

Tagged nucleon at the EIC

Kong Tu*, BNL

(Image made by BNL on d+Au ultra-peripheral collisions with neutron tagging)

*In collaboration with A. Jentsch, C. Weiss, and others.

Last talk of a 5-day workshop...

Never underestimate the joy people derive from hearing something they already know.

Enrico Fermi

Motivation

This workshop focus on the EMC

In this talk, I will provide a few studies that range from high-x to low-x physics with a totally different machine and capability the Electron-lon Collider (EIC)

Nuclear effects span over a wide range of phase space

Climbing the `mountain` from a different route

Short-distance dynamics and tagged DIS has been and will be extensively studied at Jefferson lab.

Questions:

- Will the EMC be solved by then?
- How to further understand the origin of nuclear effects, from light to heavy nuclei, from high to low-x?

> What would be left for the EIC?

Electron-Ion Collider

EIC can deliver deuterium to Uranium, p/d(?)/He3 polarization, wide acceptances, and energy up to 140 GeV

Electron-Ion Collider and ePIC

EIC can deliver deuterium to Uranium, p/d(?)/He3 polarization, wide acceptances, and energy up to 140 GeV

Electron-Ion Collider and ePIC

EIC can deliver deuterium to Uranium, p/d(?)/He3 polarization, wide acceptances, and energy up to 140 GeV

Free neutron (nucleon) structures from tagging

Easily reach zero momentum in the ion rest frame at the EIC via tagging.

Tagged protons to probe free neutrons

Detector	Used for	θ accep. [mrad]	ζ accep.
 B0 tracker	p	5.5 - 20.0	N/A
Off-Momentum	p	0.0 - 5.0	0.45 – 0.65
Roman Pots	p	0.0 - 5.0	$0.6 - 0.95^*$
Zero-Degree Calorim.	n	0.0 - 4.0	N/A

BeAGLE - general purpose eA MC, *Phys.Rev.D* 106 (2022) 1, 012007

Jentsch, Tu, Weiss, Phys. Rev. C 104 (2021) 6, 065205

Tagged protons to probe free neutrons

Jentsch, Tu, Weiss, Phys. Rev. C 104 (2021) 6, 065205

Free vs Bound nucleons

- > Advantages of studying the EMC effect at the EIC:
 - Lepton side Wide kinematic range in Q² (e.g., test high Q², higher twists).
 - Deuteron side Lorentz boost provides wide range in spectator kinematics, in terms of spectator p_T and light-cone momentum fraction *α*.
 - Driving virtuality from both directions.

Tagged EMC effect

virtuality

Ciofi et al. https://arxiv.org/abs/0706.2937

Two ways to drive virtuality

EMC Weight Distribution, $0.45 < x_n < 0.55$

One experimental test is to see if the EMC effect (modification) is the same:

(1-alpha)*m_N ~ p_T ~ @ constant contour

1- Reaching high virtuality from p_T

- Reduced cross section ratio between x_{bj} = 0.2 and x_{bj} = 0.5
- Detector effects are very small, driven by beam effects
- Luminosity requirement ~ 10 fb⁻¹, which is challenging

1- Reaching high virtuality from p_T

At the RECO level:

- Very well reconstructed with good acceptance and momentum resolution.
- > $p_T^2 < \sim 0.04 \text{ GeV}^2$ (Off Momentum Detector)
- > p_T^2 > ~ 0.04 GeV² (**B0 tracker**) dominated

2 - Reaching high virtuality from alpha

- > Reduced cross section ratio between x_{bj} = 0.2 and x_{bj} = 0.5
- Detector effects are very small, driven by beam effects
- Luminosity requirement ~ 10 fb⁻¹, which is challenging

Where's the best place to look?

Initial-state modification vs **Final-state** Interaction (see C. Weiss' talk)

Figure: p_T integrated cross section up to 0.4 GeV.

$$\frac{\sigma_n[\text{bound}]}{\sigma_n[\text{free}]} = 1 + \frac{t}{\langle t \rangle} f_{\text{EMC}}(x_n)$$

High x & alpha region has the best shot to separate EMC and FSI!

Brookhaven

ational Laboratory

Exclusive observables, e.g., Vector Meson, electroproduction off deuteron with spectator tagging.

- Shadowing effect (M. Strikman, V. Guzey, C. Weiss....)
- Incoherent production sensitive to fluctuations. (H. Mäntysaari, B. Schenke)
- Gluonic radius of bound nucleon (ZT, A. Jentsch, M. Baker et al)
- Tagging in heavy nuclei (eA program in ePIC)

Brookhaven

ational Laboratory

Exclusive observables, e.g., Vector Meson, electroproduction off deuteron with spectator tagging.

- Shadowing effect (M. Strikman, V. Guzey, C. Weiss....)
- Incoherent production sensitive to fluctuations. (H. Mäntysaari, B. Schenke)
- Gluonic radius of bound nucleon (ZT, A. Jentsch, M. Baker et al)
- Tagging in heavy nuclei (eA program in ePIC)

Ultra-Peripheral Collisions can be a complementary probe

Incoherent VM production

(from B. Schenke's talk)

Incoherent diffraction:

Initial state: $|i\rangle$; Final state: $|f\rangle$; Amplitude for diffractive scattering: \mathscr{A} Squared transition amplitude, which enters in the cross section: H. I. Miettinen and J. Pumplin, Phys. Rev. D18 (1978) 1696

$$\sum_{f \neq i} |\langle f | \mathscr{A} | i \rangle|^{2} = \sum_{f} \langle i | \mathscr{A}^{*} | f \rangle \langle f | \mathscr{A} | i \rangle - \langle i | \mathscr{A} | i \rangle \langle i | \mathscr{A}^{*} | i \rangle$$
$$= \langle i | \mathscr{A}^{*} \mathscr{A} | i \rangle - |\langle i | \mathscr{A} | i \rangle|^{2}$$

