Quantum Monte Carlo calculations of electron-nucleus scattering in the Short-Time Approximation

Short-Distance nuclear structure and PDFs

ECT* Workshop

July 18, 2023

Lorenzo Andreoli

Quantum Monte Carlo Group @ WashU

Jason Bub (GS) Garrett King (GS)

Lorenzo Andreoli (PD)

Maria Piarulli and Saori Pastore

Washington University in St.Louis

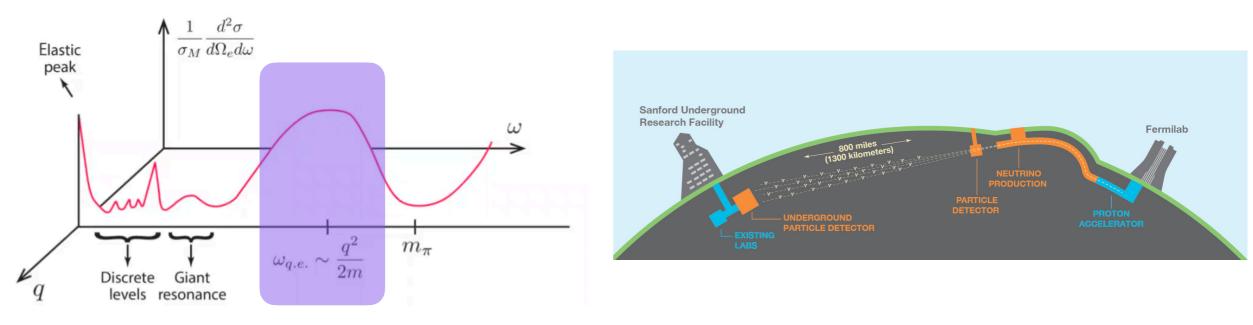
Outline

- Quasielastic lepton-nucleus scattering
- Ab initio description of nuclei:
 - Nuclear interaction
 - Electroweak interaction of leptons with nucleons and clusters of correlated nucleons
 - Variational Monte Carlo
- Short-time approximation
- Conclusions and outlook

Electron-nucleus scattering

Theoretical understanding of nuclear effects is extremely important for neutrino experimental programs: oscillation experiments require accurate calculations of cross sections

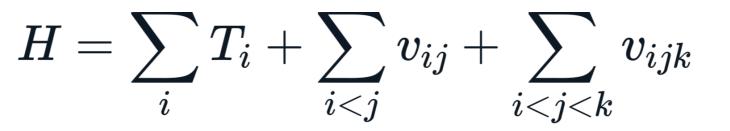
Electron scattering can be used to test our nuclear model (same nuclear effects, no need to reconstruct energies, abundant experimental data)

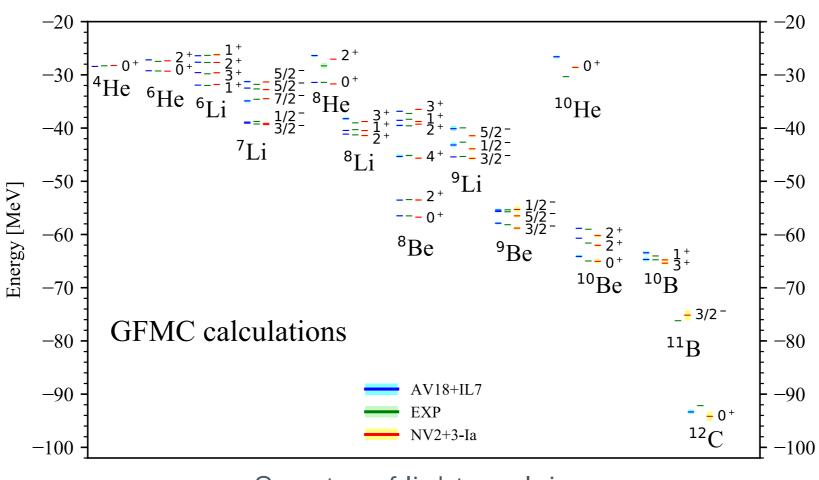


Lepton-nucleus cross sections $~\omega \sim 10^2 ~{
m MeV}$

Many-body nuclear interaction

Many-body Nuclear Hamiltonian: Argonne v₁₈ + Urbana X





Spectra of light nuclei

Piarulli et al. PRL120(2018)052503

4

Many-body nuclear interaction

Many-body Nuclear Hamiltonian: Argonne v₁₈ + Urbana X

$$H = \sum_i T_i + \sum_{i < j} v_{ij} + \sum_{i < j < k} v_{ijk}$$

Quantum Monte Carlo method:

Use nuclear wave functions that minimize the expectation value of E

$$E_V = rac{\langle \psi | H | \psi
angle}{\langle \psi | \psi
angle} \geq E_0$$

The evaluation is performed using Metropolis sampling

Nuclear Wave Functions

Variational wave function for nucleus in J state

$$\ket{\psi} = \mathcal{S} \prod_{i < j}^A \Biggl[1 + oldsymbol{U}_{ij} + \sum_{k
eq i, j}^A oldsymbol{U}_{ijk} \Biggr] \Biggl[\prod_{i < j} f_c(r_{ij}) \Biggr] \ket{\Phi(JMTT_3)}$$

