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OUTLINE

? Model-independent identification of mean-field and correlations
in many-body systems. Is this at all possible?

? Green’s function formalism. The role of momentum and binding
energy

? Correlation effects in deep inelastic electron-nucleus scattering as
an example

? Open issues
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JOINT DENSITY DISTRIBUTIONS IN COORDINATE SPACE

? A widely used—although somewhat misleading—characterisation of
correlations is based on the analysis of density distributions in
coordinate space. In the presence of correlations

%(r1, r2) 6= %(r1)%(r2) , g(r1, r2) =
%(r1, r2)

%(r1)%(r2)
6= 1

? Note that in fermion systems g(r1, r2) 6= 1 even in the absence of
interactions.

? In a one-component Fermi gas at
constant density %,

gFG(r) = %2
[
1− 1

d
`2(kF r)

]
,

`(x) =
3

x3
(sinx− x cosx) ,

d is the degeneracy of the
momentum eigenstates, and
kF = (6π2%/d)1/3. The figure
corresponds to d = 4
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JOINT DENSITY DISTRIBUTION IN MOMENTUM SPACE

? In momentum space, correlation effects on the joint probability
distribution turn out to vanish in the N →∞ limit

n(k1,k2) = n(k1)n(k2)

[
1 +O

(
1

N

)]

? In a one-component Fermi gas

n(k) = θ(kF − |k|)

and

n(k1,k2) = n(k1)n(k2)

[
1− (2π)3

d

%

N
δ(3)(k1 − k2)

]

? The unambiguous identification of correlation effects requires a more
general approach
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MEAN-FIELD AND CORRELATIONS

? It would be tempting to define correlations as departures from the
behaviour of a system of independent particles subject to a mean field

? However, in general the mean field—as well as the corresponding set of
eigenstates—cannot be obtained from the solution of the Schrödinger
equation with the ”true” many-body Hamiltonian

H|0〉 = E0|0〉 , H =
∑
i

p2
i

2m
+
∑
j>i

vij + ...

? This difficulty is often circumvented by introducing natural orbitals,
which provide a simple representation of the density matrix, or the
overlaps entering the definition of the two-point Green’s function

? The analytic structure of the Green’s function allows for a clearcut and
model-independent identification of correlations

4 / 14



THE TWO-POINT GREEN’S FUNCTION

? The two-point Green’s function—also referred to as
propagator—describes single particle properties in interacting
many-body systems

G(k, E) = −i
∫
dt 〈0|T{ak(t)a†k(0)}|0〉 eiEt

=
∑
n

|〈n|a†k|0〉|
2

E − (E0 − En)− iη +
∑
n

|〈n|ak|0〉|2

E − (En − E0) + iη

= G<(k, E) +G>(k, E)

? Correlations lead to the excitation of nucleon pairs to continuum states
outside the Fermi sea. Their contribution can be unambiguously
identified in, e.g., G<(k, E) by exploiting the Källén-Lehmann
representation

G<(k, E) =
∑
h∈{F}

Zh
E − eh − iΓh

+GB(k, E)

? In the absence of correlations only the pole contributions survive, with
Zh = 1, while the continuum contribution GBh (k, E)→ 0
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THE SPECTRAL FUNCTION

? The analytic structure of the two-point Green’s function is reflected by
the spectral function

P<(k, E) =
1

π
Im G<(k, ω) =

∑
h∈{F}

Zh|Mh(k)|2Fh(E − eh) + PB(k, E)

? Compare to the independent particle model (IPM)

. Momentum dependence

|Mh(k)|2 = |〈h|ak|0〉|2 → |φh(k)|2

. Energy distribution

Fh(E − eh) =
1

π

Γh
(E − eh)2 + Γ2

h

→ δ(E − eh)

? The spectral function describes the probability of removing a particle
with momentum k from the target ground state leaving the residual
system with excitation energy E
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THE IMPULSE APPROXIMATION (IA)

? At λ = 2π/|q| � dNN , the average NN distance in the target nucleus

Σ
i

2 2
q,ω q,ω

i
x

? Basic assumptions

. current: Jµ(q) =
∑
i j
µ
i (q) +

∑
j>i j

µ
ij(q) ≈

∑
i j
µ
i (q)

. hadronic final state: |F 〉 → |p〉 ⊗ |n(A−1),pn〉

? As a zero-th order approximation, Final State Interactions (FSI) and
processes involving two-nucleon Meson-Exchange Currents (MEC) are
neglected
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IA CROSS SECTION

