Short-range expansion and three-nucleon SRCs

Ronen Weiss

Los Alamos National Lab

LA-UR-23-27317

Short-Distance nuclear structure and PDFs ECT* workshop, July 18th, 2023

Studied experimentally using large momentum transfer quasi-elastic reactions

Studied experimentally using large momentum transfer quasi-elastic reactions

Main features:

- High momentum particles with back-to-back configuration
- Universal behavior "isolated pair"
- Neutron-proton dominance

Similar features are seen in ab-initio calculations:

R.B Wiringa et. al., Phys. Rev. C 89, 024305 (2014)

Similar features are seen in ab-initio calculations:

- Limited to light nuclei (for "hard" NN interactions)
- Difficult to describe relevant reactions

R.B Wiringa et. al., Phys. Rev. C 89, 024305 (2014)

• How do we compare experiments to theory? Can we do that without

solving the full many-body problem?

- Can we develop a systematic description?
- How can we use knowledge of SRCs for describing more general

observables?

Outline

- The Generalized Contact Formalism (GCF)
 - Effective theory for describing SRC pairs
 - Comprehensive description of SRCs in nuclear structure and reactions
- Towards a systematic short-range expansion

The Generalized Contact Formalism (GCF)

RW, B. Bazak, N. Barnea

• Generalizing Tan's work for atomic systems

S. Tan, Ann. Phys. (N.Y.) 323, 2952 (2008); Ann. Phys. (N.Y.) 323, 2971 (2008); Ann. Phys. (N.Y.) 323, 2987 (2008)

• Starting point – Short-range factorization

$$\Psi(r_1, r_2, \dots, r_A) \xrightarrow{r_{12} \to 0} \varphi(\mathbf{r}) \times A(\mathbf{R}, \{\mathbf{r}_k\}_{k \neq 1, 2})$$

Universal function (but depends on the potential)

Nucleus-dependent function

 $\varphi(r) \equiv$ Zero-energy solution of the **two-body** Schrodinger Eq.

RW, B. Bazak, N. Barnea, PRC 92, 054311 (2015)

$$\Psi(r_1, r_2, \dots, r_A) \xrightarrow{r_{12} \to 0} \varphi(\mathbf{r}) \times A(\mathbf{R}, \{\mathbf{r}_k\}_{k \neq 1, 2})$$

universal function

For any **short-range** two-body operator \hat{O}

•

lacksquare

Universal for all nuclei

Simply calculated

 $\left\langle \hat{O} \right\rangle = \left\langle \varphi \left| \hat{O}(r) \right| \varphi \right\rangle C \qquad C \propto \left\langle A \right| A \right\rangle$ Two-body dynamics • The "contact"

- Number of correlated pairs
- Depends on the nucleus
- Independent of the operator

RW, *B. Bazak*, *N. Barnea*, *PRC* 92, 054311 (2015)

$$\Psi(r_1, r_2, \dots, r_A) \xrightarrow{r_{12} \to 0} \varphi(\mathbf{r}) \times A(\mathbf{R}, \{\mathbf{r}_k\}_{k \neq 1, 2})$$

universal function

For any **short-range** two-body operator \hat{O}

 $\langle \hat{O} \rangle = \langle \varphi | \hat{O}(r) | \varphi \rangle C$

 $C \propto \langle A | A \rangle$

This factorized form can be derived using:

- RG arguments S. K. Bogner and D. Roscher, Phys. Rev. C 86, 064304 (2012). A. J. Tropiano, S. K. Bogner, and R. J. Furnstahl, Phys. Rev. C 104, 034311 (2021)
- Coupled Cluster expansion
 S. Beck, RW, N. Barnea, Phys. Rev. C 107, 064306 (2023)
 S. Beck, RW, N. Barnea, arXiv:2305.17649 [nucl-th] (2023)

The nuclear contact relations

RW, B. Bazak, N. Barnea,

PRC 92, 054311 (2015)

A. Schmidt, J.R. Pybus, RW, et 20) al., Nature 578, 540 (2020)

The nuclear contact relations

R. Cruz-Torres, D. Lonardoni, RW, et al., Nature Physics (2020) RW, R. Cruz-Torres, N. Barnea, E. Piasetzky and O. Hen, PLB 780, 211 (2018)