Two-body spin- and isospin-dependent correlations

$$U_{ij} = \sum_p f^p(r_{ij}) \, O_{ij}^p$$

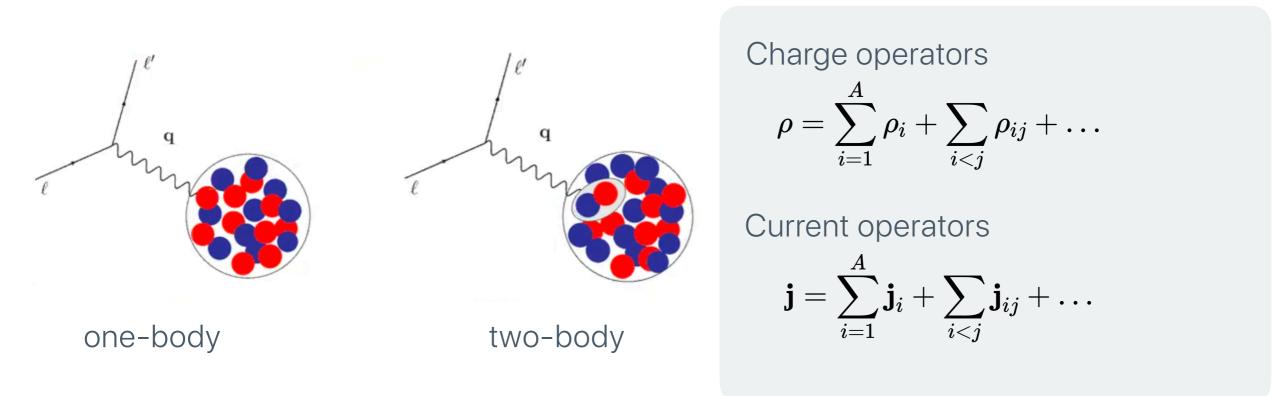
$$O_{ij}^p = [1, oldsymbol{\sigma}_i \cdot oldsymbol{\sigma}_j, S_{ij}] \otimes [1, oldsymbol{\tau}_i \cdot oldsymbol{ au}_j]$$

$$U_{ijk} = \epsilon v_{ijk}(ar{r}_{ij},ar{r}_{jk},ar{r}_{ki})$$

Electromagnetic interactions

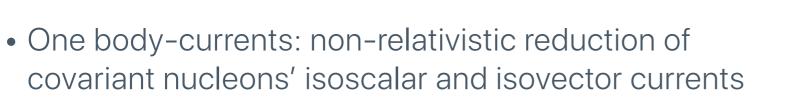
Phenomenological Hamiltonian for NN and NNN

The interaction with external probes is described in terms on one- and two-body charge and current operators

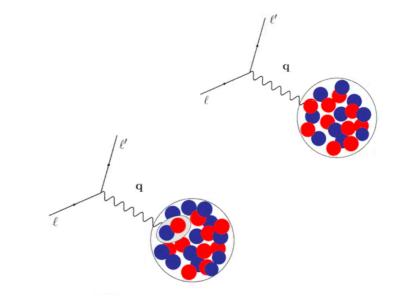


Two-body currents are a manifestation of two-nucleon correlations

Electromagnetic interactions



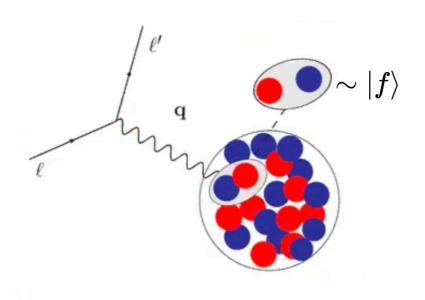
- Two-body currents: modeled on MEC currents constrained by commutation relation with the nuclear Hamiltonian (Pastore et al. PRC84(2011)024001, PRC87(2013)014006)
- Argonne v18 two-nucleon and Urbana potentials, together with these currents, provide a quantitatively successful description of many nuclear electroweak observables, including charge radii, electromagnetic moments and transition rates, charge and magnetic form factors of nuclei with up to A = 12 nucleons



Short-time approximation

Pastore et al. PRC101(2020)044612

Quasielastic inclusive scattering cross sections are expressed in terms of response functions



The sum over all final states is replaced by a two nucleon propagator **Response functions**

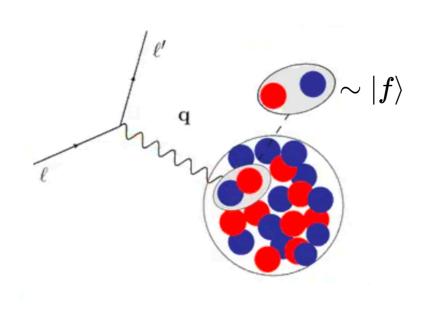
$$egin{split} R_lpha(q,\omega) &= \sum_f \delta(\omega+E_0-E_f) ig|\langle f ig| O_lpha(\mathbf{q}) ig| 0
angle ig|^2 \ R_lpha(q,\omega) &= \int_{-\infty}^\infty rac{dt}{2\pi} e^{i(\omega+E_i)t} ig\langle \Psi_i ig| O_lpha^\dagger(\mathbf{q}) e^{-iHt} O_lpha(\mathbf{q}) ig| \Psi_i ig
angle \end{split}$$

$$O^{\dagger}e^{-iHt}O = \left(\sum_{i} O_{i}^{\dagger} + \sum_{i < j} O_{ij}^{\dagger}\right)e^{-iHt}\left(\sum_{i'} O_{i'} + \sum_{i' < j'} O_{i'j'}\right)$$
$$= \sum_{i} O_{i}^{\dagger}e^{-iHt}O_{i} + \sum_{i \neq j} O_{i}^{\dagger}e^{-iHt}O_{j}$$
$$+ \sum_{i \neq j} \left(O_{i}^{\dagger}e^{-iHt}O_{ij} + O_{ij}^{\dagger}e^{-iHt}O_{i} + O_{ij}^{\dagger}e^{-iHt}O_{i} + O_{ij}^{\dagger}e^{-iHt}O_{ij}\right) + \dots$$

