Ab initio nuclear structure using coupled cluster

Joanna Sobczyk

<u>In collaboration with:</u> Bijaya Acharya (ORNL) Sonia Bacca (JGU) Gaute Hagen (ORNL)

"Short-distance nuclear structure and pdfs" ECT*, 18/07/2023

Precision Physics, Fundamental Interaction and Structure of Matter

Alexander von Humboldt Stiftung/Foundation

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 101026014

Motivation

Electro(weak) nuclear responses

((C 4)H

An initio nuclear methods

$$\mathcal{H} | \Psi \rangle = E | \Psi \rangle$$

"we interpret the ab initio method to be a systematically improvable approach for quantitatively describing nuclei using the finest resolution scale possible while maximizing its predictive capabilities."

A. Ekström et al, Front. Phys.11 (2023) 29094

H. Hergert, Front.in Phys. 8 (2020) 379

- Developments on the side of many body methods (IMSRG, CC, SCGF, QMC, etc.)
- Developments of chiral nuclear forces (->faster convergence)

Nuclear hamiltonian

$$\mathscr{H} = \sum_{i} \frac{p_i^2}{2m} + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk} + \dots$$

- ✓ Chiral Hamiltonians exploiting chiral symmetry (QCD); π, N, (Δ) degrees of freedom
- ✓ counting scheme in $\left(\frac{Q}{\Lambda}\right)^n$
- ✓ low energy constants (LEC) fit to data
- ✓ uncertainty assessment

Chiral potentials: NNLO_{sat} and Δ NNLO_{GO}(450) A. Ekström et al. *Phys.Rev.C* 91 (2015) 5, 051301

W. Jiang at al. *Phys.Rev.C* 102 (2020) *5*, 054301

Electroweak currents

known to give significant contribution for neutrinonucleus scattering

Can be expanded consistently with the chiral Hamiltonian.

Multipole decomposition for 1and 2-body EW currents

> B. Acharya, S. Bacca *Phys.Rev.C* 101 (2020) 1, 015505

Coupled cluster method

Reference state (Hartree-Fock): $|\Psi\rangle$

Include correlations through e^T operator

similarity transformed Hamiltonian (non-Hermitian)

$$e^{-T}\mathscr{H}e^{T}|\Psi\rangle\equiv\bar{\mathscr{H}}|\Psi\rangle=E|\Psi\rangle$$

Expansion:
$$T = \sum t_a^i a_a^{\dagger} a_i + \sum t_{ab}^{ij} a_a^{\dagger} a_b^{\dagger} a_i a_j + \dots$$

singles doubles

←coefficients obtained through coupled cluster equations

Coupled cluster method

 \checkmark Controlled approximation through truncation in T

- ✓ Polynomial scaling with *A* (predictions for ¹3²Sn and ²⁰⁸Pb)
- ✓ Works most efficiently for doubly magic nuclei

CC for nuclear matter —> used for SRC theoretical studies:

S. Beck, R. Weiss, N. Barnea, *Phys.Rev.C* 107 (2023) 6, 064306

S. Beck, R. Weiss, N. Barnea, arXiv:2305.17649

Quasielastic response

Long-baseline ν experiments

- ✓ Momentum transfer
 ~hundreds MeV
- ✓ Upper limit for ab initio methods
- ✓ Important
 mechanism for
 HyperK, DUNE
- ✓ Role of final state interactions
- ✓ Role of 1-body and
 2-body currents

Electrons & neutrinos

Inclusive cross-section $\sigma \propto L^{\mu\nu} R_{\mu\nu}$

$$\frac{d\sigma}{d\omega dq}\Big|_{e} = \sigma_{M} \left(v_{L} R_{L} + v_{T} R_{T} \right)$$

$$J_{\mu} = (\rho, \vec{j}) | \Psi \rangle$$

$$\gamma, W^{\pm}, Z^{0}$$

$$\frac{d\sigma}{d\omega dq}\Big|_{\nu/\bar{\nu}} = \sigma_0 \left(v_{CC} R_{CC} + v_{CL} R_{CL} + v_{LL} R_{LL} + v_T R_T \pm v_{T'} R_T \right)$$