The nuclear contact relations

Towards a systematic short-range expansion:

Corrections to the GCF

Corrections to the GCF

• GCF is based on the short-range factorization

$$\Psi(r_1, r_2, \dots, r_A) \xrightarrow{r_{12} \to 0} \varphi(\mathbf{r}) \times A(\mathbf{R}, \{\mathbf{r}_k\}_{k \neq 1, 2})$$

• Possible corrections:

Three-body correlations

RW and S. Gandolfi, arXiv:2301.09605 [nucl-th] (2023) (accepted as a letter in PRC)

Three-body correlations

- There is no clear experimental signal of 3N SRCs
- No ab-initio calculations sensitive to 3N SRC

features

• Factorization?

$$\Psi(r_1, r_2, \dots, r_A) \xrightarrow{r_{12}, r_{13}, r_{23} \to 0} \varphi(r_{12}, r_{13}) \times B(\mathbf{R}_{123}, \{\mathbf{r}_k\}_{k \neq 1, 2, 3})$$

universal function

Ab-initio calculations – AFDMC (with Stefano Gandolfi):

$$\rho_3(r_{12}, r_{13}, r_{23}) \equiv \binom{A}{3} \langle \Psi | \delta(|\mathbf{r}_1 - \mathbf{r}_2| - r_{12}) \delta(|\mathbf{r}_1 - \mathbf{r}_3| - r_{13}) \delta(|\mathbf{r}_2 - \mathbf{r}_3| - r_{23}) | \Psi \rangle$$

- Projections to $T = \frac{1}{2}$ and $T = \frac{3}{2}$
- N2LO(R = 1.0 fm)E1 local chiral interaction
- Nuclei: ³He, ⁴He, ⁶Li, , ¹⁶O

 $T = \frac{1}{2}$ universality: rescaled densities

 $T = \frac{1}{2}$ universality: rescaled densities

Three-body contact values (T = 1/2)

$$\frac{C({}^{4}\text{He})}{C({}^{3}\text{He})} \times \frac{3}{4} = 3.8 \pm 0.3 \qquad \qquad \frac{C({}^{6}\text{Li})}{C({}^{3}\text{He})} \times \frac{3}{6} = 3.1 \pm 0.3 \qquad \qquad \frac{C({}^{16}\text{O})}{C({}^{3}\text{He})} \times \frac{3}{16} = 4.2 \pm 0.5$$

Three-body contact values (T = 1/2)

$$\frac{C({}^{4}\text{He})}{C({}^{3}\text{He})} \times \frac{3}{4} = 3.8 \pm 0.3 \qquad \qquad \frac{C({}^{6}\text{Li})}{C({}^{3}\text{He})} \times \frac{3}{6} = 3.1 \pm 0.3 \qquad \qquad \frac{C({}^{16}\text{O})}{C({}^{3}\text{He})} \times \frac{3}{16} = 4.2 \pm 0.5$$

Can be compared to inclusive cross section ratios (in the appropriate kinematics)

$$a_{3}(A) = \frac{3}{A} \frac{\sigma_{eA}}{(\sigma_{e^{3}He} + \sigma_{e^{3}H})/2}$$

For a symmetric nucleus A

$$a_3(A) = \frac{3}{A} \frac{C(A)}{C(^3\text{He})}$$

r

- Dynamics of SRC triplets are sensitive to three-body forces at short distances
- Models of three-body forces could be tested against exclusive electron scattering data

Three-body correlations

Future work:

- Dominant configurations
- Model dependence Additional interactions
- Impact on momentum distributions
- Spectral function, electron scattering...