Short-time approximation

Pastore et al. PRC101(2020)044612

Quasielastic scattering cross sections are expressed in terms of response function



Response functions

$$R_lpha(q,\omega) = \sum_f \delta(\omega+E_0-E_f) |\langle f|O_lpha({f q})|0
angle|^2$$

Response densities

$$R^{ ext{STA}}(q,\omega) \sim \int \delta(\omega + E_0 - E_f) de \; dE_{cm} \mathcal{D}(e,E_{cm};q)$$

STA: scattering of external probes from pairs of correlated nucleons

Validity of the Short Time Approximation

The typical (conservative estimate) energy (time) scale in a nucleus with A correlated nucleons in pairs is:

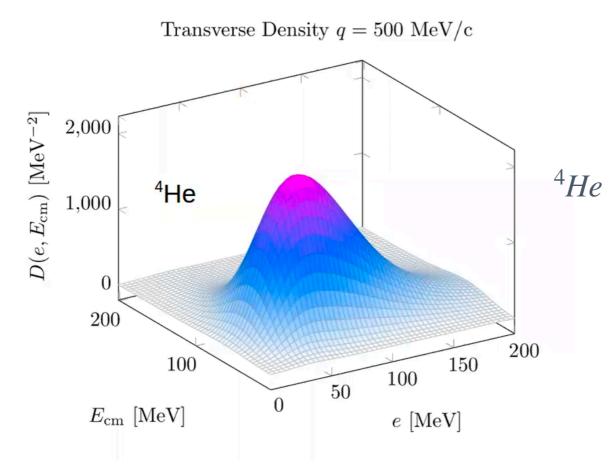
$$arepsilon_{
m pair} \, \sim 20 {
m MeV} \,\,\,\, (t \sim 1/arepsilon_{
m pair} \,)$$

This sets a natural expansion parameter in the QE region characterized by $~arepsilon_{
m pair}/\omega_{
m QE}$

The STA neglects terms of order

 $O\Big((arepsilon_{
m pair}/\omega_{
m QE})^2\Big)$

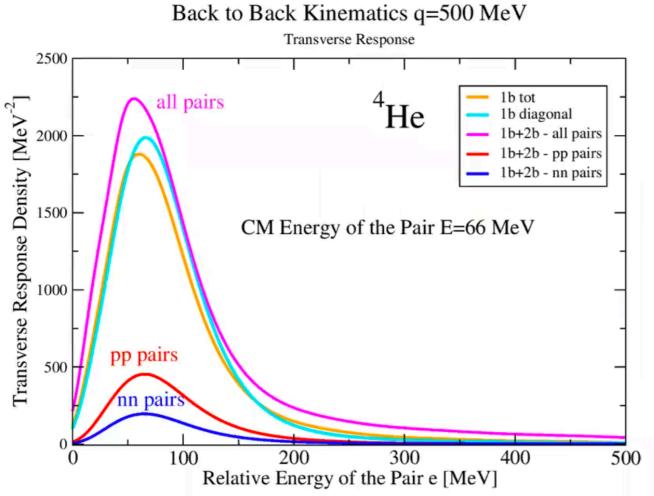
Transverse response density



Electron scattering from ${}^{4}He$ in the STA:

- Provides "more" exclusive information in terms of nucleon-pair kinematics via the Response Densities as functions of (E,e)
 - Give access to particular kinematics for the struck nucleon pair

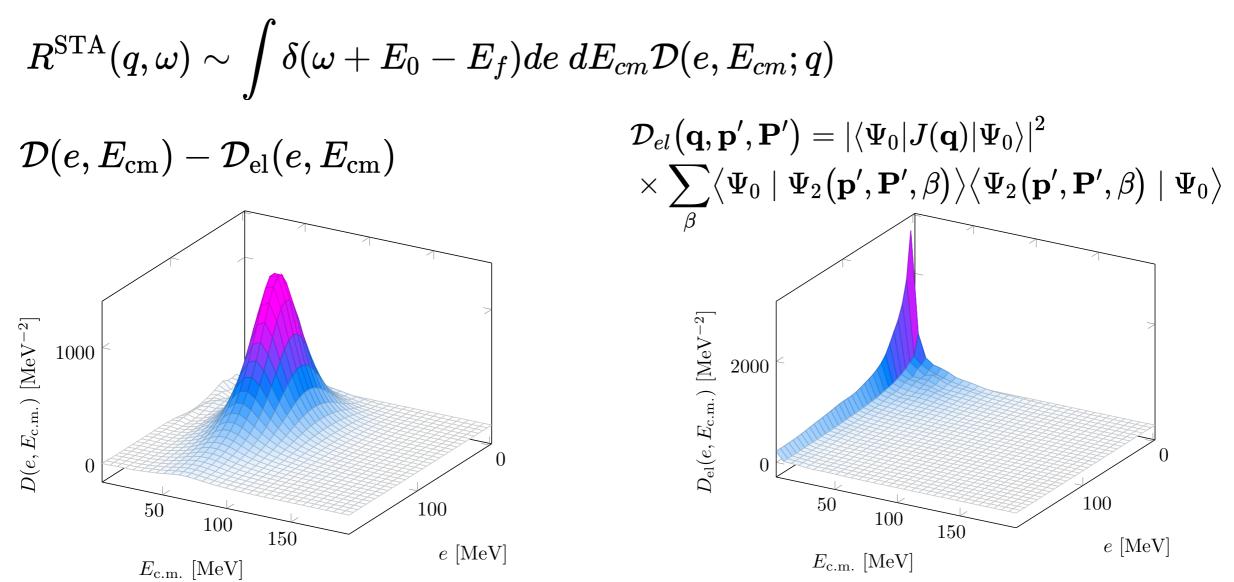
Back-to-back kinematic



We can select a particular kinematic, and assess the contributions from different particle identities