Nuclear responses:

$$R_{\mu\nu}(\omega,q) = \sum_{f} \langle \Psi | J_{\mu}^{\dagger}(q) | \Psi_{f} \rangle \langle \Psi_{f} | J_{\nu}(q) | \Psi \rangle \delta(E_{0} + \omega - E_{f})$$

Longitudinal response

Lorentz Integral Transform + Coupled Cluster

Uncertainty band: inversion procedure

$$R_{\mu\nu}(\omega,q) = \sum_{f} \langle \Psi | J_{\mu}^{\dagger} | \Psi_{f} \rangle \langle \Psi_{f} | J_{\nu} | \Psi \rangle \delta(E_{0} + \omega - E_{f})$$

Consistent treatment of final state interactions.

Lorentz Integral Transform (LIT)

$$R_{\mu\nu}(\omega, q) = \int_{f} \langle \Psi | J_{\mu}^{\dagger} | \Psi_{f} \rangle \langle \Psi_{f} | J_{\nu} | \Psi \rangle \delta(E_{0} + \omega - E_{f})$$

continuum spectrum
Integral
transform

$$S_{\mu\nu}(\sigma, q) = \int d\omega K(\omega, \sigma) R_{\mu\nu}(\omega, q) = \langle \Psi | J_{\mu}^{\dagger} K(\mathcal{H} - E_{0}, \sigma) | J_{\nu} | \Psi$$

Lorentzian kernel: $K_{\Gamma}(\omega, \sigma) = \frac{1}{\pi} \frac{\Gamma}{\Gamma^2 + (\omega - \sigma)^2}$

 $S_{\mu\nu}$ has to be inverted to get access to $R_{\mu\nu}$

Lorentz Integral Transform

Longitudinal response ⁴⁰Ca

Lorentz Integral Transform + Coupled Cluster

JES, B. Acharya, S. Bacca, G. Hagen; PRL 127 (2021) 7, 072501

- \checkmark CC singles & doubles
- ✓ varying underlying harmonic oscillator frequency
- ✓ two different chiral Hamiltonians
- ✓ inversion procedure

First ab-initio results for many-body system of 40 nucleons

Chiral expansion for 40Ca (Longitudinal response)

B. Acharya, S. Bacca, JES et al. Front. Phys. 1066035(2022)

- ✓ Two orders of chiral expansion
- ✓ Convergence better for lower q (as expected)
- \checkmark Higher order brings results closer to the data

Transverse response

$$\mathrm{TSR}(q) = \frac{2m^2}{Z\mu_p^2 + N\mu_n^2} \frac{1}{q^2} \left(\langle \Psi | \hat{j}^{\dagger} \hat{j} \Psi \rangle - | \langle \Psi | \hat{j} | \Psi \rangle |^2 \right)$$

 $TSR(q \rightarrow 0) \propto$ kinetic energy

 $\text{TSR}(q \rightarrow \infty) = 1$

$$\mathbf{j}(\mathbf{q}) = \sum_{i} \frac{1}{2m} \epsilon_{i} \{\mathbf{p}_{i}, e^{i\mathbf{q}\mathbf{r}_{i}}\} - \frac{i}{2m} \mu_{i} \mathbf{q} \times \sigma_{i} e^{i\mathbf{q}\mathbf{r}_{i}}$$

Transverse response

- This allows to predict electronnucleus cross-section
- Currently only 1-body current

2-body currents important for 4He
→ more correlations needed?
→ 2-b currents strength depends on nucleus?

