

Quantum sensing in microgravity

Alexander Heidt

Wednesday, August 2, 2023

Agenda

Cut of the Einstein-Elevators in the external view of the HITec-building (source: ITA)

Quantum sensing at LUH - Group Prof. Carsten Klempt Spinor BEC (Bose-Einstein-condensate)

Institut für Transport- und Automatisierungstechnik

probing the possibilities of employing entangled states in cold atom interferometry

- Creating a BEC (\rightarrow 3D MOT \rightarrow molasses cooling \rightarrow evaporation \rightarrow BEC)
- Spin dynamics change \rightarrow entangled atoms
- Start with Rb⁸⁷-BEC

 $m_{c}=-1$

- Microwave (MW) dressing \rightarrow decrease distance of F=1 and F=2 \rightarrow Spin changing collisions
- Free fall and Delta Kick \rightarrow prevent atoms from spreading

collisions

Magnetic field-insensitive squeezed States \rightarrow Ramsey spectroscopy F=2 F=2 MW dressing 1. MW π → Spin changing

Carsten Klempt

Christophe Cassens

Theo Sanchez

0

Rapid generation and number-resolved detection of spinor rubidium Bose-Einstein condensates

- Similar procedure like Spinor-BEC but with better technologies and performance → more precise & options to operate
- Their interests:
- > Preparation of entangled states
- > Employing those states for enhanced measurement precision \rightarrow count single Atom-pairs

\rightarrow INTENTAS motivated by these projects

Universitä

Martin Quensen Mareike Hetzel Carsten Klempt

roduktionstechnische

Zentrum Hannove

Quantum sensing at LUH – QG-1 - Group Prof. Ernst Rasel Quantum Gravimeter

Measure gravity with a Mach-Zehnder-Interferometer

- Applications:
- > Map local mass distribution
- Study mass transport
- > Verify dynamic earth models
- Goals: No drift & No offset after transport
- Advantage: Absorption-imaging to detect Atom clouds in 3D

Latest publication: A transportable quantum gravimeter employing delta-kick collimated Bose-Einstein condensates by N. Heine et al., Eur. Phys. J. D, 74 (2020), doi.org/10.1140/epjd/e2020-10120-x

© Leibniz Universität Hannover, ITA, Alexander Heidt **Seite 5** | SLT 2022 | August 2, 2023 | Christoph Lotz, Ludger Overmeyer

Pablo Nina Nuñez von Heine Voigt

Christian Waldemar Schubert Herr

Post Docs

Ernst M. Rasel

Jürger ife Müller

roduktionstechnische

Zentrum Hannover

Universitä

Quantum sensing at LUH – MAIUS-B - Group Prof. Ernst Rasel Towards dual species matter wave interferometry in space

Test Equivalence principle at low scale in space

- Atom interferometry with two Atom species: RB⁸⁷ and K⁴¹
- Creating BEC's for both species
- Raman double-diffraction enhanced beam splitters
- Measuring phase \rightarrow acceleration of both species

\rightarrow DESIRE motivated by MAIUS projects

Ernst M. Rasel

Thijs Wendrich

Priyanka Guggilam

Institut für Transport- und

Automatisierungstechnik

What is the Einstein-Elevator?

source: Leibniz Universität Hannover/Marie-Luise Kolb

Active drop tower

- Vertical parabolic flight
- Microgravity, partial gravity
- Low residual acc.
- High repetition rate
- Large and heavy experimental setups
- Build since 2011
- First flight in 2019
- Part of the HITec research infrastructure (LUH)

Head of new research group

Dr.-Ing. Christoph Lotz

What is its use?

Mechanical engineering

- Production technologies under space (gravity) conditions
- Material science
- Technique demonstrations

•

Physics

- BEC in microgravity
- Atom interferometry in space

• ...

External

- Plasma physics
- Testing sensor concepts

• .

