Nucleon structure with tagged DIS

Tyler Kutz MIT/TAU

Short-distance nuclear structure and PDFs

Trento, Italy July 20, 2023

ECT* Workshop

Bound nucleons are modified...so what?

Bound nucleons are modified...so what?

Fundamental: What nucleons are modified? What mechanism drives modification?

Bound nucleons are modified...so what?

Fundamental: What nucleons are modified? What mechanism drives modification?

Practical: What is the structure of the free neutron?

Inclusive DIS gives average structure of nucleus

• Detect scattered electron

 $Q^2 = 2EE'(1 - \cos\theta)$

 $x_B = Q^2 / 2M\nu$

Inclusive DIS gives average structure of nucleus

Inclusive DIS gives average structure of nucleus

- Detect scattered electron
 - $Q^2 = 2EE'(1 \cos\theta)$
 - $x_B = Q^2 / 2M\nu$
- Integrates over entire nucleus
- Variables smeared by Fermi motion

• Detect scattered electron and spectator nucleon

$$= \left(E_s - p_s^{\parallel} \right) / M$$

$$\Rightarrow x' = Q^2 / (2P \cdot q) \approx x_B / (2 - \alpha_S)$$

Mitigating final state interactions

• Final state X goes in direction of q → Look at backward-going spectators • FSI grows with W', largely independent of x'(?) \rightarrow Form ratios in x'

1. BoNuS

Free nucleon structure function ratio F_2^n/F_2^p

1. BoNuS

Free nucleon structure function ratio F_2^n/F_2^p

2. $D(e, e'p_s)$, **BAND**, and **LAD** Structure of high-momentum bound nucleons

 k_F

1. BoNuS

Free nucleon structure function ratio F_2^n/F_2^p

Free structure function ratio F_2^n/F_2^p

- Limit of d/u as $x_B \rightarrow 1$ sensitive to spinflavor symmetry breaking mechanism
- Constraints on PDFs

Free structure function ratio F_2^n/F_2^p

- Limit of d/u as $x_B \rightarrow 1$ sensitive to spinflavor symmetry breaking mechanism
- Constraints on PDFs

- Methods:
 - Extract from nuclear structure functions with nuclear corrections

• Use tagged DIS to extract structure of barely-off-shell neutrons in deuterium

BoNuS (barely off-sell nucleon structure)

- JLab (6 GeV) Hall B
- 2.1, 4.2, and 5.3 GeV electrons on thin 2H gas
- Detect scattered electron in CLAS
- Detect recoiling spectator proton in RTPC 3 mm dead zone

BoNuS (barely off-sell nucleon structure)

- JLab (6 GeV) Hall B
- 2.1, 4.2, and 5.3 GeV electrons on thin 2H gas
- Detect scattered electron in CLAS
- Detect recoiling spectator proton in RTPC

BoNuS invariant mass with/without tagging

Baillie, et al. PRL 108, 142001 (2012)

BoNuS results

Baillie, et al. PRL 108, 142001 (2012)

Compared to latest nuclear correction extraction

Adapted from Abrams, et al. PRL 128, 132003 (2022)

• MARATHON extraction from ³He/³H ratio

• Only need to account for relative nuclear corrections in A = 3 nuclei

2. $D(e, e'p_s)$, BAND, and LAD Structure of high-momentum bound nucleons

SRC abundance and EMC magnitude are correlated

Tagged DIS can definitively test SRC-EMC hypothesis

 $F_2^{d/(F_2^{p}+F_2^{n})}$

Tagged DIS can definitively test SRC-EMC hypothesis

• EMC effect in deuterium is small

 $F_2{}^d/(F_2{}^p+F_2{}^n)$

Tagged DIS can definitively test SRC-EMC hypothesis

- EMC effect in deuterium is small
- But SRC states are rare!
- Expect large effect in these states

 $D(e, e'p_s)$

- Pioneering tagged DIS experiment
- 5.75 GeV electrons on 5cm LD2
- Detect scattered electron and backward proton in CLAS detector