Pastore et al. PRC101(2020)044612

Longitudinal response density: elastic peak removal



³H Longitudinal response at 300 MeV

L.A., N. Rocco, A. Lovato, S. Pastore et al. PRC105(2022)014002

Benchmark

L.A., N. Rocco, A. Lovato, S. Pastore et al. PRC105(2022)014002

- We benchmarked three different methods based on the same description of nuclear dynamics of the initial target state
- Compared to the experimental data for the longitudinal and transverse electromagnetic response functions of ³He, and the inclusive cross sections of both ³He and ³H
- Comparing the results allows for a precise quantification of the uncertainties inherent to factorization schemes

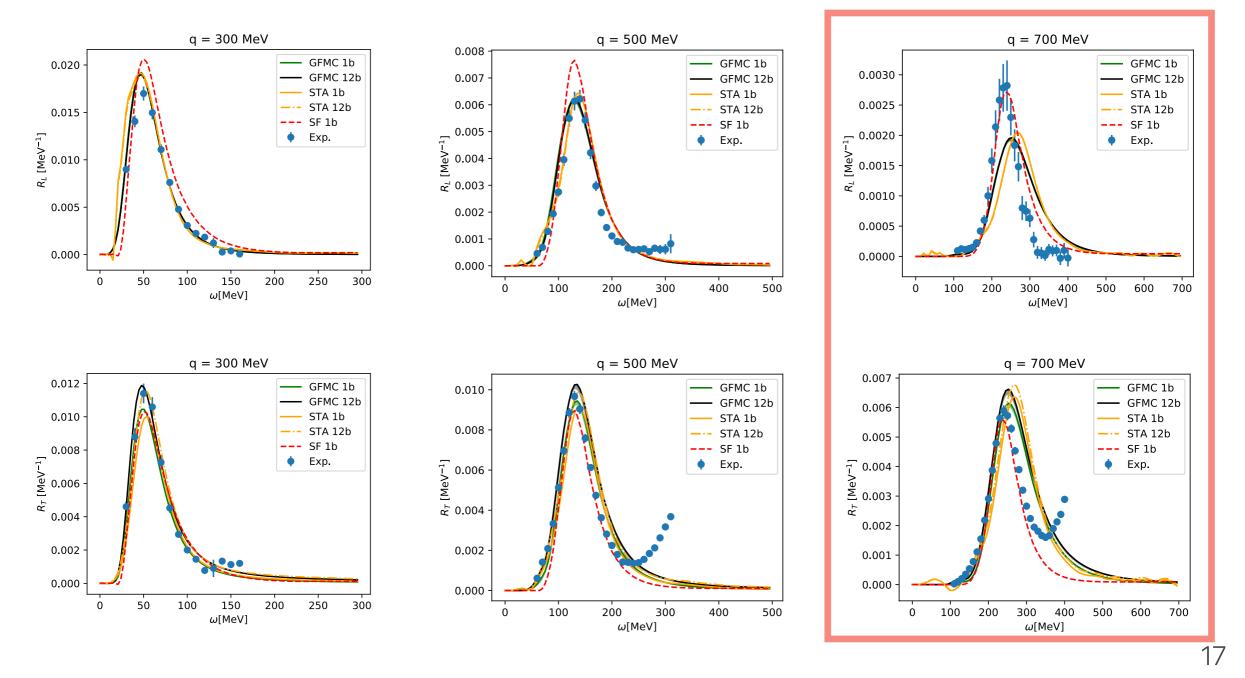
Benchmark

L.A., S. Pastore, et al. PRC105(2022)014002

Green's function Monte CarloStort-time approximationSpectral function $|\Psi_0\rangle \propto \lim_{\tau \to \infty} \exp[-(H - E_0)\tau]|\Psi_T\rangle$ $R_{\alpha}(\mathbf{q}, \omega) = \int_{-\infty}^{\infty} \frac{dt}{2\pi} e^{i(\omega + E_0)t}$
 $\times \langle \Psi_0| J_{\alpha}^{\dagger}(\mathbf{q}) e^{-iHt} J_{\alpha}(\mathbf{q}) | \Psi_0\rangle$ $|\Psi_f\rangle = |\mathbf{p}\rangle \otimes |\Psi_n^{A-1}\rangle$ $E_{\alpha}(\mathbf{q}, \tau) = \int_{\omega_{0k}}^{\infty} d\omega e^{-\omega \tau} R_{\alpha}(\mathbf{q}, \omega), \quad \alpha = L, T$
 $-|F_{\alpha}(\mathbf{q})|^2 e^{-\omega a\tau}$ $J^{\dagger}e^{-iHt} J_i + \sum_{i,j} J_i^{\dagger}e^{-iHt} J_i + \sum_{i,j} J_i^{\dagger}e^{-iHt} J_j$
 $+ \sum_{i,j} (J_i^{\dagger}e^{-iHt} J_i + J_{ij}^{\dagger}e^{-iHt} J_i + J_{ij}^{\dagger}e^{-iHt} J_{ij}) + \cdots$ $R_{\alpha}(\mathbf{q}, \omega) = \sum_{\gamma_n = p, n} \int \frac{d^3k}{(2\pi)^3} dE[P_{\gamma_n}(\mathbf{k}, E)$
 $\times \frac{m_N^2}{e(\mathbf{k})e(\mathbf{k}+\mathbf{q})} \sum_{i,j} \langle k| j_{i,\alpha}^{\dagger}|k+q\rangle \langle p| j_{i,\alpha}|k\rangle$