Subleading terms for SRC pairs: Beyond factorization

RW, D. Lonardoni, S. Gandolfi, arXiv:2307.05910 [nucl-th] (2023)

• Factorization for short distances

$$\Psi(r_1, r_2, \dots, r_A) \xrightarrow{r_{12} \to 0} \varphi(\mathbf{r}) \times A(\mathbf{R}, \{\mathbf{r}_k\}_{k \neq 1, 2})$$

- $\varphi(r) \equiv$ Zero-energy solution of the two-body Schrodinger Eq.
- The two-body system:

$$\left[-\frac{\hbar^2}{m}\nabla^2 + V(r)\right]\varphi^E(r) = E\varphi^E(r)$$

• For $r \to 0$: The energy becomes negligible

• For $r \rightarrow 0$:

$$\varphi^E(r) = \varphi^{E=0}(r)$$

• Taylor expansion around E = 0:

$$\varphi^{E}(\mathbf{r}) = \varphi^{E=0}(\mathbf{r}) + \left(\frac{d}{dE}\varphi^{E=0}(\mathbf{r})\right)E + \frac{1}{2!}\left(\frac{d^{2}}{dE^{2}}\varphi^{E=0}(\mathbf{r})\right)E^{2} + \cdots$$

• For $r \rightarrow 0$:

$$\varphi^E(r) = \varphi^{E=0}(r)$$

• Taylor expansion around E = 0:

$$\varphi^{E}(\mathbf{r}) = \varphi^{E=0}(\mathbf{r}) + \left(\frac{d}{dE}\varphi^{E=0}(\mathbf{r})\right)E + \frac{1}{2!}\left(\frac{d^{2}}{dE^{2}}\varphi^{E=0}(\mathbf{r})\right)E^{2} + \cdots$$
GCF
leading term
At short distances:
energy derivative is small
Short-range expansion

$$\varphi^{E}(\mathbf{r}) = \varphi^{E=0}(\mathbf{r}) + \left(\frac{d}{dE}\varphi^{E=0}(\mathbf{r})\right)E + \frac{1}{2!}\left(\frac{d^{2}}{dE^{2}}\varphi^{E=0}(\mathbf{r})\right)E^{2} + \cdots$$

• The many-body case: Exact expansion

$$\Psi(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \dots, \boldsymbol{r}_{A}) = \sum_{E, \alpha} \varphi_{\alpha}^{E}(\boldsymbol{r}_{12}) A_{\alpha}^{E}(\boldsymbol{R}_{12}, \boldsymbol{r}_{3}, \dots, \boldsymbol{r}_{A}) \qquad (\alpha - \text{quantum numbers})$$
Complete set of
two-body functions

• The many-body case: Exact expansion

$$\Psi(\boldsymbol{r}_1, \boldsymbol{r}_2, \dots, \boldsymbol{r}_A) = \sum_{E, \alpha} \varphi_{\alpha}^E(\boldsymbol{r}_{12}) A_{\alpha}^E(\boldsymbol{R}_{12}, \boldsymbol{r}_3, \dots, \boldsymbol{r}_A) \qquad (\alpha - \text{quantum numbers})$$

• Taylor expansion around E = 0:

$$\varphi_{\alpha}^{E}(\mathbf{r}) = \varphi_{\alpha}^{E=0}(\mathbf{r}) + \left(\frac{d}{dE}\varphi_{\alpha}^{E=0}(\mathbf{r})\right)E + \frac{1}{2!}\left(\frac{d^{2}}{dE^{2}}\varphi_{\alpha}^{E=0}(\mathbf{r})\right)E^{2} + \cdots$$

• The many-body case: Exact expansion

$$\Psi(\boldsymbol{r}_1, \boldsymbol{r}_2, \dots, \boldsymbol{r}_A) = \sum_{E, \alpha} \varphi_{\alpha}^E(\boldsymbol{r}_{12}) A_{\alpha}^E(\boldsymbol{R}_{12}, \boldsymbol{r}_3, \dots, \boldsymbol{r}_A) \qquad (\alpha - \text{quantum numbers})$$

• Taylor expansion around E = 0:

$$\varphi_{\alpha}^{E}(\mathbf{r}) = \varphi_{\alpha}^{E=0}(\mathbf{r}) + \left(\frac{d}{dE}\varphi_{\alpha}^{E=0}(\mathbf{r})\right)E + \frac{1}{2!}\left(\frac{d^{2}}{dE^{2}}\varphi_{\alpha}^{E=0}(\mathbf{r})\right)E^{2} + \cdots$$

$$\Psi(\mathbf{r}_{1},\mathbf{r}_{2},...,\mathbf{r}_{A}) = \sum_{\alpha} \varphi_{\alpha}^{E=0}(\mathbf{r}_{12})A_{\alpha}^{(0)} + \sum_{\alpha} \left(\frac{d}{dE}\varphi_{\alpha}^{E=0}(\mathbf{r})\right)A_{\alpha}^{(1)} + \sum_{\alpha} \left(\frac{d^{2}}{dE^{2}}\varphi_{\alpha}^{E=0}(\mathbf{r})\right)A_{\alpha}^{(2)} + \cdots$$

