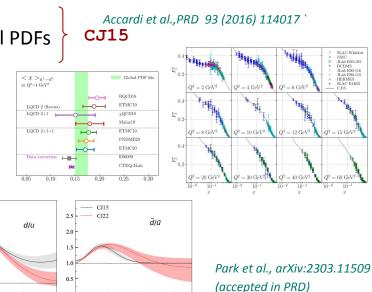
PDFs and nuclear structure in the CJ global analysis

Alberto Accardi

with many thanks to my CTEQ-JLab collaborators: I. Fernando, X. Jing, S.Li, J. Owens, S. Park, C.E. Keppel, W. Melnitchouk, P. Monaghan

Short-Distance Nuclear Structure and PDFs

Jefferson Lab, 20 June 2023



This work is in part supported by the DOE Office of Science

The CTEQ-JLab collaboration

- Coordinated Theory-Experiment Effort with Jefferson Lab:
 - A. Accardi, Xiaoxian Jing, Ishara Fernando, W.Melnitchouk, J.F.Owens
 - C.E. Keppel, Shujie Li, P. Monaghan, Sanghwa Park
- Focus and recent work:
 - Large-x, low- $Q^2 \rightarrow TMC$, HT
 - Nuclear dynamics \rightarrow p,n motions, off-shell PDFs
 - F2(n) extraction, CJ15ht and CJ15sfn (S. Li, I. Fernando)
 - Light antiquarks, CJ22
 (S. Park, X. Jing)
 - In the works (S. Park)
 - \rightarrow [Strange sea with LHC data]
- **nCTEQ connection** → nPDFs

0.6

0.8

0.2

0.4

0.6

0.2

Today's story:

• Valence quarks and the deuteron

• Uncertainties and biases

• Theoretical biases at large x

- Interplay of HT and off-shell corrections
- Interplay of dbar/ubar (at medium x) with d/u and HT (at large x)

• Perspectives

- Tagged protons and neutrons
- \circ $\,$ PVDIS on p and D $\,$
- $\circ \ldots \leftarrow discussion$
- **Extras**, if you are interested or not hungry:
 - F2(n) and F2(n/p) extraction
 - nCTEQ: nuclear PDF fits with JLab data and large x corrections

References

Large-x fits with nuclear corrections

- **CJ15**: Accardi et al., <u>PRD 93 (2016) 114017</u>
 - Accardi, DNP 2020 / Fernando, GHP 2021 / Accardi, APS 2022
- CJ22: Accardi et al. PRD 107 (2023) 113005
- AKP: Alekhin, Kulagin, Petti, PRD 96 (2017) 054005 & arXiv:2203.07333
- JAM: Cocuzza et al. (JAM), PRL 127 (2021) 24
- nCTEQ15HIX: Accardi et al., <u>PRD 103 (2021) 114015</u>

PDF uncertainties

• Hunt-Smith, Accardi, Melnitchouk, Sato, Thomas, White, <u>arXiv:2206.10782</u>

PVDIS study

• Brady, Accardi, Hobbs, Melnitchouk, PRD 84 (2011) 074008

Light quark asymmetry, QCD analysis

- Park, Accardi, Jing, and Owens, <u>arXiv:2108.05786</u>
- Guzzi et al. (CT), <u>arXiv:2108.06596</u>
- Cocuzza et al. (JAM), <u>PRD 104 (2021) 074031</u>
- Alekhin, Garzelli, Kulagin, Moch, <u>arXiv:2306.01918</u>

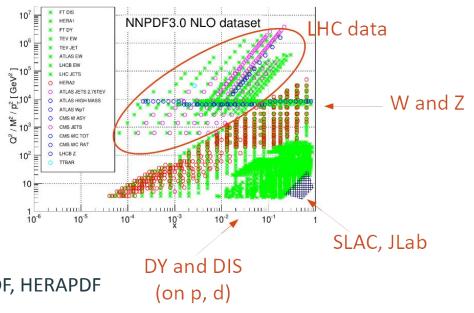
General References

QCD global analysis from protons to nuclei:

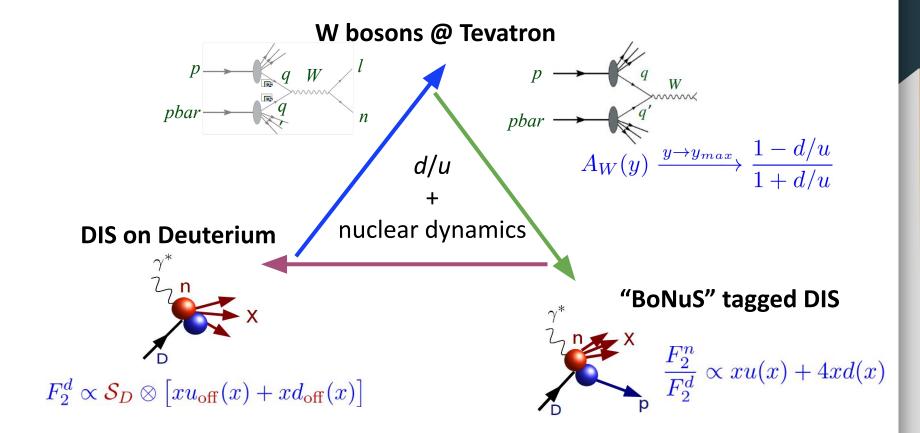
- Accardi, <u>PoS DIS2015 (2015) 001</u>
- Jimenez-Delgado, Melnitchouk, Owens, <u>J.Phys.G40 (2013) 093102</u>
- Ethier, Nocera, Ann. Rev. Nucl. Part. Sci. (2020) 70, 1-34

QCD global analysis and statistical methods:

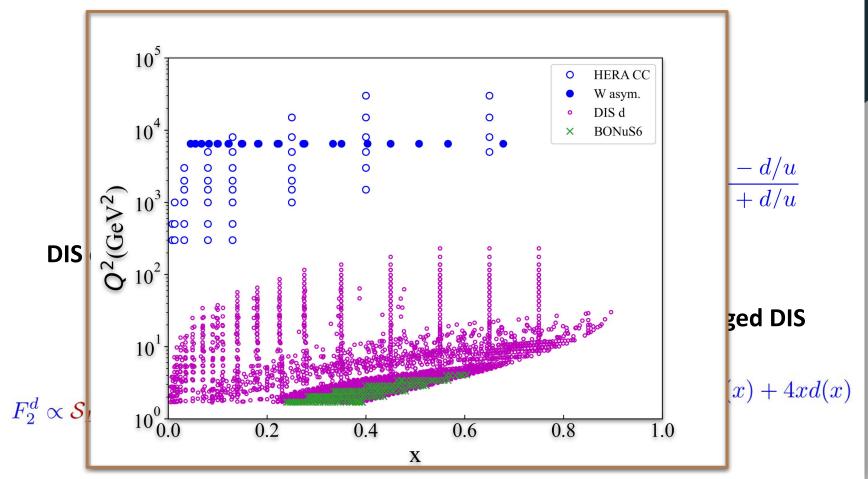
• Kovarik, Nadolsky, Soper, <u>*Rev.Mod.Phys.* 92 (2020) 4, 045003</u>


• Valence quarks and the deuteron

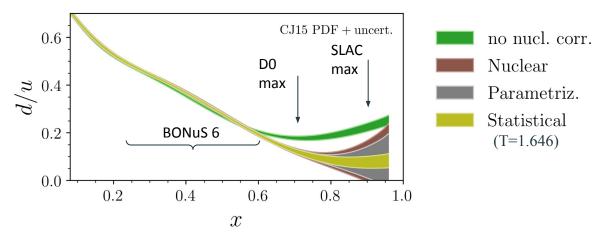
• Uncertainties and biases


Global QCD fits

 $d\sigma_{\text{hadron}} = \sum_{f_1, f_2, i, j} \phi_{f_1} \otimes \hat{\sigma}_{\text{parton}}^{f_1 f_2 \to ij} \otimes \phi_{f_2}$ PDFs (from DIS fits)