Benchmark

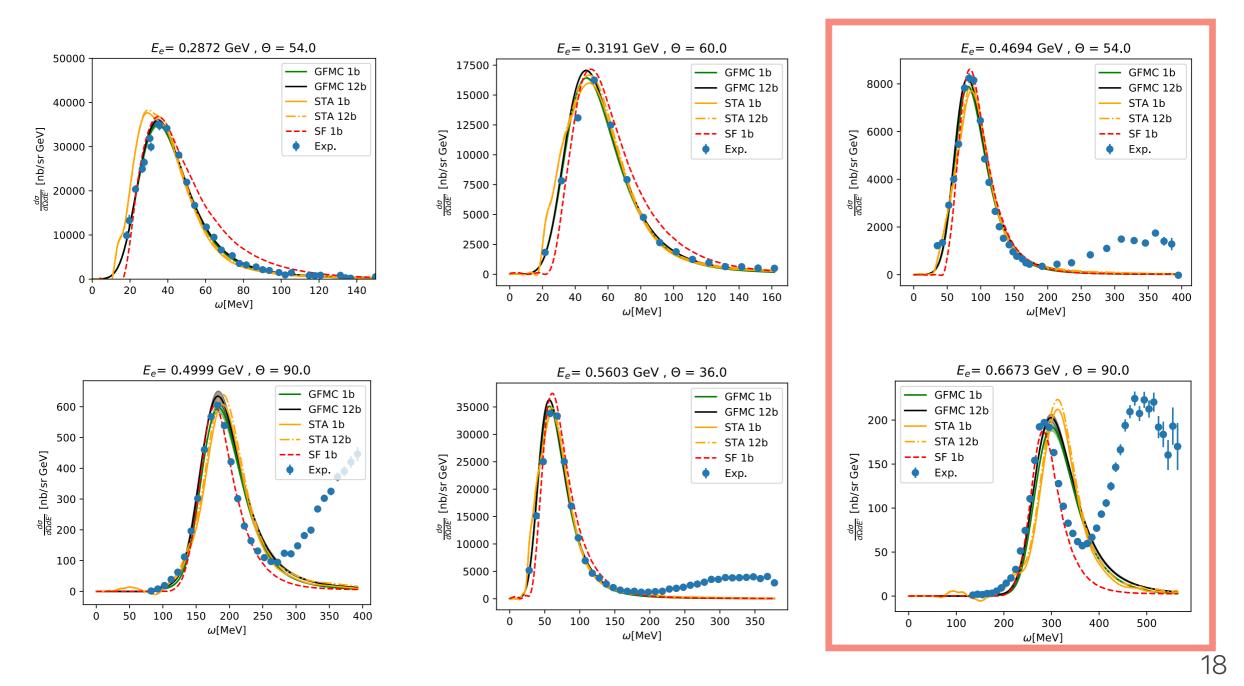
Longitudinal and transverse response function in ³He



L.A., N. Rocco, A. Lovato, S. Pastore et al. PRC105(2022)014002

Cross sections

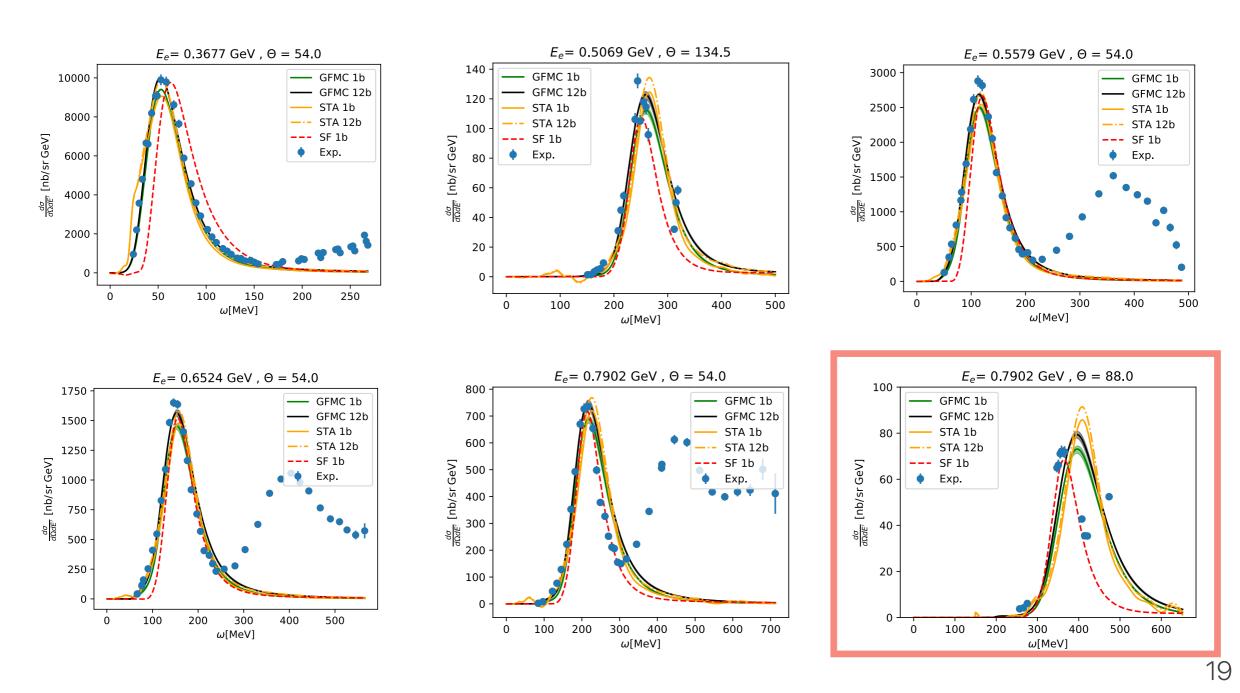
ЗНе



L.A., N. Rocco, A. Lovato, S. Pastore et al. PRC105(2022)014002

Cross sections

3Н



L.A., N. Rocco, A. Lovato, S. Pastore et al. PRC105(2022)014002

Relativistic corrections

Necessary to include relativistic correction at higher momentum q.