 $D(e, e'p_s)$

- Pioneering tagged DIS experiment
- 5.75 GeV electrons on 5cm LD2
- Detect scattered electron and backward proton in CLAS detector

$D(e, e'p_s)$ kinematic coverage was limited

Klimenko, et al. PRC 73, 035212 (2006)

Klimenko, et al. PRC 73, 035212 (2006)

 $D(e, e'p_s)$ seemed to validate FSI assumptions

Klimenko, et al. PRC 73, 035212 (2006)

 Good agreement between data and PWIA at backward angles • Enhancement in data (due to FSI?) at perpendicular angles

3. $D(e, e'p_s)$, **BAND**, and **LAD** Structure of high-momentum bound nucleons

BAND (Backward Angle Neutron Detector)

- 116 plastic scintillator bars + veto layer
- \approx 3 m upstream of target

Ayer Segarra et al., NIMA 978, 164356 (2020) Denniston et al., NIMA 973 164177 (2020)

Collected data with CLAS12 Run Group B (2019-2020)

neutron

 $E_{beam} = 10.2-10.6 \text{ GeV}$

Collected data with CLAS12 Run Group B (2019-2020)

neutron

 $E_{beam} = 10.2-10.6 \text{ GeV}$

BAND analysis team

Efrain Segarra

Jackson Pybus

Natalie Wright

Florian Hauenstein

Jason Phelan Sara Ratliff

Theory calculation for tagged DIS

• Cross section model by M. Strikman & C. Weiss (PRC 97, 035209 (2018):

 $d\sigma[eD \rightarrow e'n_{s}X]$

- Kinematic factors
- Deuterium spectral function (momentum distribution of bound protons)
- Free proton structure functions (no EMC modification!) Simulate generated events (with QED radiation) in GEANT4

$$] = \mathbf{K} \frac{2S(\alpha_s, p_{sT})}{2 - \alpha_s} \times \mathbf{F}_2$$

Inclusive DIS results

Inclusive DIS results

 ✓ Validates simulation of electron in CLAS12

$$\mathcal{R} = \frac{Y_{exp}(x') / Y_{exp}(x' = x'_0)}{Y_{sim}(x') / Y_{sim}(x' = x'_0)}$$

• Form double ratio for bins in α_S

 $\frac{\sigma'_{0}}{\sigma'_{0}} = \frac{\sigma_{exp}(x')/\sigma_{exp}(x'=x'_{0})}{\sigma_{theory}(x')/\sigma_{theory}(x'=x'_{0})}$

$$\mathcal{R} = \frac{Y_{exp}(x') / Y_{exp}(x' = x'_0)}{Y_{sim}(x') / Y_{sim}(x' = x'_0)}$$

- Form double ratio for bins in α_S
- Ratio gives cancellation of systematics

 $\frac{\sigma'_{0}}{\sigma'_{0}} = \frac{\sigma_{exp}(x')/\sigma_{exp}(x'=x'_{0})}{\sigma_{theory}(x')/\sigma_{theory}(x'=x'_{0})}$

$$\mathcal{R} = \frac{Y_{exp}(x')/Y_{exp}(x'=x'_0)}{Y_{sim}(x')/Y_{sim}(x'=x'_0)} = \frac{\sigma_{exp}(x')/\sigma_{exp}(x'=x'_0)}{\sigma_{theory}(x')/\sigma_{theory}(x'=x'_0)}$$

- Form double ratio for bins in α_S
- Ratio gives cancellation of systematics
- Choose to normalize to $x'_0 = 0.3$

$$\mathcal{R} = \frac{Y_{exp}(x')/Y_{exp}(x'=x'_0)}{Y_{sim}(x')/Y_{sim}(x'=x'_0)} = \frac{\sigma_{exp}(x')/\sigma_{exp}(x'=x'_0)}{\sigma_{theory}(x')/\sigma_{theory}(x'=x'_0)}$$