Sum over final states includes all possible states for the final state target Average over all possible initial states \rightarrow cross section

$$\frac{d\sigma^{\gamma^*A \to VA}}{dt} = \frac{1}{16\pi} \left(\left\langle \left| \mathscr{A}^{\gamma^*A \to VA} \right|^2 \right\rangle - \left| \left\langle \mathscr{A}^{\gamma^*A \to VA} \right\rangle \right|^2 \right)$$
Björn Schenke, BN

(known as the Good-Walker picture)

[made by A. Kumar (IIT, Delhi)]

Ultra-Peripheral Collisions

Collisions that don't "collide":

- Strong EM field ~ quasi-real photons;
- Zα_{EM} ~ O(1), overcomes the weak coupling by large photon flux;
- Impact parameter b > 2R_A, but cannot be controlled event-by-event;
- Photon energy is unknown, unless inferred by the final-states

Fluctuation of parton density?

UPC d+Au data, PRL 128 (2022) 12, 122303

First spectator tagging of deuteron in high energy experiment.

Fluctuation of parton density?

EIC with wide tagging capabilities can provide further insights to fluctuation.

Triple Tagging: DEMP as a probe of spin polarization of Λ hyperon

 $e+p \rightarrow e' + K^+ + \Lambda^0$ with beam polarization.

Self-analyzing weak decay of Λ^0 can measure spin polarization.

$$\frac{\mathrm{d}N}{\mathrm{d}\cos(\theta^{\star})} = 1 + \alpha P_{\Lambda}\cos(\theta^{\star})$$

 θ^* is the angle btw the proton daughter and spin axis in Λ^0 rest frame

Triple Tagging: DEMP as a probe of spin polarization of Λ hyperon

Self-analyzing weak decay of Λ^0 can measure spin polarization.

 $\frac{\mathrm{d}N}{\mathrm{d}\cos(\theta^{\star})} = 1 + \alpha P_{\Lambda}\cos(\theta^{\star})$

 θ^* is the angle btw the proton daughter and spin axis in Λ^0 rest frame

 $e+p \rightarrow e' + K^+ + \Lambda^0$ with beam polarization.

Tagging Pion, Kaon, Proton in the same event - t
➤ Which direction Λ hyperon will be polarized?
➤ What about polarized deuteron?

See more next week at the Warsaw Meeting for EIC Det 2

Overview: what can be tagged down to $p_T = 0$

Light nuclei & protons

EIC ePIC detector:

(x > 0.01A)

Protons (coherent) Breakup protons (incoherent) Breakup neutrons (incoherent)

EIC Detector 2 with secondary focus: Protons (coherent) D² (coherent) He³ (coherent) He⁴ (coherent)

Heavy nuclei

EIC ePIC detector:

Heavy nuclei (via vetos) Breakup protons (incoherent) Breakup neutrons (incoherent)

EIC Detector 2 with secondary focus: Heavy nuclei (via vetos)

Tagging A-1 is possible up to Zr⁹⁰

For higher p_T , the capabilities will change as expected and tagging will be easier.

Summary

EIC will expand to higher energy (lower-x), higher Q², and with wide acceptances and beam polarizations.

- complementary to Jlab experiments and the heavy-ion experiments.

Tagged nucleon program will be a new experimental tool to understand nuclear effects and **short-distance dynamics**, from light to heavy nuclei, and from high to low x.

EIC second detector may have even better capability for tagging physics!

Short-distance nuclear structure and pdfs, July 2023

Short-distance nuclear structure and pdfs, July 2023

Complementarity: UPC and EIC

EIC

Electroproduction (virtual photons)

 Q^2 – an independent hard scale

CM energy, W ~ [9, 86] GeV, x ~ 10⁻⁴ - 10⁻²

Deuterium to Uranium

Large far-forward coverage, esp. for nuclear breakup.

Naively, UPCs is an "easier" option to probe saturation.

UPCs kinematics & challenges

Zα_{EM} ~ O(1), overcomes the weak coupling by large photon flux;

Three challenges:

- a) Impact parameter b > 2R_A, but cannot be controlled event-by-event;
 How to know its photon-induced interactions?
- b) Kinematics is unknown, unless inferred by the final-states:

what is the C.o.M energy (e.g., W)?

c) Photon energy is ambiguous in AA UPCs: *who is the photon emitter?*

Vector Meson photoproduction sensitive to xG(x,Q²)

- One that ticks all the boxes...

Coherent (target stays intact)	Incoherent (target breaks up)	
Average gluon density*	Event-by-event gluon density fluctuations*	
Momentum transfer (<i>t</i>) and transverse spatial position (<i>b</i>) are Fourier transforms of each other;		

* known as the Good-Walker Paradigm

UPC VMs measurement:

- Large rapidity gap and only 1 VM in central rapidity.
- *t* is approximated by: $t \sim (\mathbf{k}_{T,photon} + \mathbf{p}_{T,VM})^2 \sim (\mathbf{p}_{T,VM})^2$, photon <k_T> is 30-40 MeV
- W is determined by exclusivity: $W^2 = 2E_N M_{VM} Exp(-y)$

Incoherent J/ ψ cross section vs p_T^2

- Compared to the H1 data with free proton.
 The suppression factor ~ is 40%.
 Stronger than that for coherent production.
- Models have found that the H1 data supports sub-nucleonic fluctuation. [Phys. Rev. Lett. 117 (2016) 5, 052301]
- STAR data shows the bound nucleon has a similar shape in p_T² as the free proton, indicating similar sub-nucleonic fluctuation in heavy nuclei. [Phys. Rev. D 106 (2022) 7, 074019]