? Nuclear x-section

dσA =
∑
i

∫
d3kdE dσi Pi(k, E)

? The spectral function P (k, E), trivially related to the two-point Green’s
function, describes the energy and momentum distribution of the struck
nucleon in the target ground state

? Being a ground-state property, the spectral function can be obtained—at
least in principle—from accurate non-relativistic approaches

? The cross section dσi describes a scattering process involving an
individual nucleon

? Corrections arising from FSI and processes involving MEC—which are
known to be in general, non negligible—can be consistently calculated
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A SOMEWHAT SURPRISING RESULT

? Consider the momentum distribution

n(k) =

∫
dE Ph(k, ω)

? In the absence of correlations, the momentum distributions of a normal
Fermi fluid is known to exhibit a discontinuity at |k| = kF , and vanish
at |k| > kF . Based on this property, n(|k| > kF ) is often identified with
the contribution of correlations.

? A more careful analysis shows that the correlation contribution to n(k)
is, in fact, continuous across the Fermi surface, and extends smoothly
into the region of |k| < kF .

? The full momentum distribution can be written in the form

n(k) = Zkθ(kF − |k|) + δncorr(k) ,
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IMPLICATIONS FOR (e, e′p) EXPERIMENTS (A.D. 1990)
    [16] 

Nucleon-nucleon correlations and nuclear spectral functions 
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Nucleon-nucleon correlations and nuclear spectral functions 
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CORRELATION EFFECTS ON DIS

? Nuclear effects are long known to persist in scattering processes
involving high-energy electron

Depletion of valence-quark distributionAnti-shadowing Fermi motion
Sh

ad
o

w
in

g

0.9

1.0

1.2

1.1

0.2 0.80.60.4
x

1

σ   C(N)

σ  D

x1 x x2 3

JLAB-E03103 (C/D)
SLAC-E139 (C/D)

HERMES (N/D)

Figure 3: The ratio σC(N)/σD as a function of x from HERMES [29], SLAC-E139 [25], and
JLAB-E03103 [32]. Open squares denote W2 below 2 GeV2, where W is the invariant mass of
the photon-nucleon system.

• the ’shadowing’ region (0 < x < x1 ! 0.06), where the structure function ratio is smaller
than unity and decreases with decreasing x down to the value measured in photoproduction.
Here, the dominant contribution to the cross section is due to sea quarks. The essential
longitudinal distances ∆z probed in the deep-inelastic interaction (see section 5.1) are
∆z > 3 fm, much bigger than the size of a nucleon;

• the ’anti-shadowing’ region (x1 < x < x2 ! 0.3, 3 fm > ∆z > 0.7 fm), where the ratio
shows a small increase of a few percent over unity;

• the region (x2 < x < x3 ! 0.8, ∆z < 0.7 fm), where the ratio is smaller than unity with
a minimum near x ≈ 0.7. Here, the sea-quark distribution is essentially negligible and the
ratio reflects the behavior of the valence-quark distributions;

• the region (x3 < x < 1), where the ratio increases rapidly with increasing x. This behavior
is dominantly a kinematic effect since the free-nucleon cross section vanishes for x → 1. It
is partly also due to the Fermi motion of the bound nucleons in the nucleus.

4.3 Low-x data

In deep-inelastic scattering from stationary targets, the kinematic region of very low x can only
be accessed with muon beams, since those can be produced with much higher energies than
electron beams. The first of such measurements was performed by EMC-NA28, using a muon
detection system at small scattering angles down to 2 mrad and nuclear targets of C and Ca [12].
This experiment demonstrated that shadowing persist also at high values of Q2. The low-x
region was then explored in detail by NMC with nominal incident muon energies of 90–200
GeV [14, 15, 16, 17, 19, 20, 21] and at even lower values of x by E665 at FNAL with a mean
incident muon energy of 470 GeV.

NMC had the main objective to study the nuclear modification of the structure function
F2 with high precision. Cross section ratios were measured for nine nuclear species. In one

5

? Nuclear binding is believed to play the dominant role in the
region of the minimum at x ∼ 0.75
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JLAB DATA FOR LIGHT NUCLEI [J. SEELY et al. PRL (2009)]
? Accurate measurements of the EMC ratio for light nuclei, whose

properties can be accurately calculated using Quantum Monte
Carlo techniques

? Size of the EMC effect
characterised by the slope of
the cross section ratio in the
linear region 0.35 ≤ x ≤ 0.70
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FIG. 3: (Color online) EMC ratio for 3He [10]. The upper
squares are the raw 3He/2H ratios, while the bottom circles
show the isoscalar EMC ratio (see text). The triangles are the
HERMES results [11] which use a different isoscalar correc-
tion. The solid (dashed) curves are the SLAC A-dependent
fits to Carbon and 3He.

be applied to the nuclear ratios, and in the end, yields
a significantly smaller correction at large x, where the
uncertainty in the neutron structure function is largest.