Active "drop tower" for experiments in µg to 5g regime with a high repetition rate

Duration in Microgravity:	4 s
Repetition Rate: 100 (u	ıp to 300)/day
Residual Acceleration:	10 ⁻⁶ g
Payload:	1,000 kg
Carrier Dimensions :	ð1.7 m, 2 m
Drive System: linear sy	nchronous Motor
Max./var. Acceleration:	<5 g
Electrical Peak Power:	4.8 MW
Supporting structure height	:: 37 m

Left (1): Space Shuttle Atlantis during STS-132 (source: By NASA/Crew of STS-132, http://spaceflight.nasa.gov/gallery/images/shuttle/sts-132/hires/s132e012208.jpg) (2): Full moon as seen from Earth's Northern Hemisphere (source: Von I, Luc Viatour, CC BY-SA 3.0, http://spaceflight.nasa.gov/gallery/images/shuttle/sts-132/hires/s132e012208.jpg) (2): Full moon as seen from Earth's Northern Hemisphere (source: Von I, Luc Viatour, CC BY-SA 3.0, http://spaceflight.nasa.gov/gallery/images/shuttle/sts-132/hires/s132e012208.jpg) (2): Full moon as seen from Earth's Northern Hemisphere (source: Von I, Luc Viatour, CC BY-SA 3.0, http://www.esa.int/spaceinimages/lmages/2007/02/True-colour_image_of_Mars_seen_by_OSIRIS), (4): Launching of a rocket for manned spaceflight with Arianespace's Ariane 5: 4.55 g just before first-stage cutoff (source: http://www.arianespace.com/wp-content/uploads/2011/07/Ariane5_Users-Manual_October2016.pdf),

Active "drop tower" for experiments in µg to 5g regime with a high repetition rate

Trajectory Profiles

Space flight gravity e.g. ISS (center of mass): ≈ 0 *g*

Hypo-gravity: Surface gravity Moon: 0.165 *g* Mars: 0.376 *g*

Hyper-gravity: Manned spaceflight Ariane 5: 4.55 *g* Soyuz: 4.30 *g*

Left (1): Space Shuttle Atlantis during STS-132 (source: By NASA/Crew of STS-132, http://spaceflight.nasa.gov/gallery/images/shuttle/sts-132/hires/s132e012208.jpg) (2): Full moon as seen from Earth's Northern Hemisphere (source: Von I, Luc Viatour, CC BY-SA 3.0, http://spaceflight.nasa.gov/gallery/images/shuttle/sts-132/hires/s132e012208.jpg) (2): Full moon as seen from Earth's Northern Hemisphere (source: Von I, Luc Viatour, CC BY-SA 3.0, http://spaceflight.nasa.gov/gallery/images/shuttle/sts-132/hires/s132e012208.jpg) (2): Full moon as seen from Earth's Northern Hemisphere (source: Von I, Luc Viatour, CC BY-SA 3.0, http://www.esa.int/spaceinimages/lmages/2007/02/True-colour_image_of_Mars_seen_by_OSIRIS), (4): Launching of a rocket for manned spaceflight with Arianespace's Ariane 5: 4.55 g just before first-stage cutoff (source: http://www.arianespace.com/wp-content/uploads/2011/07/Ariane5_Users-Manual_October2016.pdf),

Einstein-Elevator - Overview – Test sequence

- 1. Preparation of the experiments in the preparation area
- 2. Integration of the carrier in the Einstein-Elevator
- 3. Closing the gondola and starting the control system
- 4. Experiment execution

The control of the system and the experiments are performed from the control room

Einstein-Elevator - Current status

Institut für Transport- und Automatisierungstechnik

Carrier technical data

Payload size: Ø1.7 m, height 2 m, max. weight 1,000 kg*

- Pressure-tight shell encapsulate experiment to gondola vacuum
- Carrier can also be used without shell and only with one floor, side structures and a support ring on the top
- → Power supply → see following slides (INTENTAS & DESIRE example)
- Ooling water circuit with up to 1 kW
- Different camera types available: High speed camera, thermal camera, hyperspectral camera and webcams
- Multiple sensors recording experiment environment acceleration (3 axis, diff. measuring ranges), magnetic field (3 axis), pressure (inside and outside the carrier), multiple temperatures sensors, humidity,...
- Interfaces for experiment control or experiments directly linked to the control room
- > Telemetry with direct data link to the user terminals in the control room

Carrier System SN1 (source: LUH/Richard Sperling)

• 6 areas within different sensor etc.