- pQCD factorization & universality: can fit PDFs to a variety of hard scattering data
 - Hadron-hadron collisions
 - \rightarrow Jets
 - → Electro-weak boson production
 - Electron-proton DIS
 - Electron-Deuteron DIS
- >1000's data points
- 40+ years of experience,
 - "High-energy" fitters:
 - \rightarrow CTEQ-TEA, MMHT, NNPDF, HERAPDF
 - Lower-energy / nuclear focus:
 - → CTEQ-JLab, AKP, ABMP, JAM

Large-x PDFs: the valence quark triangle



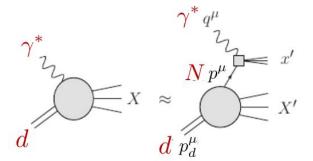
Large-x PDFs: the valence quark triangle

Short-Distance Nuclear Structure and PDFs - 20 June 2023

The CJ15 d/u ratio

- Statistical uncertainties
 - Propagated from exp. stat. errors into the PDF parameters
- Theoretical uncertainties: difficult to quantify, e.g.:
 - <u>Nuclear</u>: wave function choice (here: WJC2, AV18, CD-Bonn)
 - \circ <u>Off-shell uncertainties</u> are parametrized \rightarrow partly included in statistical band
 - <u>Parametrization</u>: *d*-quark flexibility in extrapolation region
- Theoretical biases: even less obvious!
 - Interplay of HT and offshell implementation choices / parametrization flexibility

• Theoretical biases at large x


• Interplay of HT and off-shell corrections

• Interplay of d/u (at large x) and dbar/ubar (at medium x)

Deuteron 1: Fermi motion and binding

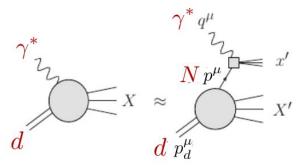
• Weak binding approximation:

- Incoherent scattering from not too fast individual nucleons
- Neglects FSI

$$F_{2d}(x,Q^2) = \int \frac{dz}{z} dp_T^2 \mathcal{K}(z,p^2,\gamma) \left| \psi_{N/d}(|\vec{p}|) \right|^2 F_{2N}(x/z,Q^2,p^2)$$
kinematic and
"flux" factors Nucleon wave function

$$\rightarrow z = \frac{p \cdot q}{p_d \cdot q} \approx 1 + \frac{p_0 + \gamma p_z}{M} \left[p_0 = M + \varepsilon, \ \varepsilon = \varepsilon_d - \frac{\vec{p}^2}{2M} \right]$$
momentum fraction of d carried by N

$$\rightarrow \text{ at finite } Q^2, \ \gamma = \sqrt{1 + 4x^2p^2/Q^2}$$


quantifies how far the nucleon is from the light cone ($\gamma = 1$)

Short-Distance Nuclear Structure and PDFs - 20 June 2023

Deuteron 2: Off-shell corrections

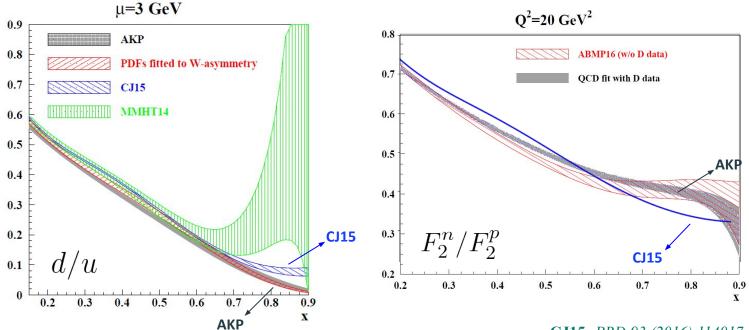
• Nucleons are bound in the deuteron:

- $^{\circ}$ $p^2 < M^2$
- Structure functions are deformed (but not too much if x not too large)

• Offshell expansion:

- Expand PDFs in nucleon's virtuality $q_N(x,Q^2,p^2) = q_N^{\text{free}}(x,Q^2) \left[1 + \frac{p^2 M^2}{M^2} \delta f_q^N(x)\right]$
- \circ With flavor-independent δf

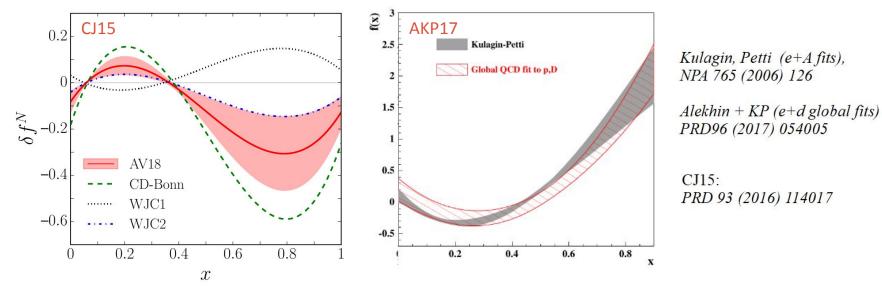
$$F_{2N}(x,Q^2,p^2) = F_{2N}^{\text{free}}(x,Q^2) \left[1 + \frac{p^2 - M^2}{M^2} \delta f(x) \right]$$


Free proton, neutron structure function

- Parametrized and fitted (see the earlier triangle)
 - \rightarrow CJ15, AKP, JAM

"offshell function"

When fitted, this effectively becomes a phenomenological "catch-all" term (see later)


CJ15 and AKP: free nucleons

CJ15: PRD 93 (2016) 114017 AKP: PRD 96 (2017) 054005 (see also 2203.07333)

- AKP has smaller *d/u* but bigger *n/p* ???
 - Not possible at Leading Twist!
 - $\circ \rightarrow$ Large HT contributions to high-*x n/p* ratio

CJ15 and AKP17: off-shell function

• Different shape and size ??

CJ + AKP benchmarking effort

- But many (<u>MANY</u>) differences
 - Extended d-quark (CJ15) vs. conventional (AKP, d/u-->0)
 - Fit real W asymetry vs. only decay lepton $W \rightarrow I + (n)$ asymmetry
 - Off-shell, HT choices, and their interplay

The most important, in our opinion!

Ο

. . .

HT systematics

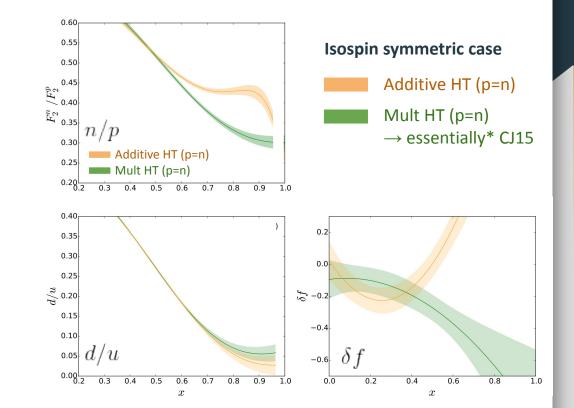
CTEQ-JLab study, in progress See also Accardi, talk at DNP 2020

- HT assumptions
 - Additive vs. Multiplicative
 - \rightarrow In both cases, Q^2 -independent
 - Isospin symmetric or not

 $F_2(x,Q^2) = F_2^{LT}(x,Q^2) + \frac{H(x)}{Q^2}$ $F_2(x,Q^2) = F_2^{LT}(x,Q^2) \left(1 + \frac{C(x)}{Q^2}\right)$

- Isospin and Q² assumptions are not independent
 - e.g., a Q²-independent, isospin symmetric multiplicative HT generates an equivalent additive HT that depends on both