• The many-body case: Exact expansion

$$\Psi(\boldsymbol{r}_1, \boldsymbol{r}_2, \dots, \boldsymbol{r}_A) = \sum_{E, \alpha} \varphi_{\alpha}^E(\boldsymbol{r}_{12}) A_{\alpha}^E(\boldsymbol{R}_{12}, \boldsymbol{r}_3, \dots, \boldsymbol{r}_A) \qquad (\alpha - \text{quantum numbers})$$

• Taylor expansion around E = 0:

$$\varphi_{\alpha}^{E}(\mathbf{r}) = \varphi_{\alpha}^{E=0}(\mathbf{r}) + \left(\frac{d}{dE}\varphi_{\alpha}^{E=0}(\mathbf{r})\right)E + \frac{1}{2!}\left(\frac{d^{2}}{dE^{2}}\varphi_{\alpha}^{E=0}(\mathbf{r})\right)E^{2} + \cdots$$

GCF factorization

Next-order terms

$$\Psi(\mathbf{r}_{1},\mathbf{r}_{2},...,\mathbf{r}_{A}) = \sum_{\alpha} \varphi_{\alpha}^{E=0}(\mathbf{r}_{12})A_{\alpha}^{(0)} + \sum_{\alpha} \left(\frac{d}{dE}\varphi_{\alpha}^{E=0}(\mathbf{r})\right)A_{\alpha}^{(1)} + \sum_{\alpha} \left(\frac{d^{2}}{dE^{2}}\varphi_{\alpha}^{E=0}(\mathbf{r})\right)A_{\alpha}^{(2)} + \cdots$$

• The many-body case:

$$\Psi(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \dots, \boldsymbol{r}_{A}) = \sum_{\alpha} \varphi_{\alpha}^{E=0}(\boldsymbol{r}_{12}) A_{\alpha}^{(0)} + \sum_{\alpha} \left(\frac{d}{dE} \varphi_{\alpha}^{E=0}(\boldsymbol{r}) \right) A_{\alpha}^{(1)} + \sum_{\alpha} \left(\frac{d^{2}}{dE^{2}} \varphi_{\alpha}^{E=0}(\boldsymbol{r}) \right) A_{\alpha}^{(2)} + \cdots$$

• Two-body density:

$$\rho_2(r) = \sum_{\alpha} \left(|\varphi_{\alpha}^{E=0}(r)|^2 C_{\alpha}^{00} + \varphi_{\alpha}^{E=0}(r) \frac{d}{dE} \varphi_{\alpha}^{E=0}(r) C_{\alpha}^{01} + \cdots \right)$$

• Subleading contacts:

$$C^{mn}_{\alpha} \propto \langle A^{(m)}_{\alpha} | A^{(n)}_{\alpha} \rangle$$

$$\rho_2(r) = \sum_{\alpha} \left(|\varphi_{\alpha}^{E=0}(r)|^2 C_{\alpha}^{00} + \varphi_{\alpha}^{E=0}(r) \frac{d}{dE} \varphi_{\alpha}^{E=0}(r) C_{\alpha}^{01} + \cdots \right)$$

- Power counting is needed
- Two relevant parameters:
 - Number of energy derivatives
 - Orbital angular momentum (*s*, *p*, *d*, ...)
- Can be analyzed analytically for the two-body system

Neutron matter: two-body density

$$\rho_2(r) = \sum_{\alpha} \left(|\varphi_{\alpha}^{E=0}(r)|^2 C_{\alpha}^{00} + \varphi_{\alpha}^{E=0}(r) \frac{d}{dE} \varphi_{\alpha}^{E=0}(r) C_{\alpha}^{01} + \cdots \right)$$

• Neutron matter:

AFDMC by Diego Lonardoni & Stefano Gandolfi: $AV4'+UIX_C$ n = 0.16 fm⁻³

5 fitting parameters at N²LO

 $(S + \ell = \text{Even})$ s-wave: $\ell = 0, S = 0, j = 0$ p-wave: $\ell = 1, S = 1, j = 0/1/2$

Neutron matter: one-body momentum distribution

Momentum distribution 101 LO NLO No fitting parameters! N²LO 10⁰ k_F **AFDMC** (x) u u 10^{-2} 10^{-3} $(S + \ell = \text{Even})$ 10^{-4} 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 4.0 *s*-wave: $\ell = 0, S = 0, j = 0$

k [fm⁻¹]

p-wave: $\ell = 1, S = 1, j = 0/1/2$

Matching to long-range model

Fitting only the LO contact and matching to FG:

Matching to long-range model

Fitting only the LO contact and matching to FG:

Matching to long-range model

Fitting only the LO contact and matching to FG:

Summary

- Leading-order GCF provides consistent and comprehensive description of shortrange correlated pairs $\Psi(r_1, r_2, ..., r_A) \xrightarrow{r_{12} \to 0} \varphi(\mathbf{r}) \times A(\mathbf{R}, \{\mathbf{r}_k\}_{k \neq 1, 2})$
- **3N SRCs** clear signal of correlated triplets
 - Wave function factorization
 - Single leading channel $j^{\pi} = \frac{1}{2}^{+}$, $t = \frac{1}{2}^{+}$
 - Universal behavior of SRC triplets
 - Extracted scaling factors 3N contact ratios
 - Sensitivity to three-body force

Summary

• Short-range expansion -

$$\rho_2(r) = \sum_{\alpha} \left(|\varphi_{\alpha}^{E=0}(r)|^2 C_{\alpha}^{00} + \varphi_{\alpha}^{E=0}(r) \frac{d}{dE} \varphi_{\alpha}^{E=0}(r) C_{\alpha}^{01} + \cdots \right)$$

- Systematic expansion
- Valid for larger distances / lower momenta
- More observables can be described
- Improved comparison with data
- Motivates new experiments

BACKUP

Main channels:

The **deuteron** channel: $\ell_2 = 0,2$; $s_2 = 1$; $j_2 = 1$; $t_2 = 0$

The **spin-zero** channel: $\ell_2 = 0$; $s_2 = 0$; $j_2 = 0$; $t_2 = 1$

RW, *B. Bazak*, *N. Barnea*, *PRC* 92, 054311 (2015)

$$\Psi \xrightarrow{\boldsymbol{r}_{ij \to 0}} \sum_{\alpha} \varphi_{ij}^{\alpha}(\boldsymbol{r}_{ij}) A_{ij}^{\alpha}(\boldsymbol{R}_{ij}, \{\boldsymbol{r}_k\}_{k \neq i,j}) \quad ; \quad \boldsymbol{C}_{ij}^{\alpha \beta} \propto \langle A_{ij}^{\alpha} | A_{ij}^{\beta} \rangle$$

The universal functions using the AV18 potential

Three-body correlations

$$\Psi(r_1, r_2, \dots, r_A) \xrightarrow{r_{12}, r_{13}, r_{23} \to 0} \varphi(x_{12}, x_{123}) \times B(\mathbf{R}_{123}, \{\mathbf{r}_k\}_{k \neq 1, 2, 3})$$

Three-body wave functions – Quantum numbers: π , *j*, *m*, *t*, *t_z*

• S-wave dominance at short distances
$$\ell = 0 \implies \pi = +$$

• Spin
$$S = \frac{1}{2}, \frac{3}{2} + \ell = 0 \implies j = \frac{1}{2}, \frac{3}{2}$$

• Isospin
$$t = \frac{3}{2}$$
 (symmetric function) – suppressed due to Pauli blocking

• Spin
$$S = \frac{3}{2}$$
 (symmetric function) – suppressed due to Pauli blocking

t = 1/2

12

Three-body correlations

$$\Psi(r_1, r_2, \dots, r_A) \xrightarrow{r_{12}, r_{13}, r_{23} \to 0} \varphi(x_{12}, x_{123}) \times B(\mathbf{R}_{123}, \{\mathbf{r}_k\}_{k \neq 1, 2, 3})$$