While applying the isoscalar correction to the 3He
data, using the smeared F2n/F2p ratio, yields a more re-
liable result, there is still some model dependence to this
correction due to the uncertainty in our knowledge of the
neutron structure function. Ref. [14] demonstrated that
much of the inconsistency between different extractions
of the neutron structure function comes from compar-
ing fixed-Q2 calculation to data with varying Q2 values,
rather than from the underlying assumptions of nuclear
effects in the deuteron. Nuclear effects beyond what is
included in Ref. [14], such as the off-shell contribution
δ(off) of Ref. [15], yield a 1–2% decrease to the pro-
ton’s contribution to the deuteron thus increasing the ex-
tracted F2n/F2p ratio by 0.01–0.02. This yields a slightly
reduce correction for 3He which would raise the isoscalar
EMC ratio for 3He by 0.3–0.6% at our kinematics.

The observed nuclear effects are clearly smaller for 3He
than for 4He and 12C. This is again consistent with mod-
els where the EMC effect scales with the average density,
as the average density for 3He is roughly half that of the
12C. However, the results of 9Be are not consistent with
the simple density-dependent fits. The observed EMC
effect in 9Be is essentially identical to what is seen in
12C, even though the density of 9Be is much lower. This
suggests that both the simple mass- or density-scaling
models break down for light nuclei.

One can examine the nuclear dependence based on the
size of the EMC ratio at a fixed x value, but the normal-
ization uncertainties become a significant limiting factor.
If we assume that the shape of the EMC effect is univer-

sal, and only the magnitude varies with target nucleus,
we can compare light nuclei by taking the x dependence
of the ratio in the linear region, 0.35 < x < 0.7, using
the slope as a measure of the relative size of the EMC ef-
fect that is largely unaffected by the normalization. The
slopes are shown for light nuclei in Fig. 4 as a function of
average nuclear density. The average density is calculated
from the ab initio GFMC calculation of the spatial dis-
tributions [16]. Because we expect that it is the presence
of the other (A − 1) nucleons that yields the modifica-
tion to the nuclear structure function, we choose to scale
down this density by a factor of (A − 1)/A, to remove
the struck nucleon’s contribution to the average density.
The EMC effect for 3He is roughly one third of the effect
in 4He, in contrast to the A-dependent fit to the SLAC
data [2], while the large EMC effect in 9Be contradicts a
simple density-dependent effect.

One explanation for the anomalous behavior of 9Be is
that it can be described as a pair of tightly bound alpha
particles plus one additional neutron [17]. While most of
the nucleons are in a dense environment, similar to 4He,
the average density is much lower, as the alphas (and ad-
ditional neutron) ‘orbit’ in a larger volume. This suggests
that it is the local density that drives the modification.
The strong clustering of nucleons in 9Be leads to a special
case where the average density does not reflect the local
environment of the bulk of the protons and neutrons.

FIG. 4: (Color online) The circles show the slope of the
isoscalar EMC ratio for 0.35 < x < 0.7 as a function of nu-
clear density. Error bars include statistical and systematic
uncertainties.

Another possibility is that the x dependence of the
EMC effect is different enough in these light nuclei that
we cannot use the falloff with x as an exact measure of
the relative size of the EMC effect. This too suggests that
the EMC effect is sensitive to the details of the nuclear
structure, which would require further theoretical exami-
nation. At the moment, there are almost no calculations
for light nuclei that include detailed nuclear structure.

In conclusion, we have measured the nuclear depen-
dence of the structure functions for a series of light nu-
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Because these data are at somewhat lower Q2 than
previous high-x results, typically Q2=5 or 10 GeV2 for
SLAC E139 [2], extensive measurements were made to
verify that our result is independent of Q2. The struc-
ture functions were extracted at several Q2 values and
found to be consistent with scaling violations expected
from QCD down to Q2 ≈ 3 GeV2 for W 2 ≥ 1.5 GeV2,
while the structure functions ratios show no Q2 depen-
dence. Figure 1 shows the carbon to deuteron ratio for
the five highest Q2 settings (the lowest and middle Q2

values were measured with a 5 GeV beam energy). There
is no systematic Q2 dependence in the EMC ratios, even
at the largest x values, consistent with the observation
of previous measurements [3].
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FIG. 1: (Color online) Carbon EMC ratios [10] for the five
highest Q2 settings (Q2 quoted at x = 0.75). Uncertainties
are the combined statistical and point-to-point systematic.
The solid curve is the SLAC fit [2] to the Carbon EMC ratio.