 $\widetilde{H}_{p,n}(x,Q^2) = C(x) F_{2p,n}^{LT}(x,Q^2)$

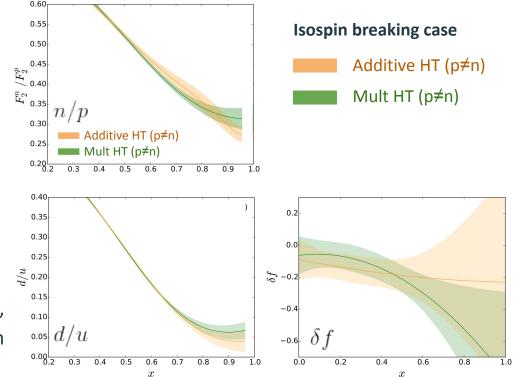

- Non-negligible large-*x* bias
 - if using isospin-independent coefficients
 - \rightarrow Multiplicative (CJ15) underestimates
 - \rightarrow Additive (AKP17) overestimates (H > 0)

$$\frac{n}{p} \xrightarrow[x \to 1]{} \begin{cases} \frac{1}{4} & \text{mult. } p = n \\ \frac{1}{4} + \frac{H}{u} & p \neq n \\ \frac{1}{4} + 3\frac{H}{u} & \text{add. } p = n \end{cases}$$

CJ fits - isospin symmetric HT

CTEQ-JLab study, in progress See also Accardi, talk at DNP 2020

- Additive *n/p*
 - Larger than Mult *n*/*p*
 - Even if *d/u* is smaller
- Fitted offshell function compensates n/p bias
 - \circ *D*/*p* well fitted, indeed
- CJ15/AKP17 differences are reproduced!
 - And explained

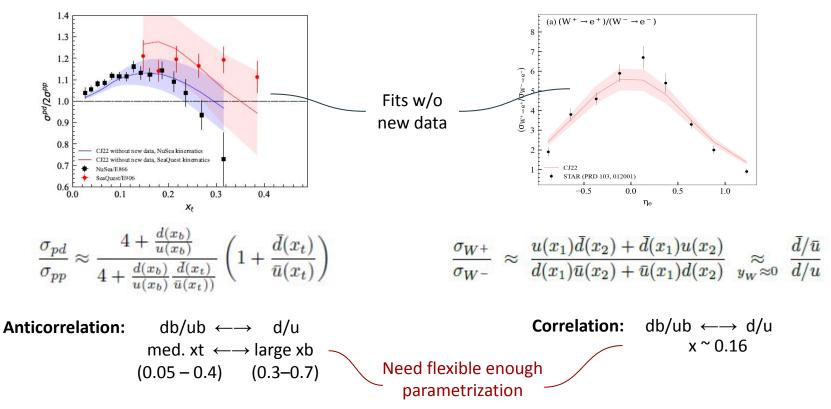

* uses generic 2^{nd} order polynomial δf

CJ fits - isospin breaking HT

CTEQ-JLab study, in progress See also Accardi, talk at DNP 2020

• Bias removed !!!

- Small systematics remains
- n/p & d/u
 - Much closer to CJ15
 - Attention when using AKP!
- Small *δf* offshell correction
 - When averaged over *p* and *n*
 - Large cancellation is possible, but need A=3 data to confirm (*Tropiano et al., PRC 2019*) (*Cocuzza et al., PRD 2021*)


• Theoretical biases at large x

- Interplay of HT and off-shell corrections
- Interplay of d/u (large x) and dbar/ubar (med. x)

New electroweak data

SeaQuest

CJ22: new light antiquark parametrization

• CJ15: Accardi et al., PRD 93 (2016) 11

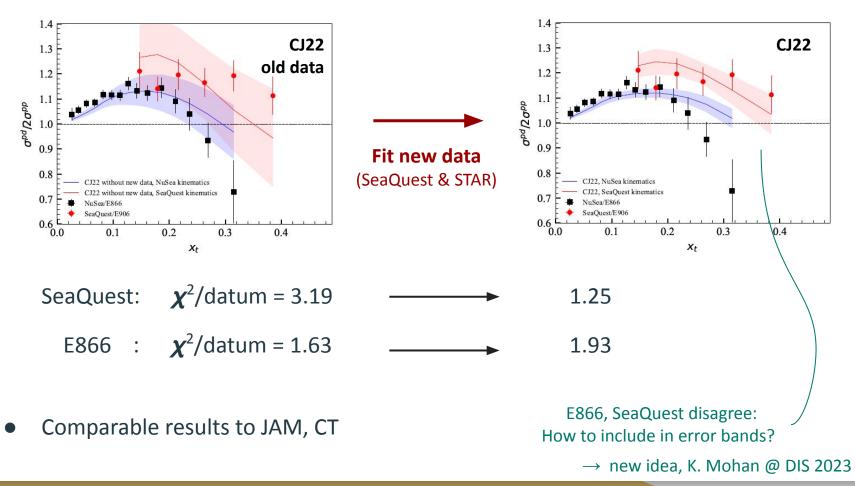
$$\bar{d}/\bar{u} = a_0 x^{a_1} (1-x)^{a_2} + 1 + a_3 x (1-x)^{a_4}$$

- Large *x*: tends to 1 from above
- \circ a₀ and a₃ fixed: shape "hugs" E866 data

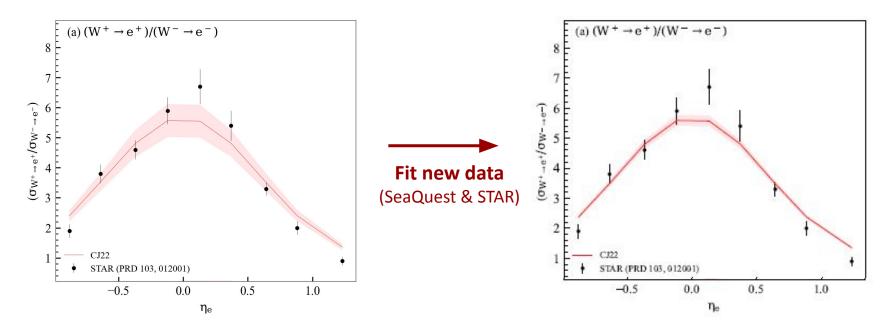
• CJ22: follows CJ15-a, reverts back to CJ12 param: Accardi et al., PLB 801 (2020) 135143

$$x(\bar{d} - \bar{u}) = \bar{a}_0 x^{\bar{a}_1} (1 - x)^{\bar{a}_2} (1 + \bar{a}_4 x)$$

- Unconstrained $x \rightarrow 1$ limit
- \circ Free \bar{a}_2 instead of fixing $\bar{a}_2 = a_2 + 2.5$

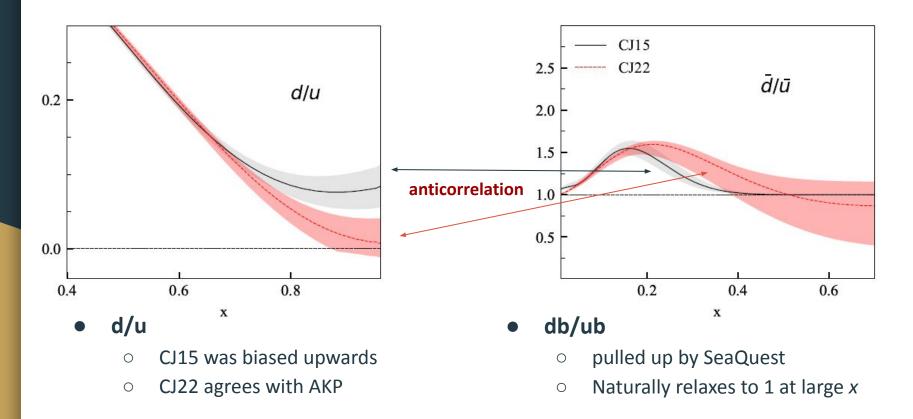

More flexibility \sim more data, fix extra parameters sensitivity to db/ub $\leftarrow \rightarrow$ d/u anticorrelation