• A **single** leading channel:

$$j^{\pi} = \frac{1}{2}^{+}$$
, $t = \frac{1}{2}$

- The same quantum numbers as 3 He and 3 H
- Therefore, at short-distances we expect:
 - T = 1/2 dominance (over T = 3/2)
 - Universality All nuclei should behave like ³He

Three-body contact values (T = 1/2)

$$\frac{C({}^{4}\text{He})}{C({}^{3}\text{He})} \times \frac{3}{4} = 3.8 \pm 0.3 \qquad \qquad \frac{C({}^{6}\text{Li})}{C({}^{3}\text{He})} \times \frac{3}{6} = 3.1 \pm 0.3 \qquad \qquad \frac{C({}^{16}\text{O})}{C({}^{3}\text{He})} \times \frac{3}{16} = 4.2 \pm 0.5$$

Sargsian et al predicted [PRC 100, 044320 (2019)]:

$$a_3(A) = 1.12 \frac{a_2(A)^2}{a_2({}^{3}\text{He})^2}$$
 $a_3({}^{4}\text{He}) \approx 3.15$

Three-body contact values (T = 1/2)

$$\frac{C({}^{4}\text{He})}{C({}^{3}\text{He})} \times \frac{3}{4} = 3.8 \pm 0.3 \qquad \qquad \frac{C({}^{6}\text{Li})}{C({}^{3}\text{He})} \times \frac{3}{6} = 3.1 \pm 0.3 \qquad \qquad \frac{C({}^{16}\text{O})}{C({}^{3}\text{He})} \times \frac{3}{16} = 4.2 \pm 0.5$$

Additional effects might be important:

- CM motion of the triplet in nucleus A
- Energy of the A 3 system
- Contribution of t = 3/2 triplets (*e.g.*: *ppp*, *nnn*)

• The two-body system:

$$\left[-\frac{\hbar^2}{m}\nabla^2 + V(r)\right]\varphi^E(r) = E\varphi^E(r)$$

• Taylor expansion around E = 0:

$$\varphi^{E}(\mathbf{r}) = \varphi^{E=0}(\mathbf{r}) + \left(\frac{d}{dE}\varphi^{E=0}(\mathbf{r})\right)E + \frac{1}{2!}\left(\frac{d^{2}}{dE^{2}}\varphi^{E=0}(\mathbf{r})\right)E^{2} + \cdots$$
GCF
leading term
Next-order
terms

$$\varphi^{E}(\mathbf{r}) = \varphi^{E=0}(\mathbf{r}) + \left(\frac{d}{dE}\varphi^{E=0}(\mathbf{r})\right)E + \frac{1}{2!}\left(\frac{d^{2}}{dE^{2}}\varphi^{E=0}(\mathbf{r})\right)E^{2} + \cdots$$

AV4' Deuteron channel Scattering state

Short-range expansion: Next order terms

The many-body case:

$$\Psi(\mathbf{r}_{1},\mathbf{r}_{2},\ldots,\mathbf{r}_{A}) = \sum_{\alpha} \varphi_{\alpha}^{E=0}(\mathbf{r}_{12})A_{\alpha}^{(0)} + \sum_{\alpha} \left(\frac{d}{dE}\varphi_{\alpha}^{E=0}(\mathbf{r})\right)A_{\alpha}^{(1)} + \sum_{\alpha} \left(\frac{d^{2}}{dE^{2}}\varphi_{\alpha}^{E=0}(\mathbf{r})\right)A_{\alpha}^{(2)} + \cdots$$

$$A_{\alpha}^{(0)}(\boldsymbol{R}_{12},\boldsymbol{r}_{3},\ldots,\boldsymbol{r}_{A}) = \sum_{E} A_{\alpha}^{E}(\boldsymbol{R}_{12},\boldsymbol{r}_{3},\ldots,\boldsymbol{r}_{A})$$

$$A_{\alpha}^{(1)}(\mathbf{R}_{12}, \mathbf{r}_{3}, ..., \mathbf{r}_{A}) = \sum_{E} E A_{\alpha}^{E}(\mathbf{R}_{12}, \mathbf{r}_{3}, ..., \mathbf{r}_{A})$$

$$A_{\alpha}^{(2)}(\mathbf{R}_{12}, \mathbf{r}_{3}, \dots, \mathbf{r}_{A}) = \frac{1}{2!} \sum_{E} E^{2} A_{\alpha}^{E}(\mathbf{R}_{12}, \mathbf{r}_{3}, \dots, \mathbf{r}_{A})$$

