Second look at EMC data from XEM2 experiment

Abhyuday Sharda 19th July 2023

This work was supported by U.S. Department of Energy under award number: DE-SC0013615

- Overview of E12-10-008
- Preliminary Data Analysis
- Calibration Update

Experimental Overview

- Experiment E12-10-008 performed in Hall C at JLab
- Ran simultaneously with E12-06-105(SRCs)
- Single arm data taken in HMS
- E12-06-105(SRCs) took data in SHMS

A CAD drawing of Hall C

High Momentum Spectrometer

1. Drift Chambers

• Provides tracking information

2. Cerenkov

• Particle identification

3. Hodoscopes

- Trigger
- Tracking Efficiency

4. Calorimeter

Particle identification ullet

JLab Hall C standard equipment manual

CAD Drawing of the HMS detector stack

E12-10-008: Targets

- Investigates EMC effect in various light to medium nuclei
- Uses ⁴⁰Ca and ⁴⁸Ca which will provide insight into models predict a significant flavor dependence in the EMC effect.
- Will study the nuclei at low x and increased Q² than before, which will help in studying the EMC effect with greater precision
- Comparisons of nuclei which differ by just one nucleon (¹¹B-¹⁰B, ⁷Li-⁶Li, ¹²C-¹¹B) will allow to study isospin dependence

E12-10-008: Kinematic Coverage

- Ran from Sep '22-Feb '23
- ~20 momentum settings for various targets
- HMS ran at high Q²
- We measured EMC effect in several light nuclei(⁶Li & ⁷Li)
- Light nuclei are conducive to exact theoretical calculations

E12-10-008: With Great Energy Comes Great Data

- Higher beam energy+ higher Q² allows us to skip the resonance region
- Can access higher x
- Can get ${}^{3}\text{He}/({}^{2}\text{H+}{}^{1}\text{H})$ without relying heavily on large isoscalar corrections
- Avoids the uncertainty associated with knowledge of the neutron structure function

^σзне^{/σ}D 6 GeV data ³He/D Norm. (1.84%) [']He/(D+p) Norm. (2.1%) 0.9 0.5 0.6 0.7 0.3 0.4 0.2 σ_{3He}/(σ_D+σ_p) ... ³He/(D+p) 11 GeV, 20 degrees 11 GeV, 35 degrees Projected Norm. (2%) E12-10-008 Proposal 0.9 0.5 0.6 0.7 0.2 0.3 0.4

Charge Normalized Yield vs Bjorken-x

- Yield vs x for different targets
- Arbitrary scaling to differentiate targets
- Different colors indicate different central momentum \bullet settings for the HMS

Charge Normalized Yield vs Bjorken-x

• CNY vs x at different angles

•	Excellent Statistics	1(
		10
		∼ ¹⁰
		ပ် ၂၃
		¥ 10 ⁻
		10
		10
		10 ⁻

EMC Data from XEM2

9

Superfast Quarks

- $Q^2 \sim 17 \text{ GeV}^2/c$
- Multiquark Structures- 6 quark bag?
- Great data for testing exotic models
- SFQ data for: ²H, ⁹Be, ¹⁰B, ¹¹B, ¹²C, ⁴⁰Ca & ⁴⁸Ca!

 10^{-1} runs) 10^{-2} 35.0°(78 10^{-3} ₹ 10⁻⁴ CNX for C12: 10⁻⁵ 10⁻⁶ 10^{-5}

 10^{-7}

Data to Simulation Comparison

- Simulation: Single-arm Monte Carlo
- Simulation is a model of particle transport through the magnetic elements of the spectrometer, weighted by cross-section

Data to Simulation Comparison

• Excellent agreement so far

Courtesy of Zoe Wolters(UNH)

Current Status

- Data taking completed 5 months ago •
- Detector Calibrations almost finished for the HMS
- Data checks lacksquare

Calorimeter Calibrations

• Calorimeter calibrated by varying gain correction for blocks to keep output signals of the same size

EMC Data from XEM2

14

Timing Windows and Reference Time Cuts

 Cuts made to exclude background events

HMS hA+ Good AdcTdc Diff Time PMT 13

HMS hA+ Good AdcTdc Diff Time PMT 5

Drift Chamber and Hodoscope Calibration

Courtesy of Cameron Cotton

- The origin of the EMC effect is still a mystery
- E12-10-008 will provide several key results:
 - Isospin dependence •
 - Measurement in several light nuclei •
 - More data for comparison with SRCs •
 - Can get ${}^{3}\text{He}/({}^{2}\text{H}+{}^{1}\text{H})$ without relying heavily on large isoscalar corrections •
- We have some results and much more to come

Acknowledgement

Spokespeople: John Arrington(LBL), Nadia Fomin(UTK) & Dave Gaskell(JLab)

Postdocs: Burcu Duran(UTK), Tyler Hague(LBL), Shujie Li(LBL)

Graduate Students:

Cameron Cotton (UVA), Ryan Goodman(UTK), Abishek Karki (MSU), Casey Morean (UTK), Ramon Ogaz (UTK), Abhyuday Sharda (UTK), Sebastian Vasquez(UCR), Zoe Wolters (UNH)