Ο

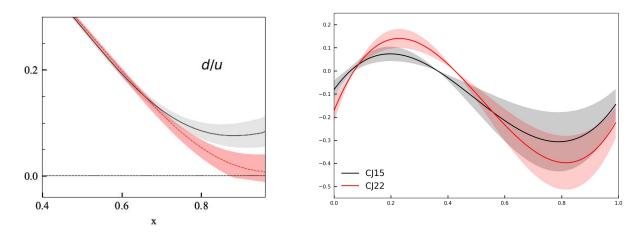

CJ22: new fit framework

- Electroweak pair production (Xiaoxian Jing)
 - ο γ, **W, Z**
 - DYnamical NLO calculations with APPLgrid + MCFM
 - Tested against E866, D0 W asymmetry in CJ15
 - \circ ~ New MCFM grids for STAR W and Z production
 - \rightarrow Preliminary grids also for W and Z at the LHC
- "Adjusted" Hessian approximation Accardi et al., EPJC 81 (2021) 7
 - Constrained observables (e.g., $n/p \leftarrow \rightarrow d/u$ at large x)
 - Regions with poor data constraints (e.g., db/ub at x > 0.3, extrapolation)

Lepton Pair Production



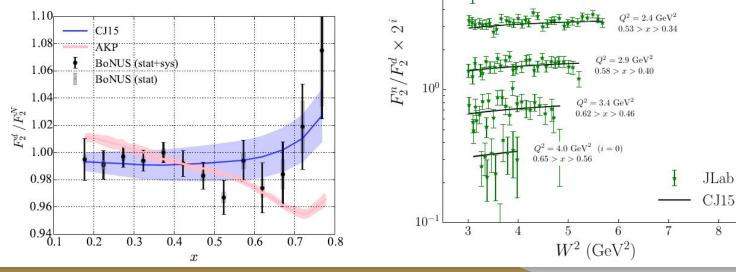
Weak boson production

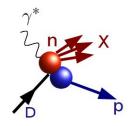

- Large reduction in uncertainty driven by SeaQuest data
- STAR contributes ~ 15% reduction around x~0.16
 - distributed between d/u (5%) and db/ub (10%) PDF ratios

Light quarks and anti quarks

What about the offshell function?

- No big change!
 - Difference in d/u largely absorbed by HT term
 - But, HT still multiplicative, p=n, old parametrization

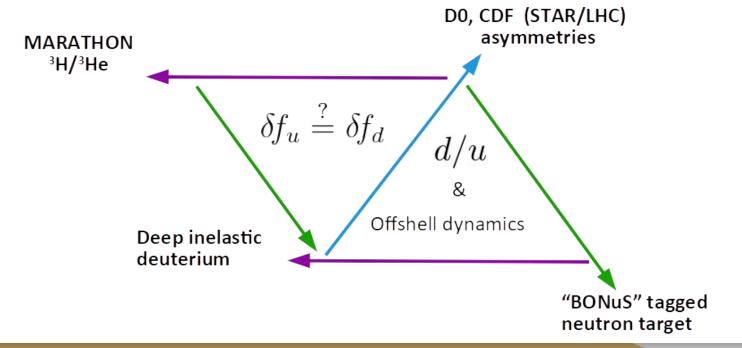



- Need to revisit the HT/offshell unbiasing analysis with CJ22
 - Allow p=n, polynomial offshell parametrization, mult vs. add HT
 - Expect small, approx 0 offshell function
 - \rightarrow Similar to JAM result

• Open Questions & Perspectives

- Tagged protons and neutrons
- \circ $\,$ PVDIS on p and D $\,$
- $\circ \ldots \leftarrow discussion$

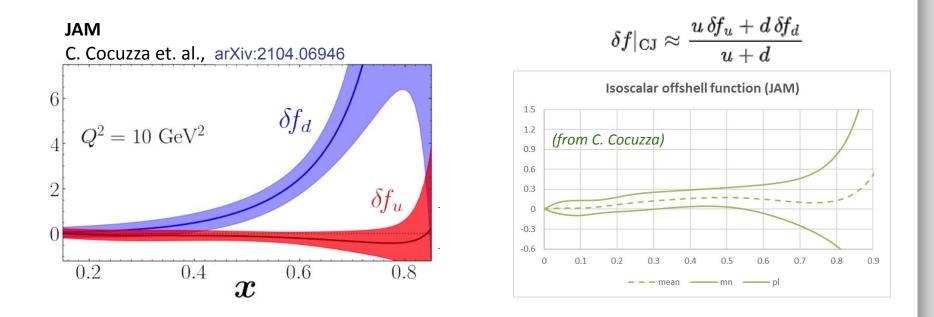
- Can we confirm the nuclear model used? Is δf zero or negative?
 - Need direct experimental sensitivity to δf (through p^2 dependence)
 - Tagged DIS experiments at JLab 6, 12 and EIC
 - \rightarrow With p^2 binning!
- To start with, BONuS 6 don't seem to disagree! 101
 - But may not be precise enough at large x



(i = 5)

• We can extend the large-*x* triangle to a parallelogram

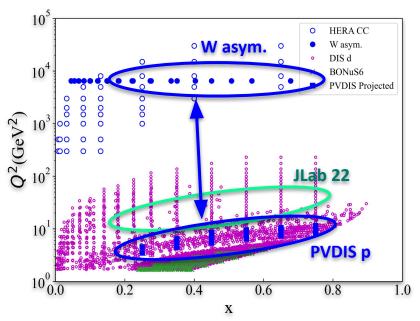
→ and verify if off-shell is flavor independent or not !!


 \rightarrow ...hence if off-shell protons ~ off-shell neutrons

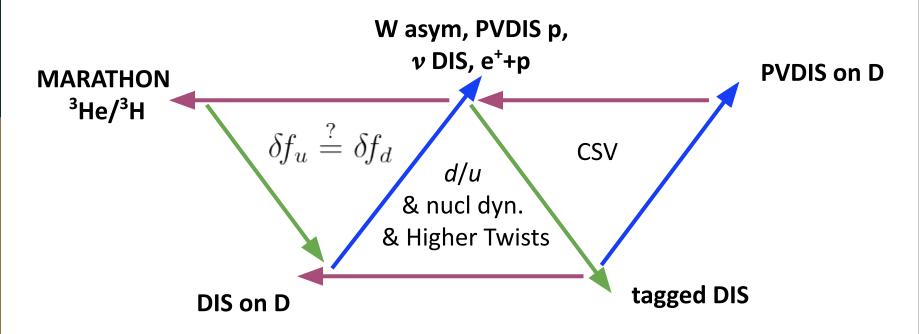
• Can extend the large-*x* triangle to a parallelogram

→ and verify if off-shell is flavor independent or not !!

 \rightarrow ...hence if off-shell protons ~ off-shell neutrons



- Can extend the large-*x* triangle to a parallelogram
 - → and verify if off-shell is flavor independent or not !!


 \rightarrow ...hence if off-shell protons ~ off-shell neutrons

- But is also $\delta f_u^p \stackrel{?}{=} \delta f_d^n$ as assumed in the JAM analysis?
 - Are there nuclear-level CSV effects?
- How to tell?
 - PVDIS on protons and deuterons?

Need half a honeycomb, at least!

- Global QCD analysis is a powerful tool:
 - \rightarrow d/u, nuclear dynamics, parton correlations, CSV
 - \rightarrow PVDIS still relevant in BONuS 12 / Marathon era !!

Finally...