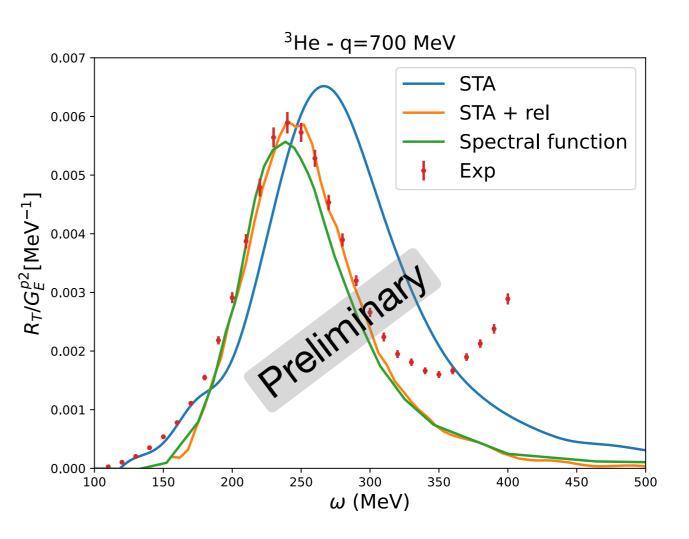
We are currently working on including relativistic corrections within the STA formalism:

R. Weiss (LANL)

- Relativistic kinematic: allowed by STA factorization scheme
- Relativistic currents: expansion for a large value of the momentum transfer q

$$j^{\mu}=ear{u}ig(oldsymbol{p}'s'ig)ig(e_N\gamma^{\mu}+rac{i\kappa_N}{2m_N}\sigma^{\mu
u}q_{
u}ig)u(oldsymbol{p}s)$$

p' = p + q



Lorenzo Andreoli

200

150

100

 $e \, [\text{MeV}]$

50

0

Heavier nuclei

Computational complexity of response functions and densities:

12C ^{4}He Wave-function 2^A Spin 16 4096 A!924 6 Isospin $\overline{Z!(A-Z)!}$ A(A - 1)/2Pairs 6 66

Response densities: E, e grid

$R_{lpha}(q,\omega) = \int_{-\infty}^{\infty} rac{dt}{2\pi} e^{i(\omega+E_i)t} \langle \Psi_i ig| O_{lpha}^{\dagger}(\mathbf{q}) e^{-iHt} O_{lpha}(\mathbf{q}) ig| \Psi_i angle$ 21

Transverse Density q = 500 MeV/c

 $D(e, E_{\rm cm}) \, [{\rm MeV^{-2}}]$

2,000

1,000

200

 $E_{\rm cm}$ [MeV]

⁴He

100

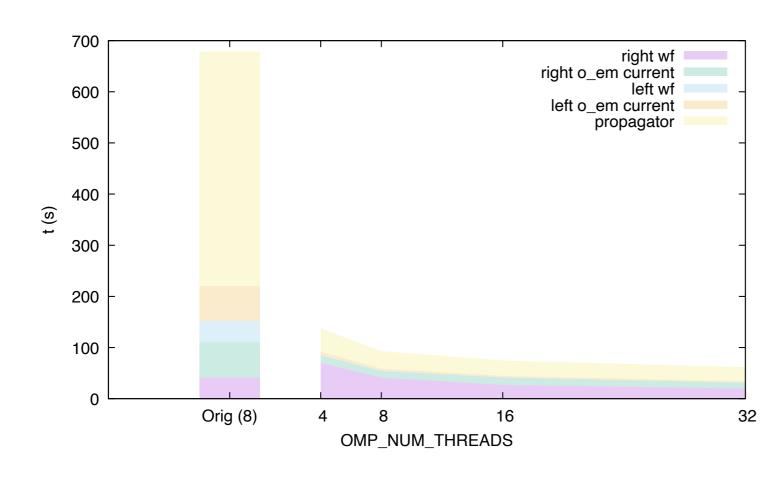
Heavier nuclei

Optimization was necessary to tackle heavier nuclei

$$R_lpha(q,\omega) = \int_{-\infty}^\infty rac{dt}{2\pi} e^{i(\omega+E_i)t} ig\langle \Psi_i ig| O^\dagger_lpha({f q}) e^{-iHt} O_lpha({f q}) ig| \Psi_i ig
angle$$

- Parallelization MPI and OpenMP:
- Variational Monte Carlo is almost perfectly parallelizable, but with increased system size memory becomes a constrain
- Refactoring of the code
- Computational algorithms and approximations: variation of integration ranges (*r*, *R*) for struck nucleon pair

Heavier nuclei: ${}^{12}C$



Optimization specific to ${}^{12}C$ was needed in oder to perform full response densities calculations:

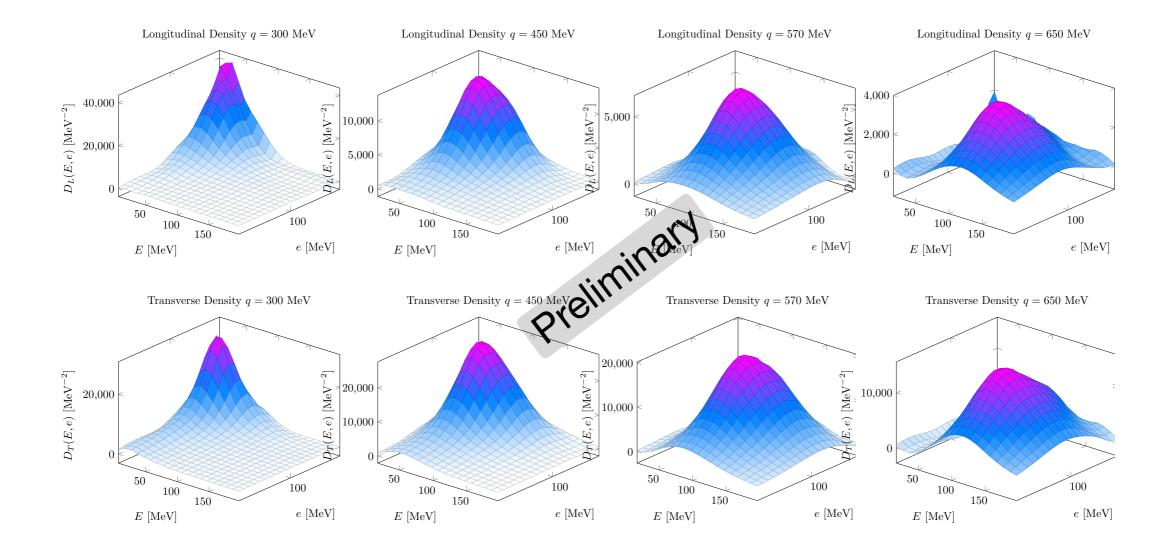
- parallelization
- refactoring of the code
- reduction of memory usage
- computational algorithms and approximations

$$R_lpha(q,\omega) = \int_{-\infty}^\infty rac{dt}{2\pi} e^{i(\omega+E_i)t} ig\langle \Psi_i ig| O^\dagger_lpha({f q}) e^{-iHt} O_lpha({f q}) ig| \Psi_i ig
angle$$

23

Responses for ${}^{12}C$

Longitudinal and transverse response for **300 < q < 850 MeV**:



Cross sections: Interpolation schemes

• Given the computational cost of evaluating nuclear responses for heavy nuclei, we can only calculate a limited set. An interpolation scheme is needed.

$$\left(rac{d^2\sigma}{dE'd\Omega'}
ight)_e = \left(rac{d\sigma}{d\Omega'}
ight)_{
m M} \left[\left(rac{q^2}{{f q}^2}
ight)^2 R_L(|{f q}|,\omega) + \left(an^2rac{ heta}{2} - rac{1}{2}rac{q^2}{{f q}^2}
ight) R_T(|{f q}|,\omega)
ight]$$

- Cross sections weakly dependent on interpolation scheme in $^4\!He$, but more relevant in ^{12}C
- We tested interpolation schemes on ${}^{4}He$, where we can evaluate responses for an arbitrary fine grid of values of q: grid with 10 MeV spacing

Cross sections: Interpolation schemes

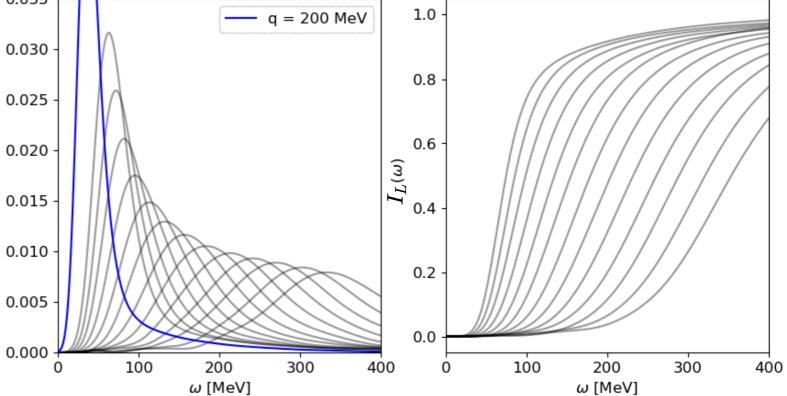
• We interpolate in between cumulative integrals of responses, using information from the sum rules

$$I_{L/T}(\omega;\mathbf{q}) = rac{\int_0^\omega R_{L/T}(\omega';\mathbf{q})d\omega'}{\int_0^\infty R_{L/T}(\omega';\mathbf{q})d\omega'} \;\; \stackrel{\mathfrak{F}}{\overset{\mathfrak{F}}{
ightarrow}} \;\;$$

• Outside the range (q < 300 MeV and q > 850 MeV), we use scaling functions

$$\psi_{\rm nr}' = \frac{m_N}{|\mathbf{q}|k_F} \left(\omega - \frac{|\mathbf{q}|^2}{2m_N} - \varepsilon \right)$$

4He, longitudinal response 0.035 1.0 q = 200 MeV



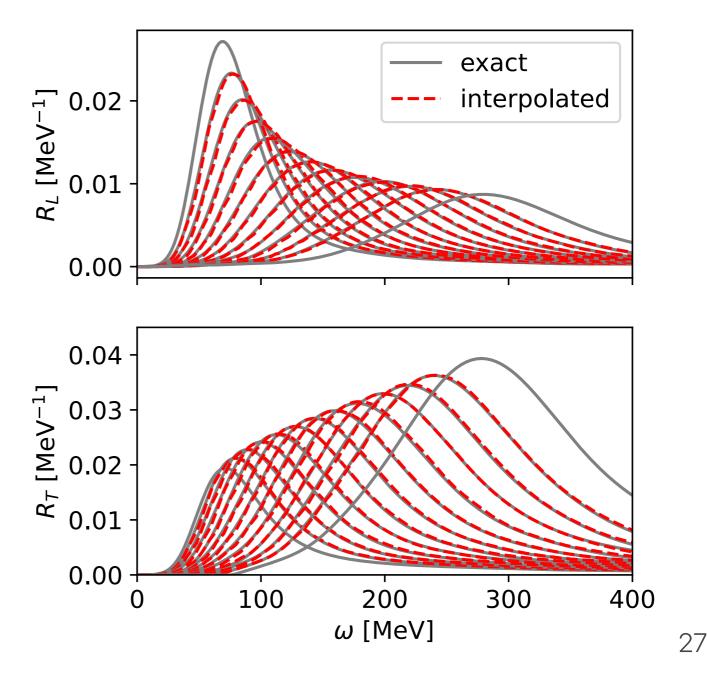
Cross sections: Interpolation schemes

• We **interpolate** in between cumulative integrals of responses, using information from the sum rules