For all further results, we show the ratios obtained
from the 40◦ data (filled squares in Fig. 1). While there
are data at 50◦ (open circles) for all nuclei, the statis-
tical precision is noticeably worse, and there are much
larger corrections for charge symmetric background and
Coulomb distortion (for heavier nuclei).

The EMC ratios for 12C, 9Be, and 4He are shown in
Fig. 2 along with results from previous SLAC extractions.
The 4He and 12C results are in good agreement with the
SLAC results, with much better precision for 4He in the
new results. While the agreement for 9Be does not ap-
pear to be as good, the two data sets are in excellent
agreement if we use the same isoscalar correction as E139
(see below) and take into account the normalization un-
certainties in the two data sets. In all cases, the new data
extend to higher x, although at lower W 2 values than the
SLAC ratios. The EMC ratio for 4He is comparable to
12C, suggesting that the modification is dependent on the
average nuclear density, which is similar for 4He and 12C,
rather than a function of nuclear mass.

Figure 3 shows the EMC ratio for 3He, with the low-x
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FIG. 2: (Color online) EMC ratios for 12C, 9Be, and 4He [10],
compared to SLAC [2]. The 9Be results include a correc-
tion for the neutron excess (see text). Closed (open) circles
denote W 2 above (below) 2 GeV2. The solid curve is the
A-dependent fit to the SLAC data, while the dashed curve
is the fit to 12C. Normalization uncertainties are shown in
parentheses for both measurements.

data from HERMES. Note that the HERMES 3He data
have been renormalized by a factor of 1.009 based on
comparisons of their 14N EMC effect and the NMC 12C
result [11]. We show both the measured cross section
ratio (squares) and the “isoscalar” ratio (circles), where
the 3He result is corrected for the proton excess. Previ-
ous high-x EMC measurements used a correction based
on an extraction of the F2n/F2p ratio for free nucleons
from high Q2 measurements of F2d/F2p. We use global
fits [12, 13] to the free proton and neutron cross sections
evaluated at the kinematics of our measurement and then
broadened using the convolution procedure of Ref. [14] to
yield the neutron-to-proton cross section ratio in nuclei.
Using the “smeared” proton and neutron cross section
ratios more accurately reflects the correction that should
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ROLE OF CORRELATIONS

? The slopes obtained from JLab data, supplemented with the value
extracted from the extrapolation to the A→∞ limit, exhibit a
remarkable linear correlation with

〈E〉 =

∫
d3k dE E P (k, E)

? The energy 〈E〉, providing a
measure of the off-shellness of the
struck nucleon, is the intrinsic
scale of nuclear effects,
independent of beam energy

? The value of 〈E〉 is strongly
affected by correlations. In
carbon, including correlations
leads to a ∼ 50% increase:
〈E〉 ≈ 26 MeV→ 52 MeV
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OUTLOOK

? Correlations effects in nuclei are a very elusive subject, which has been
extensively investigated for almost sixty years

? The Green’s function formalism is ideally suited to identify correlation
effects, and highlight their non trivial momentum and energy
dependence

? Early experimental studies, aimed at pinning down departures from the
predictions of the independent-particle model, exploited the (e, e′p)
reaction to obtain information on the spectral function in the region of
low removal energy

? Inclusive (e, e′) processes, including nuclear DIS, have been also shown
to be sensitive to correlations, although the relation of the measured
cross sections to the spectral function is somewhat indirect

? A study of semi-exclusive reactions—analog to the (e, e′p)—in the deep
inelastic regime has the potential to provide quantitative information on
correlations, needed to pin down nuclear modification of the nucleon
structure functions.

14 / 14



Backup slides
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SPECTRAL FUNCTION OF 16O

? The spectral function of medium-mass nuclei has obtained combining
(e, e′p) data and results of accurate nuclear matter calculations within
the Local Density Approximation (LDA)

? shell model states account for ∼ 80% of the strength

? the remaining ∼ 20% originates from the correlation continuum
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