Final thoughts

• Large-x data analysis in global QCD fits: PDFs and nuclear structure!

- Needs careful attention to systematic bias
 - \rightarrow HT assumptions can deform the extracted offshell function
 - \rightarrow Isospin-asymmetric parameterization is needed
 - □ How to best formulate this
 - □ Is charge symmetry a suitable assumption?
 - \rightarrow Is the off-shell expansion framework too naive?
- Need
 - Spectator tagging data binned in v = p^2/M^2 1 !!
 - \rightarrow Direct test of off-shell expansion,
 - and test of FSI models *e.g., talk by C.Weiss*
 - → Cross check with on-shell extrapolated data (Sargsian & Strikman, Weiss et al.)
 - PVDIS in a global QCD analysis
 - \rightarrow Proton: will contribute to d/u fit precision and accuracy
 - \rightarrow Deuteron: with HT under control, can focus on CSV / BSM / EMC

Final thoughts

- High-quality data is expected
 - Need high-quality phenomenology and theory
 - \rightarrow We are in time to develop this! see talks by Rinaldi, Fornetti, Weiss
- For example,
 - Nuclear/off-shell and CSV corrections currently assume

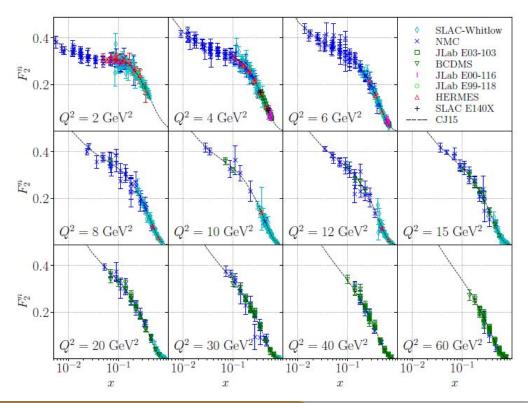
 $D = \mathcal{S} \otimes [p+n] = \mathcal{S} \otimes [(u^*u^*d^* + \ldots) + (u^*d^*d^* + \ldots)]$

- \rightarrow Neglects higher Fock hadronic states
- \rightarrow Off-shell function may just be a phenomenological, cover-all blanket
- Maybe better to describe the Deuteron at parton level?

$D = \begin{bmatrix} u \, u \, d \, u \, d \, d + \dots \end{bmatrix}$

- \rightarrow Lattice QCD powerful enough these days, can guide pheno assumptions
- Novel ideas e.g., hard gluon exchange at large x talk by Sargsian

Thank you!

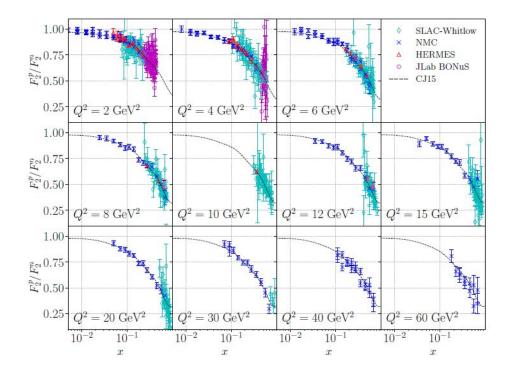


F₂(n) extraction and applications S. Li & CJ – nearly finished

• Basic idea:
$$\widehat{F}_2^{n(0)}(x,Q^2) = \frac{2 \,\widehat{F}_2^{d(0)}(x,Q^2)_{\exp}}{R_{d/N}^{\text{CJ}}(x,Q^2)} - \widehat{F}_2^{p(0)}(x,Q^2)_{\exp}$$

• But also:

- P, d data matching
- Data cross normalization
 - \rightarrow using CJ15 PDFs
 - → refitting norm,
 Correlated shifts
- Bin-centering for Isosinglet moment
- o ...
- Similarly for n/d & d/p \rightarrow n/p

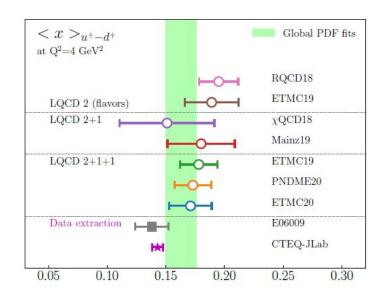

F₂(n) extraction and applications S. Li & CJ – nearly finished

- Similar idea, but using
 - d/p data

$$\widehat{R}_{n/p}^{(0)} \equiv \frac{2\,\widehat{R}_{d/p}^{\exp(0)}}{R_{d/N}^{\rm CJ} - 1}$$

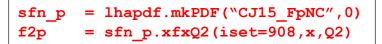
• n/d BONuS data

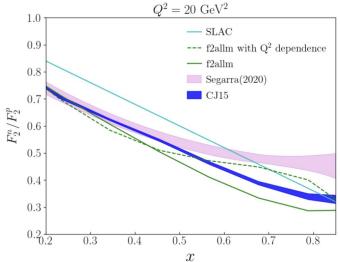
$$\widehat{R}_{n/p}^{(0)} \equiv \frac{\widehat{R}_{n/d}^{\exp,(0)} R_{d/N}^{\text{CJ}}}{1 - \widehat{R}_{n/d}^{\exp,(0)} R_{d/N}^{\text{CJ}}}$$


accardi@jlab.org

Nucleon and nuclei structure - 20 June 2023

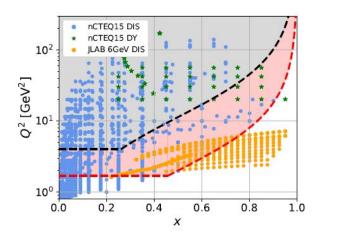
F₂(n) extraction and applications

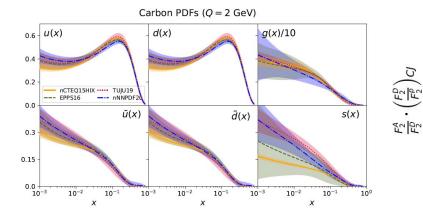

Soon on https://www.jlab.org/theory/cj

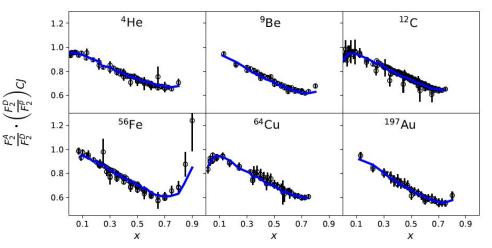

• World DIS database and extracted F2n, n/p $\Rightarrow \int F_2^p - F_2^n$

• LHAPDF style structure function grids:

- \circ $\,$ NC and CC $\,$
- \circ w/ and w/o HT, TMC

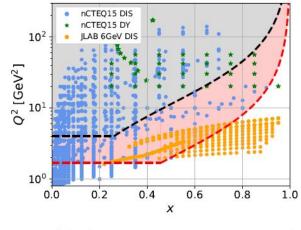


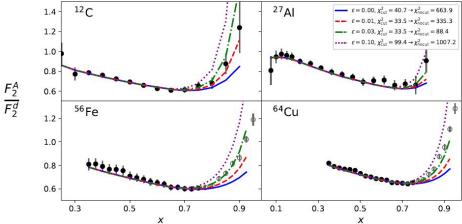

The nCTEQ connection


• Nuclear PDF fits: $\sigma_A = \sum_i f_{i/A} \otimes \hat{\sigma}_i$

Accardi et al., PRD 103 (2021), 114015
 First time including JLab data: nCTEQ15HIX

 using CJ experience in HT, deuteron corrections at low-Q2 and large-x


The nCTEQ connection


• Nuclear PDF fits: $\sigma_A = \sum_i f_{i/A} \otimes \hat{\sigma}_i$

- First time including JL^{Accardi et al., PRD 103 (2021), 114015,}
 - using CJ experience in HT, deuteron corrections at low-Q2 and large-x
 - "Fermi motion" upturn (mostly in resonance region)

