propto n_T(\omega) \operatorname{Im}[\varepsilon_r(\boldsymbol{r},\omega)] \\ \times \delta(\omega-\omega')\delta(\boldsymbol{r}-\boldsymbol{r}')$

Summary

- spin-rotational coupling
- rotational interference via spin control
- surface-induced decoherence

Rotations are non-linear!

co-workers:

C Rusconi	F Köller
M Perdriat	L Martinetz
G Hétet	K Hornberger
O Romero-Isart	Y Ma
	M S Kim

further reading:

Nat. Rev. Phys. **3**, 589 (2021) PRB **104**, 134310 (2021) PRL **129**, 093605 (2022) PRX Quantum **3**, 030327 (2022)

induced dipole moment:

$$\boldsymbol{p}_j = \epsilon_0 \chi V_j \boldsymbol{E}(\boldsymbol{r}_j)$$

induced dipole moment:

$$\boldsymbol{p}_{j} = \epsilon_{0} \chi V_{j} \left(1 + \frac{i \chi k^{3} V_{j}}{6\pi} \right) \boldsymbol{E}(\boldsymbol{r}_{j}) + \sum_{j' \neq j} \epsilon_{0} \chi^{2} V_{j} V_{j'} \operatorname{G}(\boldsymbol{r}_{j} - \boldsymbol{r}_{j'}) \boldsymbol{E}(\boldsymbol{r}_{j'})$$

Science 377, 987 (2022)

$$k_{1} = \frac{G}{kd_{0}}\cos(kd_{0})\cos(\Delta\phi)$$
$$k_{2} = \frac{G}{kd_{0}}\sin(kd_{0})\sin(\Delta\phi)$$

non-reciprocity:

$$m\ddot{z}_{1} + m\gamma\dot{z}_{1} = -(m\Omega_{1}^{2} + k_{1} + k_{2})z_{1} + (k_{1} + k_{2})z_{2}$$

$$m\ddot{z}_{2} + m\gamma\dot{z}_{2} = -(m\Omega_{2}^{2} + k_{1} - k_{2})z_{2} + (k_{1} - k_{2})z_{1}$$

action \neq reaction

Science 377, 987 (2022)

 $k_{1} = \frac{G}{kd_{0}}\cos(kd_{0})\cos(\Delta\phi)$ $k_{2} = \frac{G}{kd_{0}}\sin(kd_{0})\sin(\Delta\phi)$

non-reciprocity:

$$m\ddot{z}_{1} + m\gamma\dot{z}_{1} = -(m\Omega_{1}^{2} + k_{1} + k_{2})z_{1} + (k_{1} + k_{2})z_{2}$$

$$m\ddot{z}_{2} + m\gamma\dot{z}_{2} = -(m\Omega_{2}^{2} + k_{1} - k_{2})z_{2} + (k_{1} - k_{2})z_{1}$$

action \neq reaction

U. Delić

Science 377, 987 (2022)

Quantum optical binding

$$\partial_t \rho = -\frac{i}{\hbar} [H_0, \rho] + \frac{i}{\hbar} [k_1 z_1 z_2, \rho] + \sum_j \frac{2D_{jj'}}{\hbar^2} \Big[z_j \rho z_{j'} - \frac{1}{2} \{ z_j z_{j'} \rho \} \Big]$$
$$D_{12} = \operatorname{Re}[D_{12}] + i \frac{\hbar k_2}{2}$$

recoil heating & decoherence + non-reciprocal interactions

arXiv: 2306.11893 (2023)

Quantum optical binding

PRL 129, 193602 (2022)

arXiv: 2306.11893 (2023)

Summary

- spin-rotational coupling
- rotational interference via spin control
- surface-induced decoherence
- quantum optical binding

Thanks for your attention!

co-workers:			further reading:
C Rusconi M Perdriat G Hétet O Romero-Isart	F Köller L Martinetz H Rudolph K Hornberger Y Ma M S Kim	U Delic M Aspelmeyer	Nat. Rev. Phys. 3 , 589 (2021) PRB 104 , 134310 (2021) PRL 129 , 093605 (2022) PRX Quantum 3 , 030327 (2022) Science 377 , 987 (2022) arXiv: 2306.11893 (2023)