

Precision measurements of A = 3 nuclei in Hall B to study NN interaction and SRC

Proposal PR12-20-005

Dien Nguyen (Nathan Isgur Fellow at JLab)

ECT* Workshop Short-Distance Nuclear Structure and PDFs

Looking through the isospin mirror...

Nucleon-nucleon interaction

Crucial for:

- Ab-Initio structure & reaction calculations
- Dense astrophysical objects, e.g. neutron stars

Nucleon-nucleon interaction

Need to put these models to test

Testing NN models and Reaction-Mechanism

Measure nucleon-knockout QE cross-section (e,e'p)

Compare to calculation using different NN models and reaction-mechanism

Why A=3?

<u>3-Body system</u>:

- Exactly calculatable
- Nuclear environment effects
- Ideal for Test & benchmark theory

Why Tritium?

- \blacktriangleright Proton in ³He = Neutron in ³H
- Better constraints on reaction mechanism and ground-state wave function

Tritium Program (2018) at Hall A JLab

Tritium experiments and publications

- E12-11-103: Marathon F2n/p, EMC : DIS(e,e')
 - PRL 128 (2022)

E12-11-112: Isospin Dependent of SRC QE(e,e') See S. Li's talk

- Nature 609 (2022)
- E12-17-003: nnL hypernuclei
 - PRC 105 (2022)

E12-14-011: High momentum nucleon distribution QE(e,e'p)

- PLB 797 (2019)
- PRL 124 (2021)
- PLB 831 (2022)

Tritium Program (2018) at Hall A JLab

Tritium experiments and publications

- E12-11-103: Marathon F2n/p, EMC : DIS(e,e')
 - PRL 128 (2022)

□ E12-11-112: Isospin Dependent of SRC QE(e,e') See S. Li's talk

- Nature 609 (2022)
- E12-17-003: nnL hypernuclei
 - PRC 105 (2022)

E12-14-011: High momentum nucleon distribution QE(e,e'p)

- PLB 797 (2019)
- PRL 124 (2021)
- PLB 831 (2022)

In this talk:

Impact of A=3 (e,e'p) results in hall A

□New Tritium Program in Hall B

2018 Hall-A Tritium (e,e'p) Experiment

High Q²: PWIA factorized approximation

$$\frac{d^{6}\sigma}{d\omega dE_{p}d\Omega_{e}d\Omega_{p}} = K \sigma_{ep} S(\left|\overrightarrow{P_{i}}\right|, E_{i})$$

PWIA approximation:

Complications:

$$p_i \sim p_{miss} = p_f - q$$

$$\frac{\sigma_{^{3}He(e,e'p)}}{\sigma_{^{3}H(e,e'p)}} \approx \frac{S_{^{3}He(\left|\overrightarrow{P_{i}}\right|,E_{i})}}{S_{^{3}H(\left|\overrightarrow{P_{i}}\right|,E_{i})}}$$

Choosing Kinematic: Minimizing non-QE mechanisms

Figure courtesy of Misak Sargsian

See Carlos Yero and Misak Sargsian's talks

2018 Hall A Tritium (e,e'p) Expt.

See the talk from Nadia, Shujie, Florian, Justin for SRC part

3He/3H ratio was more interesting than expected.

R. Cruz-Torres et al., PLB 797 134890 (2019)

We extracted absolute cross-sections.

R. Cruz-Torres, D. Nguyen PRL 124 212501 (2020)

Compare to different theory calculation

Cracow:

Faddeev-formulationbased calculations

Continuum interaction between two spectator nucleons (FSI₂₃)

<u>CK + CC1:</u>

³He spectral function of C. Cio degli Atti and L. P. Kaptari and electron off-shell nucleon cross-section

Including FSI₂₃

M. Sargian (FSI):

FSI calculation based on generalized Eikonal approximation

Does not include FSI23, FSI od struck nucleon

Absolute Cross Section Results

Absolute Cross Section Results

Absolute Cross Section Results

This result validates current models of the ground state of the three-nucleon system up to very high initial nucleon momenta of 500 MeV/c

Lessons from Hall A Measurement

□Anti-parallel kinematics reduce the effects of FSIs.

□Need absolute cross-sections!

□Need both 3He and 3H (and deuterium too!)

Isoscalar sum

Bring Tritium target to Hall B to explore

- Push Pmiss to 1000 MeV
- Cover a broad range of kinematics

CLAS12 Detector: Large acceptance Spectrometer

CLAS-12 lets us vastly exceed reach of Hall A measurement.

- Acceptance takes advantage of limited target luminosity.
- Kinematic coverage to study:
 - Q²-dependence
 - x_B-dependence
 - $heta_{pq}$ -dependence
 - Higher p_{miss}
 - Wider E_{miss}

Inclusive Phase Space $E_b = 6.6 \text{ GeV}, \theta_{F'} > 10^\circ$

CLAS-12 lets us vastly exceed reach of Hall A measurement.

Cuts: Fiducial Acceptance, $x_B > 1.4$, $P_{miss} > 0.15$

CLAS-12 lets us vastly exceed reach of Hall A measurement.

Cuts: Fiducial Acceptance, $x_B > 1.4$, $P_{miss} > 0.15$

A=3: Helium-3 + Tritium @ CLAS12

$\Box \quad Quasielastic \text{ on } A = 3$

- □ (e,e'p): Few-Body nuclear Structure
- □ (e,e'pN): SRCs
- □ (e,e'): Neutron form factor

(e,e'p): Few-body nuclear structure

Unique test of:

- few-body nuclear structures.
- Short-range NN interaction
- Reaction mechanisms
- Final-state effects!

CLAS12: x0.1 luminosity x100 acceptance

=> x10 statistics + larger kinematical coverage!

(e,e'p): Few-body nuclear structure

Unique test of:

- few-body nuclear structure.
- Short-range NN interaction
- Reaction mechanisms
- Final-state effects!

CLAS12: x0.1 luminosity x100 acceptance

=> x10 statistics + larger kinematical coverage!

(e,e'pN): SRCs

- CLAS acceptance will allow multi-nucleon detection!
- Further suppression of final-state effects!
- Detailed map of isospin structure of short-range NN interaction

(e,e'): Neutron Form Factor

- ³He(e,e') / ³H(e,e') @ $x_B = 1$ sensitive to σ_n / σ_p
 - Measured @ Hall A \w limited Q² coverage
- CLAS12 reaches down to $Q^2 = 0.1$
- Probe region of data/theory discrepancies
- Systematic errors orthogonal to those from other techniques
- Only need 2 days at 2.2 GeV!

Adapted from J. Lachniet et al. PRL (2009)

Summary

- A=3 is a vital system!
 - Test nuclear calculations in few-body regime
 - Calculable nuclei
 - Extreme p/n asymmetry
 - Constrain reaction effects
 - Probe short-range NN interaction
 - Pin down G_Mⁿ
 - Need both ³He and ³H!
- Proposed experiment
 - CLAS-12 in standard configuration
 - Open e- trigger
 - 60 days on 3 He, 3 H, d at 6.6 and 2.2 GeV.
 - New target system!

This measurement will produce many high-impact results!