Short-range expansion $\rho_2(r) = \sum_{\alpha} \left(|\varphi_{\alpha}^{E=0}(r)|^2 C_{\alpha}^{00} + \varphi_{\alpha}^{E=0}(r) \frac{d}{dE} \varphi_{\alpha}^{E=0}(r) C_{\alpha}^{01} + \cdots \right)$

• Neutron matter:

 $(S + \ell = \text{Even})$

AFDMC by Diego Lonardoni & Stefano Gandolfi: AV4' $n = 0.16 \text{ fm}^{-3}$

$$\rho_{2}(r) = \sum_{\alpha} \left(|\varphi_{\alpha}^{E=0}(r)|^{2} C_{\alpha}^{00} + \varphi_{\alpha}^{E=0}(r) \frac{d}{dE} \varphi_{\alpha}^{E=0}(r) C_{\alpha}^{01} + \cdots \right)$$

Two-body density

Shows the validity of the factorization

Two-body momentum distribution

Relative momentum distribution

$$n_{pn}(k_{rel}) \xrightarrow[k \to \infty]{} \frac{C_{pn}^d}{k_{pn}} |\varphi_{pn}^d(k_{rel})|^2 + C_{pn}^0 |\varphi_{pn}^0(k_{rel})|^2$$
$$n_{nn}(k_{rel}) \xrightarrow[k \to \infty]{} \frac{C_{nn}^0}{k_{rel}} |\varphi_{nn}^0(k_{rel})|^2$$

Two-body momentum distribution

Relative momentum distribution

$$n_{pn}(k_{rel}) \xrightarrow[k \to \infty]{} C^d_{pn} |\varphi^d_{pn}(k_{rel})|^2 + C^0_{pn} |\varphi^0_{pn}(k_{rel})|^2$$
$$n_{nn}(k_{rel}) \xrightarrow[k \to \infty]{} C^0_{nn} |\varphi^0_{nn}(k_{rel})|^2$$

R. Cruz-Torres, D. Lonardoni, RW, et al., arXiv: 1907.03658 [nucl-th], Nature physics (2020)

One-body momentum distribution $n_p(k) \xrightarrow[k \to \infty]{} C^d_{pn} |\varphi^d_{pn}(k)|^2 + C^0_{pn} |\varphi^0_{pn}(k)|^2 + 2C^0_{pp} |\varphi^0_{pp}(k)|^2$

RW, R. Cruz-Torres, N. Barnea, E. Piasetzky and O. Hen, PLB 780, 211 (2018)

Electron-scattering experiments

- A(e, e'N) and A(e, e'NN) cross sections
- Described using the spectral function
 (the probability to find nucleon with momentum
 *p*₁ and energy ε₁ in the nucleus)

• Using the GCF:

$$S^{p}(\boldsymbol{p_{1}}, \epsilon_{1}) = C_{pn}^{1} S_{pn}^{1}(\boldsymbol{p_{1}}, \epsilon_{1}) + C_{pn}^{0} S_{pn}^{0}(\boldsymbol{p_{1}}, \epsilon_{1}) + 2C_{pp}^{0} S_{pp}^{0}(\boldsymbol{p_{1}}, \epsilon_{1})$$
$$(p_{1} > k_{F})$$

RW, I. Korover, E. Piasetzky, O. Hen and N. Barnea, PLB 791, 242 (2019)

Electron-scattering experiments

• Good description of experimental data:

A. Schmidt, J.R. Pybus, RW, E. P. Segarra, A. Hrnjic, A. Denniston, O. Hen, et al. (CLAS collaboration), Nature 578, 540 (2020)

Electron-scattering experiments

I. Korover et al., arXiv:2004.07304 (2020)

 $T = \frac{3}{2}$ universality: rescaled densities