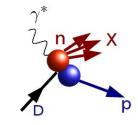
Roughly parametrized by

$$x_A' = x - \varepsilon \, x^\kappa \log_{10} A$$

• New fit in preparation Talk by P. DUwentaster & Risse et al @ DIS 2023, arXIv:2307.07814

• Explored also a SRC-inspired parametrization: Denniston et al., inspirehep/2660149

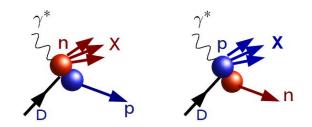
Nucleon and nuclei structure - 20 June 2023


Tagged DIS to the rescue

Open questions

- Can we confirm the picture just painted? Is δf negative?
 - Need direct experimental sensitivity to *Sf*
 - Tagged DIS experiments
- BONuS 6 data don't seem to disagree!
 - But may not be precise enough at large *x*

 10^{1}


 GeV^2 (i = 5)

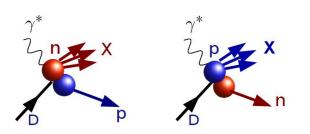
Open questions

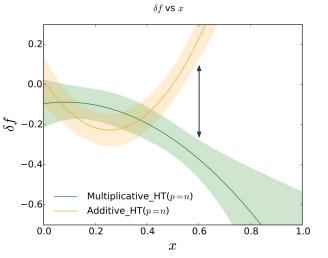
- Is the simple proposed factorization correct?
 - Or at least phenomenologically acceptable ?

$$F_{2N}(x, Q^2, p^2) = F_{2N}^{free}(x, Q^2) \left[1 + v \,\delta f(x) \right]$$
$$v = \frac{p^2 - M^2}{M^2}$$

- Cross check the extracted free F2N with on-shell extrapolation methods?
 - Different systematics, use of tagged data
- Are FSI negligible?
 - Inclusive DIS only probes small off-shellness
 - Can absorb FSI into df only up to some point
 - \rightarrow One can perhaps verify onset of FSI against above baseline model

More data, please!

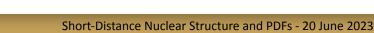

• One can extract δf

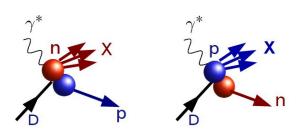

$$\frac{F_{2N}}{F_{2N}^{free}} = 1 + v\,\delta f(x)$$

- Experiment by experiment
- \circ or in a global QCD fit

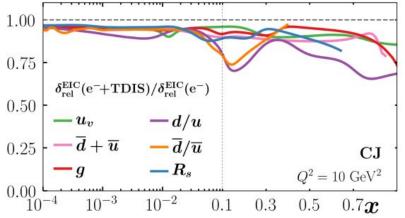
Need more tagged DIS data with

- FSI under control (small v, backward φ)
- Large lever arm, good resolution on v
 (or p_s)
- x>0.6 would clearly distinguish the two cases

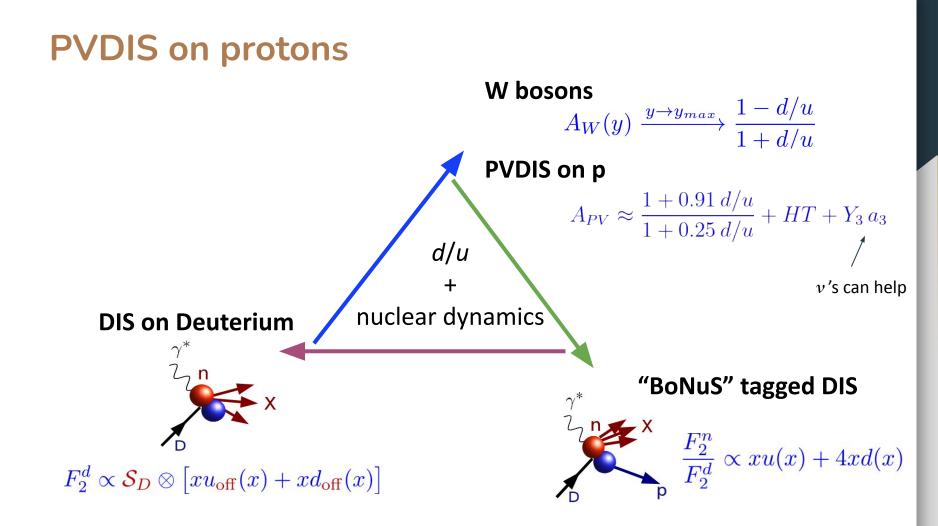


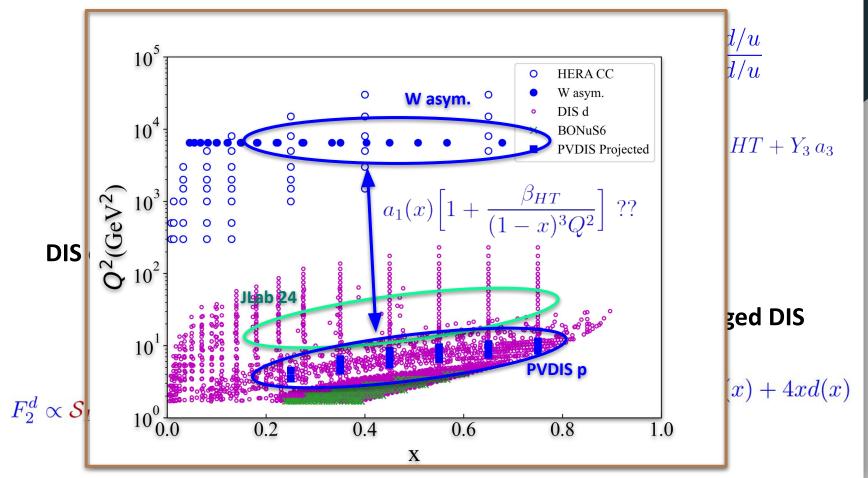

More data, please!

- At JLab:
 - BONuS 12, TDIS-n, BAND, LAD...
 - Proton and <u>neutron</u> tagging


• At the EIC

- Simulated Data (C.Weiss et al. JLab LDRD 2014)
 - \rightarrow Proton tagging + on-shell extrapolation method
- Fits by X.Jing and S.Li





PVDIS in global fits

- PVDIS in global fits
 - PVDIS on p
 - $\rightarrow~$ " Still needed in the BONuS 12 and Marathon era? "
 - $\circ \quad \mathsf{PVDIS} \text{ on } \mathsf{D}$
 - \rightarrow CSV from nuclear, HT dynamics ?

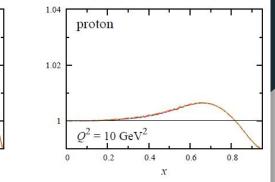
PVDIS on protons

Short-Distance Nuclear Structure and PDFs - 20 June 2023

PVIDS on protons - notes

Brady, AA, Hobbs, Melnitchouk, PRD 84 (2011)

• Can focus on dynamical HT


- TMCs are under control
- Kinematics far enough from x=1 end point

- Large effective Q² leverage
 - → Power corrections efficiently removed
 Global fits can extract d/u

• JLab 24: higher Q^2

- \circ $\,$ $\,$ More precision for HT extraction $\,$
 - \rightarrow hence more statistics for d/u fitting
- Less kinematic shift $x \rightarrow \xi$:
 - \rightarrow higher *x* reach for d/u

.