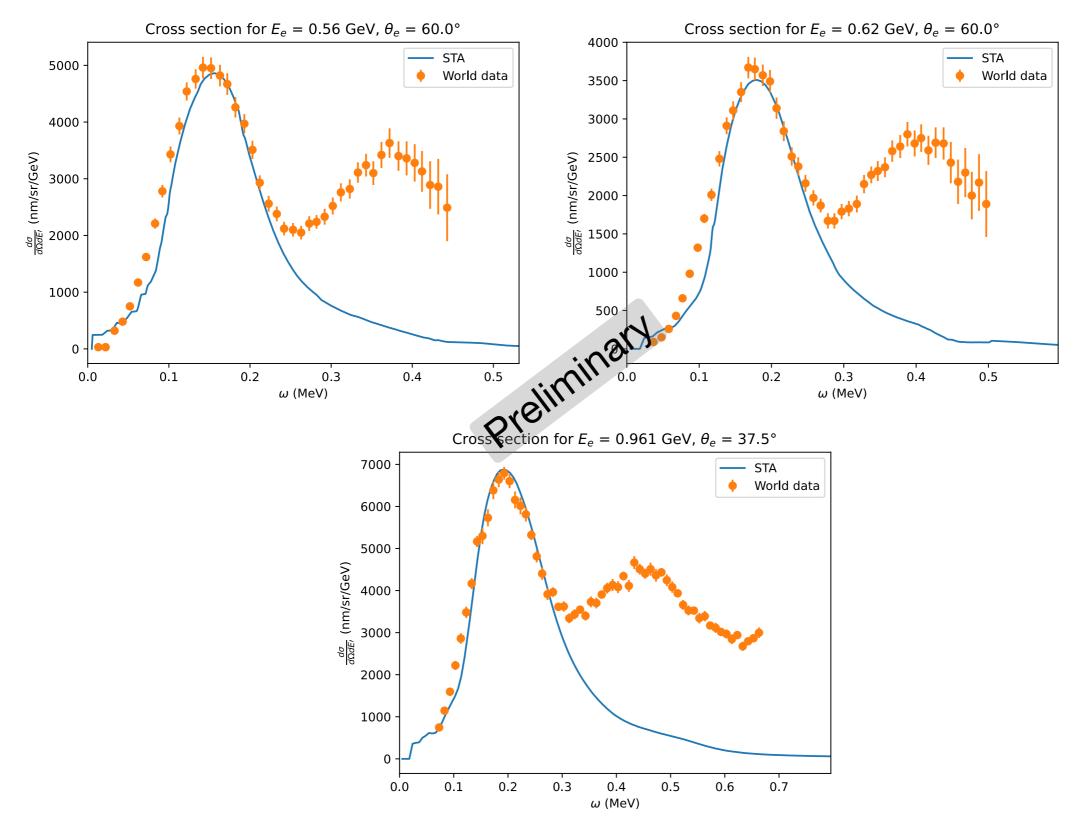
$$I_{L/T}(\omega;\mathbf{q}) = rac{\int_0^\omega R_{L/T}(\omega';\mathbf{q})d\omega'}{\int_0^\infty R_{L/T}(\omega';\mathbf{q})d\omega'}$$

 Outside the range (q < 300 MeV and q > 850 MeV), we use scaling functions

$$\psi_{\rm nr}' = \frac{m_N}{|\mathbf{q}|k_F} \left(\omega - \frac{|\mathbf{q}|^2}{2m_N} - \varepsilon\right)$$



Cross sections results



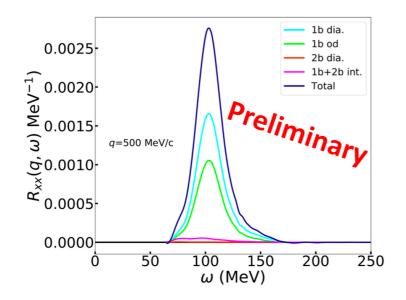
28

Conclusion:

- The STA responses for ${}^{12}C$ are in good agreement with the data, and are accurate up to moderate values of q (and consequently to moderate values of incoming electron beam for cross sections calculations)
- Given the computational complexity of evaluating cross sections, an interpolation scheme was adopted
- Describe electroweak scattering from A > 12 without losing two-body physics, the STA is exportable to other QMC methods to address larger nuclei, e.g. AFDMC
- Incorporate relativistic effects
- Use of information from response densities in event generators: collaboration with GENIE Monte Carlo event generator (S. Gardiner, J. Barrow)

EW interactions:

- The current work on EM interactions allows for a thorough evaluation of the method, and a comparison with the abundant experimental data for electron-nucleus scattering
- **G. King**: neutral weak currents quasi-elastic responses evaluated for ²H



Collaborators:

G. King, S. Pastore, M. Piarulli

R. Weiss, J. Carlson

Thank you!

Quantum Monte Carlo Group @ WashU

Jason Bub (GS) Garrett King (GS)

Lorenzo Andreoli (PD)

Maria Piarulli and Saori Pastore

Washington University in St.Louis

Fermilab