Levitated Probes of Large Scale Quantum Mechanics and **Small Scale Gravity**

 $\bullet \bullet \bullet$

Defying Gravity

ECT* Workshop 2nd of August, 2023 Quantum Sensing and Fundamental Physics with Levitated Mechanical Systems Tim Fuchs

Motivation

Quantum Mechanics vs General Relativity

Small Scale vs Large Scale

Better understanding: different regimes Physics beyond the Standard Model Quantum Gravity?

Quantum Mechanics vs General Relativity

Towards a Unified Theory: Small Scale Gravity, Large Scale Quantum

Many theories, need experimental data!

Non-Levitated MRFM: Magnetic Resonance Force Microscopy

MRI at a nanoscale

Mechanical detection instead of inductive detection

3D imaging: Biomedical Subsurface: Qubit fabrication

Non-Levitated MRFM at mK Temperatures: SQUID Based Cantilever Detection

SQUID detection instead of LASER

- 20 mK sample+cantilever
- Reduced thermal force noise
- Increased spin polarisation
- No external field, $B_0 \sim 100 \text{ mT}$ (Br = 1.4 T)

Extremely soft cantilever (IBM, 30 µN/m)

Very sensitive force sensor (400 zN/ \sqrt{Hz} , 4 µm/s²/ \sqrt{Hz}) Q ~ 10⁴, f ~ 1 kHz, df ~ 0.1 Hz

0.1 nm thermal motion, 0.1 pm ZPM Feedback cooled to ~1000 phonons

Magnetic dipole coupling: detect Electron Spins

Magnet on tip (3 micron diameter NdFeB sphere, 100pg, ~10^{14} amu, ~100 mT/ μ m)

Cantilever

100 µm

Non-Levitated NV-MRFM

NV-Center in Diamond as dilute, RF Addressed Qubit

High coherence single spin

Diamond platelets courtesy of M. Ruff and R. Hanson at TU Delft, 1 ppb N-center, ~1 N center per 100 nm³ (1 PPT NV-center)

2-3 um 1 ppb Diamond

100 nm NbTiN RF and Loop

500 um Diamond Substrate

Coherent Coupling of NV centre and Cantilever

Macroscopic Superposition: Quadratic Coupling

Current limit: which-path-detection $\propto \sqrt{(Q/k_BT)}$ and thermal decoherence of cantilever \propto Q/k_BT , at ~100 us (*vs.* 700us cantilever period), So we need to increase Q/T by a factor 100 at least, or increase coupling by a factor 10. Even then: only 10 fm/cycle

Similar for Linear Coupling, with more heat load, but larger state separation per cycle.

Small Scale Gravity: Magnetic Zeppelin

Waarde, B. van (2016) The lead zeppelin : a force sensor without a handle

Lead Zeppelin

"A Force Sensor without

a handle"

Lead Zeppelin

Waarde, B. van (2016) The lead zeppelin : a force sensor without a handle

Meissner-levitated ferromagnetic microparticles

Chris Timberlake: "Turn this zeppelin around!" Jaimy:

"Lead Trappelin"

Ultralow Mechanical Damping with Meissner-Levitated Ferromagnetic Microparticles A. Vinante, P. Falferi, G. Gasbarri, A. Setter, C. Timberlake, and H. Ulbricht Phys. Rev. Applied 13, 064027 – Published 11 June 2020

Magnetic Zeppelin

- Loop off-centre (α, f.o.: x, y)
- Elliptical trap (x, y to trap x, y)
- Extra non-magnetic mass (γ)
- Calibration by flux injection ($\phi \rightarrow m$)
- LOTS of Vibration Isolation
- No Charge Control
- Macroscopic Gravitational Source

All 6 modes

Loop off-centre (α , f.o.: x, y)

Extra non-magnetic mass (γ)

Can not distinguish

Magnetic Zeppelin Show Sensitivity to Gravity

Magnetic Zeppelin

Scales as expected from gravity under translation!

EM significantly Shielded

Only 3/8th of expected signal

Damped response of 3/8

Trap motion also driven: continuously "falling away" from test-mass

Magnetic Zeppelin

Large source mass, but: small, scalable test mass coupled to a SQUID

Combining MRFM-like Macroscopic Superposition with Mesoscopic Levitated Mass: Quantum Gravity?

Gravitationally Mediated Entanglement

Future

Test AND Source mass both easily scalable!

Bring Source mass into Superposition: NV-centres?

Bas Hensen: Couple to LC-Circuit for Optical toolbox

x° mode det mag ⊞ HV WD spot curr X SE ETD 2 000 x 15.00 kV 12.3106 mm 14.0 6.4 n/ —30 μm

Lots of thanks, to lots of people

Universiteit Leiden

Hendrik Ulbricht

Cornell University.

John Marohn

CNRIFN

Bert Crama

Students: Louw Feenstra UCOM Noud van Halteren Jean-Paul van Soest Reinier Regter Evert Stolte Ilse Kuijf Ruben Guis Cagan Karaca Timothy van den Berg Victor Wagemans

Trento

Andrea Vinante

NV-MRFM

Factor 2 in Q for free with a factor 10 in T

Magnet Shape

Coupling ~ d^2B/dx^2 ~ R_0^3/r^7

-> Small magnets for increased coupling Coupling ~ Superposition Separation per cycle Powder has a lower bound -> FIB to shape

> This work made use of a Helios FIB supported by NSF (DMR-1539918) and the Cornell Center for Materials Research Shared Facilities which are supported through the NSF MRSEC program (DMR-1719875).

Future

Coherent coupling to Single Spin

Combine:

10mK -> 2 mK Q from 20k to 40k (possibly even 100k+!) 5x better Coupling to gain a factor 100+

-> Macroscopic Superposition if everything works together™

easyMRFM

Scanning probe type: Easy for you, not for us!

Subsurface, 3D

TLF as source of decoherence in Qubits Interstitial!

Subsurface, 3D

3D imaging of proteins and DNA

Koen van Deelen et al., Ensembles of breathing nucleosomes: a computational study, Biophysical Journal