1.04

1.02

 $A_{\mathrm{PV}}/A_{\mathrm{PV}}^{(0)}$

OPE

EFP E-S

AQ

 $Q^2 = 2 \text{ GeV}^2$

0.2

0.4

x

0.6

0.8

PVIDS on protons - notes

Brady, AA, Hobbs, Melnitchouk, PRD 84 (2011)

 $O^2 = 10 \text{ GeV}^2$

0.2

0.4

x

0.6

0.8

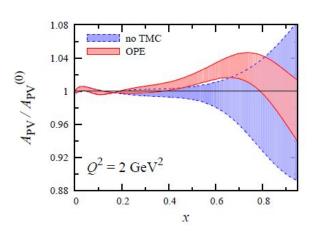
proton

1.04

1.02

0.8

• Can focus on dynamical HT


- TMCs are under control
- Kinematics far enough from x=1 end point

• Clean access to d/u in global fits

- \circ Large effective Q² leverage
 - → Power corrections efficiently removed Global fits can extract d/u

• JLab 22: higher Q^2

- \circ $\,$ $\,$ More precision for HT extraction $\,$
 - → hence more statistics for d/u fitting
- Less kinematic shift $x \rightarrow \xi$:
 - \rightarrow higher *x* reach for d/u

1.04

1.02

 $A_{\mathrm{PV}}/A_{\mathrm{PV}}^{(0)}$

OPE

EFP

AQ

 $O^2 = 2 \text{ GeV}^2$

0.2

0.4

x

0.6

PVIDS on protons - notes

Brady, AA, Hobbs, Melnitchouk, PRD 84 (2011)

 $O^2 = 10 \text{ GeV}^2$

0.2

0.4

x

0.6

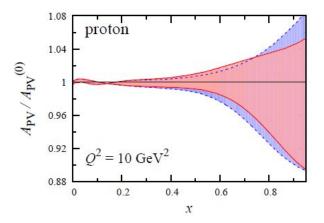
proton

1.04

1.02

0.8

• Can focus on dynamical HT


- TMCs are under control
- Kinematics far enough from x=1 end point

• Clean access to d/u in global fits

- \circ Large effective Q² leverage
 - → Power corrections efficiently removed Global fits can extract d/u

• JLab 22: higher Q^2

- \circ $\,$ $\,$ More precision for HT extraction $\,$
 - → hence more statistics for d/u fitting
- Less kinematic shift $x \rightarrow \xi$:
 - \rightarrow higher *x* reach for d/u

1.04

1.02

 $A_{\mathrm{PV}}/A_{\mathrm{PV}}^{(0)}$

OPE

EFP

AQ

 $O^2 = 2 \text{ GeV}^2$

0.2

0.4

x

0.6

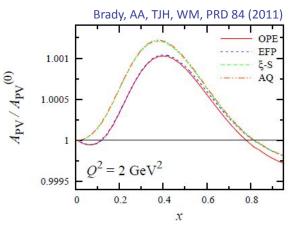
0.8

• PVDIS in global fits

- PVDIS on p
 - \rightarrow Still needed in the BONuS 12 and Marathon era?

• PVDIS on D

→ CSV from nuclear, HT dynamics ?

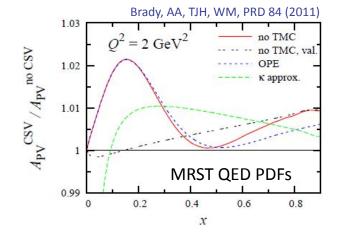

PVDIS on Deuterons

• TMC

- Per mille level, very small model dependence
- Don't forget the kinematic shift

• Nuclear corrections

- Likely small, too
- (But not quantified)

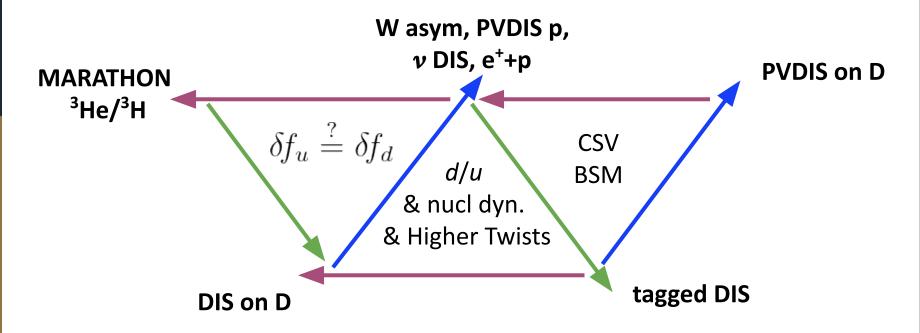

- Higher twists analogous to proton discussion
 - Large Q² lever arm when analyzed in a global fit
 - Need to fit $HT(p) \neq HT(n)$ to avoid biases
 - → Formulate this at quark level and impose/verify charge symmetry
 - → Attention to HT/offshell interplay

 $HT_u^p \stackrel{?}{=} HT_d^n; HT_d^p \stackrel{?}{=} HT_u^n$ $\delta f_u^p \stackrel{?}{=} \delta f_d^n; \delta f_d^p \stackrel{?}{=} \delta f_u^n$

PVDIS on Deuterons

• CSV from nuclear and HT dynamics, as well?

$$R^{CSV} = \underbrace{R^{CSV}_{pdf} + R^{CSV}_{off}}_{\text{How to tell?}} + R^{CSV}_{HT}$$



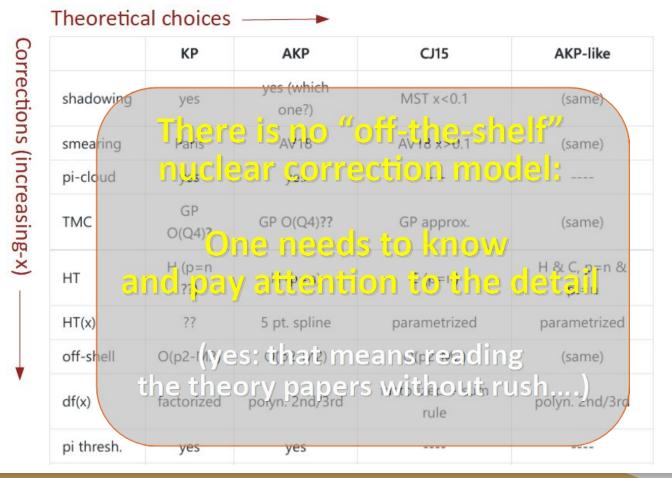
• If we find an "anomaly": is it BSM or nuclear physics?

- \rightarrow Remember the NuTeV anomaly
- \rightarrow Here we have a deuteron, no p/n asymmetry to possibly trick us
- \rightarrow Still, let's keep our eyes and minds open

Need half a honeycomb, at least!

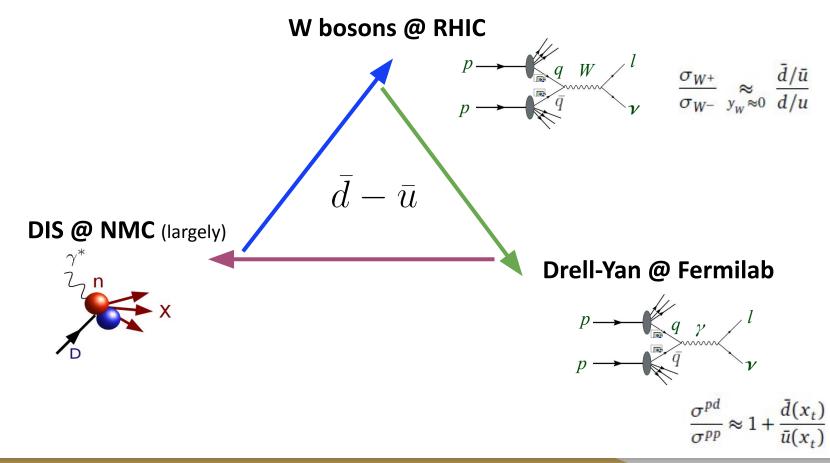
- Global QCD analysis is a powerful tool:
 - \rightarrow d/u, nuclear dynamics, parton correlations, CSV
 - \rightarrow PVDIS still relevant in BONuS 12 / Marathon era !!