- Form double ratio for bins in α_S
- Ratio gives cancellation of systematics
- Choose to normalize to $x'_0 = 0.3$
- Sensitive to ratio of bound to free proton structure

$$\mathcal{R} \propto \frac{F_2^* \left(Q^2, p_T, \alpha_S, x'\right) / F_2 \left(Q^2, p_T, \alpha_S, x'\right)}{F_2^* \left(Q^2, p_T, \alpha_S, x' = x_0\right) / F_2 \left(Q^2, p_T, \alpha_S, x' = x_0\right)}$$

Tagged DIS

 $E_{dep} > 10$ MeVee $p_n > 0.25 \,\,{
m GeV}$ $\theta_n < 168.5^\circ$ W' > 1.8 GeV $\alpha_s > 1.2$ $\cos \theta_{nq} < -0.8$

BAND invariant mass with/without tagging (2 GeV deuterium data from RG-M)

BAND invariant mass with/without tagging (2 GeV deuterium data from RG-M)

- Two big differences from BoNuS:

• Higher spectator momentum

• Larger range in spectator momentum

BAND invariant mass with/without tagging (2 GeV deuterium data from RG-M)

d(e,e'n)

BAND invariant mass with/without tagging (2 GeV deuterium data from RG-M)

Tagged DIS kinematics

Large, x'-dependent effect in high- α_S protons

$$P_p(\alpha, v) + N\rho_n(\alpha, v) \frac{F_2^n(x')}{F_2^p(x')} \right] \times \left(1 + v f^{os}(x')\right)$$

...and gives a prediction for bound *neutron* structure!

3. $D(e, e'p_s)$, **BAND**, and **LAD** Structure of high-momentum bound nucleons

Large Angle Detector (LAD) in Hall C LAD **GEMs** Beam

	Low x'	High <i>x</i> '
E' (GeV)	4.4	4.4
$ heta_e$	13.5°	17°
Q^2 (GeV ²)	2.7	4.2
x_B	0.22	0.34

• 1 μ A at 10.9 GeV

• Scattered electron to HMS/SHMS

• Recoil proton to LAD

LAD hardware

- Proton detection:
 - 5 panels of refurbished CLAS TOF scintillators
 - Proton ID using dE/dX vs. TOF
 - Proton momentum from TOF
- Proton vertexing:

 - Repurposed PRad GEMs • Active area 120 x 55 cm²

LAD is critical cross check of tagged measurements

LAD

BAND

- Inclusive + BAND + LAD overconstrains deuterium
- BAND and LAD must show consistent modification of bound protons/neutrons
- Hope to achieve lower recoil momentum and angles than BAND
- On JLab schedule to start July 2024

Tagged DIS is just getting started!

- - ³H/³He tagged DIS from ⁴He
- TDIS-n at JLab Hall C:
- Tagging at EIC

• A Low-Energy Recoil Tracker (ALERT) with CLAS12 at JLab Hall B:

BoNuS-style measurement of low-momentum neutrons in deuterium

SRC-EMC connection can also be tested by polarized EMC measurements

- Polarized measurements can distinguish mean-field and SRC effects Small net polarization for high-momentum nucleons (small pEMC) • Mean-field calculations predict $pEMC \ge EMC$

0.6

0.8

1.2

 $R_{1(\mathbf{X})}$

- Tagged DIS allows measurements of parton structure sensitive to nuclear configuration
 - Study quasi-free nucleons to extract free neutron structure
 - Study highly virtual nucleons to probe origin of EMC effect

- Tagged DIS allows measurements of parton structure sensitive to nuclear configuration
 - Study quasi-free nucleons to extract free neutron structure
 - Study highly virtual nucleons to probe origin of EMC effect
- Preliminary BAND/CLAS12 results show large modification of high-momentum protons in deuterium

- Tagged DIS allows measurements of parton structure sensitive to nuclear configuration
 - Study quasi-free nucleons to extract free neutron structure
 - Study highly virtual nucleons to probe origin of EMC effect
- Preliminary BAND/CLAS12 results show large modification of high-momentum protons in deuterium
- Rich tagged DIS program developing for JLab (and EIC!)