Carrier System SN1 (source: LUH/Richard Sperling)

Einstein-Elevator - Current status

Institut für Transport- und Automatisierungstechnik

Eilhauer status:

- Pressure hull ready
- Lowest carrier is nearly finished:
 - > Leakage checks
- They started with the other levels

Carrier System SN1 (source: LUH/Richard Sperling)

INTENTAS – Installation

Institut für Transport- und Automatisierungstechnik

Motivation: Realization of a compact source of entangled atoms for space applications \rightarrow surpassing the standard quantum limit (SQL)

- Electronics package using supercapacitors (first level)
- Laser system and (later) vacuum system (second level)
- Physics package etc. (third level):
- > Spin dynamics change \rightarrow entangled atoms
- > Vacuum chamber (up to 10⁻¹¹ mbar)
- > Detection: highspeed camera with a quantum efficiency of 95%
- > Magnet-shied: Aim shielding factor : 10.000 \rightarrow down to 10 nT

INTENTAS - Magnetic field in the EE

© Leibniz Universität Hannover, ITA, Alexander Heidt Seite 15 | SLT 2022 | August 2, 2023 | Christoph Lotz, Ludger Overmeyer

Produktionstechnisches

Zentrum Hannover

DESIRE – Installation

Electronics

Motivation: Search for dark energy – chameleon fields: low mass density \rightarrow acceleration

- Idea based on a paper by S. Chiow (Multiloop atom interferometer measurements of chameleon dark energy in microgravity. Chiow, Yu, PRD 97, 044043 (2018))
- Test mass generated a periodic chameleon/acceleration signal
- Microgravity used for longer interaction time
- Test mass in use (Center of mass in EE important):
 - Critical rotation rate: 3 mrad/s

Laser system

Experimental chamber

with test mass

roduktionstechnische Zentrum Hannove

DESIRE - Rotation and acceleration

- Rotation around z-axis: 5,6 ± 1,4 mrad/s
- Rotation around x-axis: 1,9 ± 1,6 mrad/s
- Rotation around y-axis: 4,7 ± 2,3 mrad/s
- Superposition (real rotation): 8,5 ± 2 mrad/s
- Reaction wheels with servo motor

- Rotation improvement down to 17 µrad/s (sensor resolution)
- Tests are still on going
- Planned to teach the reaction wheels:
- ➢ rotation impulse before start
 → increase flight time with
 minimized carrier rotation
- Center of Mass (COM) stability

Institut für Transport- und Automatisierungstechnik

5

Power supply (INTENTAS & DESIRE example)

Institut für Transport- und Automatisierungstechnik

Charge and Supply Overview

- Einstein-Elevator Pins used for R&S HMP4040 Power supply
- > During flight: (24 V/ 16 A, 5V, 3.3V, AC-DC converter: 230 V/), on ground: (230 V/ 16 A, etc.)
- Charge supercapacitors by R&S HMP4040
- R&S HMP4040 off during flight \rightarrow supercapacitors provides power
- Distribution box with switches \rightarrow controlling/switching the connected components on and off
- Voltage ruler \rightarrow current driver etc. \rightarrow end component

Outlook

>

>

>

DESIRE-Team

Baptist Piest Ernst M. Rasel

Thijs Wendrich

Magdalena Misslisch

Bentley Turner

Einstein-Elevator Participants

Sukhjovan Gill

eibniz Universität

© Leibniz Universität Hannover, ITA, Alexander Heidt Seite 23 | SLT 2022 | August 2, 2023 | Christoph Lotz, Ludger Overmeyer

INTENTAS-Team

Finish Rotation Tests including COM stability

Test Power supply possibilities including TTL

Test vacuum for acoustic decoupling

Integrate projects \rightarrow first flights

Test the microgravity quality \rightarrow residual acc. 10⁻⁶ g

Prepare the new carrier:

Carsten Klempt Jens Kruse

Simon Haase

Janina Hamann

Christoph Lotz

Alexander Heidt

Thank you for your attention!

With a cooperation

between:

Leibniz University Hannover Institute of Transport and Automation Technology An der Universität 2 30823 Garbsen http://www.ita.uni-hannover.de

Leibniz Universität Hannover

© Leibniz Universität Hannover, ITA, Alexander Heidt Seite 24 | SLT 2022 | August 2, 2023 | Christoph Lotz, Ludger Overmeyer

For further assistance:

Prof. Dr.-Ing. Ludger Overmeyer Tel. +49 511 762-3524 ludger.overmeyer@ita.uni-hannover.de

Prof. Dr. Ernst Rasel Tel. +49 511 762-19203 rasel@iqo.uni-hannover.de

Institute of Transport and

Automation Technology

Leibniz

Schule

QUEST - Leibniz

Research School

quêst

German

Aerospace Centre

Forschungs-

Dr.-Ing. Christoph Lotz Tel. +49 511 762-2291 christoph.lotz@ita.uni-hannover.de

https://www.einstein-elevator.de

Quantum Optics

Institute of

Universität

With a cooperation

Leibniz University Hannover Institute of Transport and Automation Technology An der Universität 2 30823 Garbsen http://www.ita.uni-hannover.de

Publications (extract):

Lotz, C.; Hsg: Overmeyer, L. (2022): Untersuchungen zu Einflussfaktoren auf die Qualität von Experimenten unter Mikrogravitation im Einstein-Elevator, Gottfried Wilhelm Leibniz Universität Hannover, Diss., xvii, 222 S., DOI: 10.15488/11713, 2022.

Reitz, B.; Lotz, C.; Gerdes, N.; Linke, S.; Olsen, E.; Pflieger, K.; Sohrt, S.; Ernst, M.; Taschner, P.; Neumann, J.; Stoll, E.; Overmeyer, L. (2021): Additive Manufacturing Under Lunar Gravity and Microgravity, Microgravity Science and Technology, Vol. 33, Nr. 25, DOI: 10.1007/s12217-021-09878-4, 2021.

Neumann, J.; Ernst, M.; Taschner, P.; Gerdes, N.; Stapperfens, S.; Linke, S.; Lotz, C.; Koch, J.; Wessels, P.; Stoll, E.; Overmeyer, L. (2021): The MOONRISE: payload for mobile selective laser melting of lunar regolith, Proc. SPIE 11852, International Conference on Space Optics - ICSO 2020, 118526T (11 June 2021); DOI: 10.1117/12.2600322, 2021.

Lotz, C.; Gerdes, N.; Sperling, R.; Lazar, S.; Linke, S.; Neumann, J.; Stoll, E.; Ertmer, W.; Overmeyer, L. (2020): Tests of additive manufacturing and other processes under space gravity conditions in the Einstein-Elevator, Logistics Journal, Vol. 2020, S. 1-12, DOI: 10.2195/lj Proc lotz de 201310 01, 2020.

Lotz, C.; Wessarges, Y.; Hermsdorf, J.; Ertmer, W.; Overmeyer, L. (2018): Novel active driven drop tower facility for microgravity experiments investigating production technologies on the example of substrate-free additive manufacturing, Advances in Space Research, Available online: 31 January 2018, ISSN 0273-1177, DOI: 10.1016/j.asr.2018.01.010, 2018.

Lotz, C.; Froböse, T.; Wanner, A.; Overmeyer, L.; Ertmer, W. (2017): Einstein-Elevator: A New Facility for Research from µg to 5g, Gravitational and Space Research, Vol. 5, No. 2, ISSN 2332-7774, DOI: 10.2478/gsr-2017-0007, 2017.

A complete list of publications can be found here:

https://www.ita.uni-hannover.de/en/institute/team/christoph-lotz/list-of-publications/

between:

Leibniz Universität Hannover

German Aerospace Centre

QUEST - Leibniz

Research School

Institute of

Institute of Transport and Automation Technology

© Leibniz Universität Hannover, ITA, Alexander Heidt Seite 25 | SLT 2022 | August 2, 2023 | Christoph Lotz, Ludger Overmeyer