Nuclear Corrections

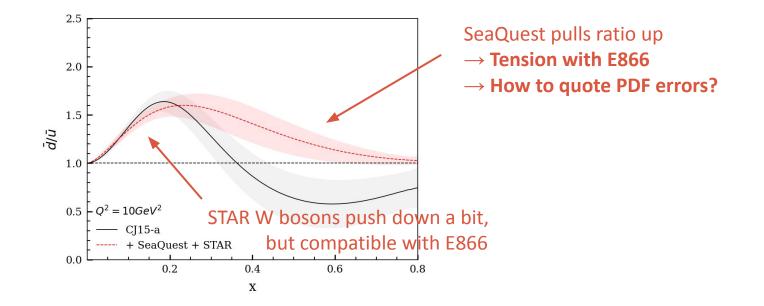

Are we done with (nuclear) corrections?

Theoretical choices ———

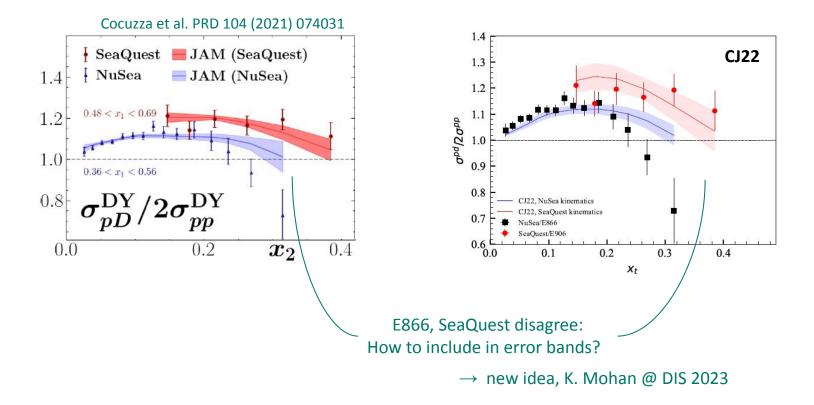
	КР	AKP	CJ15	AKP-like
shadowing	yes	yes (which one?)	MST x<0.1	(same)
smearing	Paris	AV18	AV18 x>0.1	(same)
pi-cloud	yes	yes		
ТМС	GP O(Q4)?	GP O(Q4)??	GP approx.	(same)
HT	H (p=n ??)	H (p=n)	C (p=n)	H & C, p=n & p!=n
HT(x)	??	5 pt. spline	parametrized	parametrized
off-shell	O(p2-M2)	O(p2-M2)	O(p2-M2)	(same)
df(x)	factorized	polyn. 2nd/3rd	factorized + sum rule	polyn. 2nd/3rd
pi thresh.	yes	yes		


accardi@jlab.org

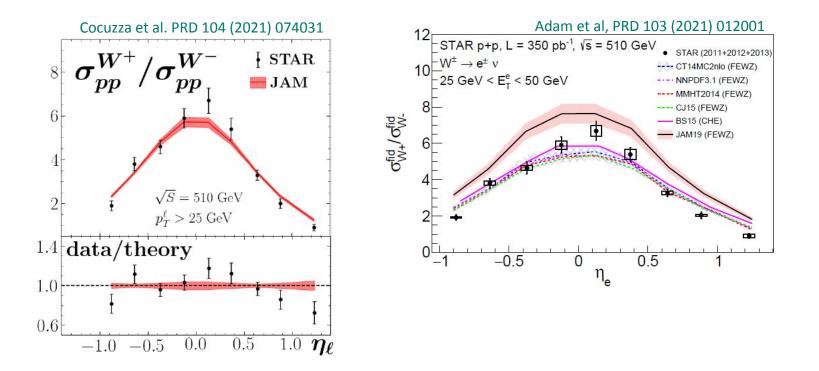

Are we done with (nuclear) corrections?


Light quark sea

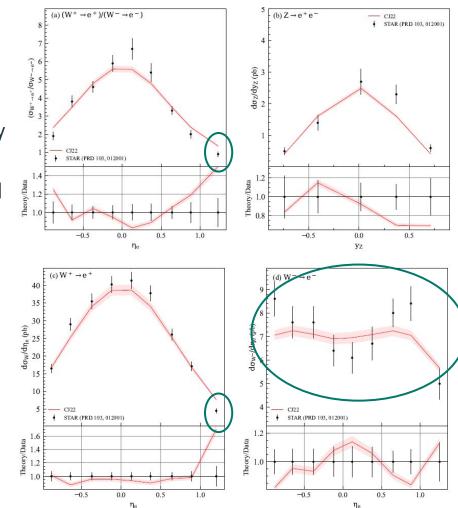
Medium-x PDFs: the light sea triangle



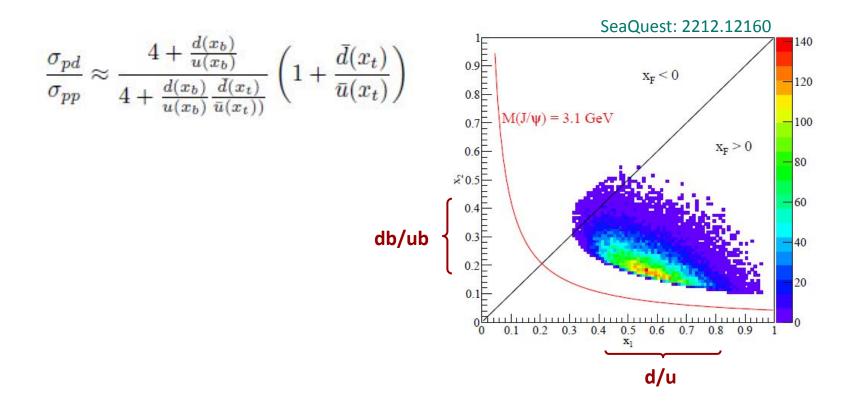
Medium-x PDFs: the light sea triangle


Lepton Pair Production

• Comparable results to JAM, CT:

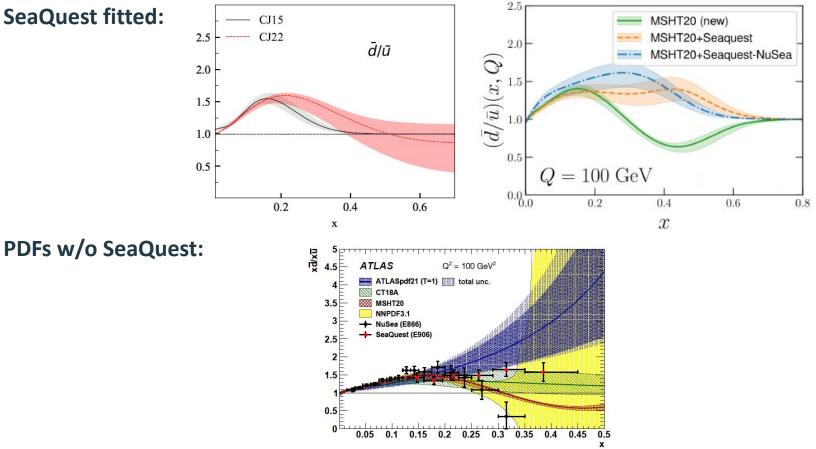

Weak boson production

• Similar results from JAM, other calcs



Weak boson production

- Only W+/W- ratio was fitted
 - Other plots compare data to theory
- Largest rapidity *W*⁺ not reproduced
 - Would require too small db/ub
 - Or too large d/u
- More structure in *W*⁻ data than in the theory calculation



SeaQuest kinematics

Comparison to other recent PDFs

SeaQuest fitted:

