### UNDERSTANDING THE EMC-SRC **CONNECTION USING EXPERIMENTAL DATA**

in collaboration with John Arrington and Nadia Fomin

**Short-Distance Nuclear Structure and PDFs** 20 July 2023 - Trento, Italy

**Burcu Duran (University of Tennessee)** 



### **NON-TRIVIAL STRUCTURE OF THE NUCLEUS**

### THE EMC EFFECT



- Initial observation: per-nucleon DIS structure function for Iron significantly different than that of for deuterium. Confirmed for the several other nuclei.
- Suppression of the high momentum quarks for 0.3<x<0.7 in nuclei relative to the deuterium.
- After 40 years, no definitive explanation for the origin of the EMC effect.







### THE EMC EFFECT: DATA STATUS

• SLAC E139: "Nuclear Dependence of the EMC Effect at Fixed x"



Universal x-dependence for all the nuclei measured



Modification scales with log(A) and average density

# THE EMC EFFECT: JLab E03-103 RESULTS

![](_page_3_Figure_1.jpeg)

Х

Hall C E03-103: Precision Results on Light Nuclei

- Emphasis on light nuclei (4He, 9Be, 12C)
  - Confirms the SLAC results
- Much better precision at high x
  - Improved <sup>4</sup>He statistics
  - Additional light nuclei measurement with <sup>3</sup>He

![](_page_3_Picture_10.jpeg)

# THE ENC EFFECTE JLab E03-103 RESULTS

### <sup>9</sup>Be does not fit the trend!

![](_page_4_Figure_2.jpeg)

\*average nuclear density was scaled by a factor of (A-1)/A to remove the struck nucleon's contribution to the average nuclear density Hall C E03-103: Precision Results on Light Nuclei

### strong alpha clustering <sup>9</sup>Be

3 body system of 2 alpha clusters and a neutron

![](_page_4_Picture_7.jpeg)

![](_page_4_Picture_8.jpeg)

**EMC** effect seems to follow local density rather than average density!

![](_page_4_Picture_11.jpeg)

![](_page_4_Picture_12.jpeg)

## LOCAL DENSITY ->> SHORT RANGE CORRELATIONS

![](_page_5_Figure_1.jpeg)

![](_page_5_Figure_2.jpeg)

- A hard short-range repulsive core + strong intermediate-range
  tensor attraction
- These strong interactions between nucleons at short distance yield
  - high-momentum components in the nucleon momentum
  - distributions in nuclei
- Pairs of nucleons with high back to back momenta: short range
  - correlations

- What drives high local density in the nucleus?
- The short-distance part of the nucleon-nucleon interaction:

![](_page_5_Picture_15.jpeg)

![](_page_5_Picture_18.jpeg)

![](_page_5_Picture_19.jpeg)

![](_page_5_Picture_20.jpeg)

## **MEASURING THE SHORT RANGE CORRELATIONS**

- To measure the relative probability of finding a correlation, ratios of heavy to light nuclei are taken
- ➡To experimentally probe SRCs, must be in the high-momentum region (x>1): QE scattering
- If the high momentum nucleons in nuclei come from correlated pairs, ratio of A/D should show a plateau.
- FSIs are thought to be confined to the SRCs so cancel in the cross section ratios

![](_page_6_Figure_5.jpeg)

![](_page_6_Figure_10.jpeg)

$$\frac{2}{A}\frac{\sigma_A}{\sigma_D} = a_2(A)$$

![](_page_6_Picture_13.jpeg)

### JLab HALL C 6 GeV 2N SRC RESULTS

![](_page_7_Figure_1.jpeg)

 $(\sigma_A/A)/(\sigma_D/2)$ 

### Hall C E02-019: Precision Results on Light Nuclei

![](_page_7_Figure_4.jpeg)

 Similar pattern with the SRC measurements in light nuclei Suggesting a possible connection between the EMC and SRC?

![](_page_7_Picture_7.jpeg)

### **ENC-SRC CORRELATION**

![](_page_8_Figure_1.jpeg)

**9Be** strengthens the case!

O. Hen, et al, PRC 85, 047301 (2012) L. Weinstein, et al., PRL 106, 052301 (2011)

### **Quantitative test of level of correlation between two effects**

![](_page_8_Picture_10.jpeg)

![](_page_9_Picture_0.jpeg)

### High Virtuality (HV) Model

Ø EMC effect is a result of high-momentum nucleons (off-shell effects in highly-virtual nucleons).

Only on pairs contribute to the EMC effect.

Ø np pair contribution yields an isospindependent effect in non-isoscalar nuclei.

> B. Schmookler et al, Nature 566, 2019

### **ENC-SRC CORRELATION**

### Local Density (LD) Model

Ø Nucleons in close-proximity through quark exchange results in the EMC effect.

Ø EMC effect is assumed to be isospin. independent.

Ø All short-distance N-N configurations contribute.

![](_page_9_Figure_11.jpeg)

![](_page_9_Picture_12.jpeg)

## **Flavor Dependence in Nuclear Behavior ?**

- The dominance of the *np* pairs suggests the absolute contribution of the high momentum proton and neutrons in nuclei is nearly identical
- A different fractional contribution from the high momentum proton and neutrons in nonisoscalar nuclei

A larger fraction of the protons in neutron-rich nuclei has high momenta

excess EMC Effect for the proton

flavor dependence: up quarks showing larger modification than the down quarks

# UNIVERSAL EMC EFFECT FUNCTIONS

### **Universal EMC Effect Function** via HV Model

$$F_{univ}^{HV} = \frac{(\sigma_A/\sigma_D) - (Z-N)\frac{F_2^p}{F_2^d} - N}{(A/2)a_2 - N}$$

![](_page_11_Figure_3.jpeg)

## via LD Model

![](_page_11_Figure_6.jpeg)

The universality of the EMC effect functions is examined by looking at the slopes for 0.3 < x < 0.7 as a function of A.

# UNIVERSAL EMC EFFECT FUNCTIONS

### **Universal EMC Effect Function** via HV Model

$$F_{univ}^{HV} = \frac{(\sigma_A/\sigma_D) - (Z-N)\frac{F_2^p}{F_2^d} - N}{(A/2)a_2 - N}$$

![](_page_12_Figure_3.jpeg)

### **Universal EMC Effect Function** via LD Model

![](_page_12_Figure_5.jpeg)

![](_page_12_Figure_6.jpeg)

![](_page_12_Picture_8.jpeg)

# UNIVERSAL EMC EFFECT FUNCTIONS

### **Universal EMC Effect Function** via HV Model

$$F_{univ}^{HV} = \frac{(\sigma_A/\sigma_D) - (Z-N)\frac{F_2^p}{F_2^d} - N}{(A/2)a_2 - N}$$

![](_page_13_Figure_3.jpeg)

### **Universal EMC Effect Function** via LD Model

![](_page_13_Figure_5.jpeg)

![](_page_13_Figure_6.jpeg)

### FITS TO THE UNIVERSAL FUNCTIONS PER TARGET

### **3He HV**

![](_page_14_Figure_2.jpeg)

![](_page_14_Figure_3.jpeg)

### **3He LD**

4He LD

![](_page_14_Figure_6.jpeg)

![](_page_14_Figure_7.jpeg)

<sup>⊥</sup>0.08

0.06

2.631 / 14

![](_page_14_Figure_8.jpeg)

9Be LD

![](_page_14_Figure_10.jpeg)

\*Only a subgroup of targets are shown for brevity

![](_page_14_Picture_12.jpeg)

![](_page_14_Figure_13.jpeg)

### ALL JLAB, SLAC AND CLAS DATA

![](_page_15_Figure_2.jpeg)

## UNIVERSAL EMC SLOPES

![](_page_15_Picture_4.jpeg)

![](_page_15_Picture_5.jpeg)

![](_page_15_Figure_6.jpeg)

![](_page_15_Figure_7.jpeg)

### UNIVERSAL EMC SLOPES

### **NO CLAS DATA INCLUDED**

![](_page_16_Figure_2.jpeg)

Analysis excluding the CLAS data

![](_page_16_Picture_4.jpeg)

![](_page_17_Picture_0.jpeg)

- O Data shows weak preference for the Local Density model
- O We find no experimental evidence for the isospin dependent EMC effect
- O The analysis will be expanded with the additional data including new nuclei as it becomes available
- O Recent EMC effect and SRC measurements/analysis in JLab Hall C will help illuminating the potential EMC-SRC connection

S

## **BACK UP SLIDES**

### **HV-LD UNIV FUNCTION FITS PER TARGET**

![](_page_20_Figure_0.jpeg)

![](_page_21_Figure_0.jpeg)

# 9.726 / 25

![](_page_22_Figure_0.jpeg)

![](_page_23_Figure_0.jpeg)

![](_page_24_Figure_0.jpeg)

![](_page_25_Figure_0.jpeg)

![](_page_26_Figure_0.jpeg)

![](_page_27_Figure_0.jpeg)

![](_page_28_Figure_0.jpeg)

# UNIVERSAL EMC SLOPES (2019)

![](_page_29_Figure_1.jpeg)

Universal EMC slope

J. Arrington, N. Fomin, PRL 123, 2019

**o** HV model: relatively modest variation with A, 2 sigma deviations from zero.

o LD model: no significant A dependence