Exclusive cross-sections

- LIT-CC calculations for $q \lesssim 450 \text{ MeV}$
- Inclusive cross sections
- No pion production

- Ideas (and approximations) needed to address relevant physics for ν oscillation experiments
- STA (L. Andreoli) and SF (O. Benhar)

Exclusive cross-sections

- LIT-CC calculations for $q \leq 450$ MeV
- Inclusive cross sections
- No pion production

- Ideas (and approximations) needed to address relevant physics for ν oscillation experiments
- STA (L. Andreoli) and SF (O. Benhar)

SPECTRAL FUNCTION

Spectral functions

Coupled Cluster + ChEK method

growing **q** momentum transfer \rightarrow final state interactions play minor role

18

JES, S. Bacca, G. Hagen, T. Papenbrock Phys.Rev.C 106 (2022) 3, 034310

Final state interactions

JES et al, in preparation (2023)

How to account for the FSI? Optical potential for the outgoing nucleon

Spectral function for neutrinos

- Comparison with T2K long
 baseline v
 oscillation
 experiment
- CC 0π events
- Spectral function implemented into NuWro Monte Carlo generator

 $\nu_{\mu} + {}^{16}\mathrm{O} \to \mu^- + X$

Outlook

- LIT-CC benchmark for electron scattering \rightarrow ready for neutrino
- Role of 2-body currents for medium-mass nuclei
- Extending the response calculation to ⁴⁰Ar
- Spectral functions (within Impulse Approximation):
 - Relativistic regime
 - Semi-inclusive processes
 - Further steps: 2-body spectral functions?, accounting for FSI

Thank you for attention

Longitudinal response ⁴⁰Ca

Coulomb sum rule

Project out spurious states: $\hat{\rho} | \Psi \rangle = | \Psi_{phys} \rangle + | \Psi_{spur} \rangle$

It has been shown that to good approximation the ground state factorizes:

$$|\Psi\rangle = |\Psi_I\rangle |\Psi_{CoM}\rangle$$

center of mass wave function is a Gaussian

G. Hagen, T. Papenbrock, D. Dean *Phys.Rev.Lett.* 103 (2009) 062503

spurious

We follow a similar ansatz for the excited states:

$$\hat{\rho} |\Psi\rangle = |\Psi_{I}^{exc}\rangle |\Psi_{CoM}\rangle + |\Psi_{I}\rangle \left\langle \begin{array}{c} exc\\ CoM \end{array} \right\rangle$$

Coulomb sum rule

J.E.S. B. Acharya, S.Bacca, G. Hagen *Phys.Rev.C* 102 (2020) 064312

CoM spurious states dominate for light nuclei

Details on inversion procedure

• Basis functions

$$R_L(\omega) = \sum_{i=1}^N c_i \omega^{n_0} e^{-\frac{\omega}{\beta_i}}$$

- Stability of the inversion procedure:
 - Vary the parameters n₀, β_i and number of basis functions N (6-9)
 - Use LITs of various width Γ (5, 10, 20 MeV)

Lorentz integral transform

$$L(\sigma) = \int \frac{R(\omega)}{(\omega - \sigma)^2 + \Gamma^2} d\omega = \int \frac{R(\omega)}{(\omega + \tilde{\sigma}^*)(\omega + \tilde{\sigma})} d\omega$$

$$L(\sigma) = \int d\omega \sum_{f} \langle \Psi_{0} | \rho^{\dagger} \frac{1}{\omega + \tilde{\sigma}^{*}} | \Psi_{f} \rangle \langle \Psi_{f} | \frac{1}{\omega + \tilde{\sigma}} \rho | \Psi_{0} \rangle \delta(\omega + E_{0} - E_{f})$$

$$L(\sigma) = \sum_{f} \langle \Psi_{0} | \rho^{\dagger} \frac{1}{E_{f} - E_{0} + \tilde{\sigma}^{*}} | \Psi_{f} \rangle \langle \Psi_{f} | \frac{1}{E_{f} - E_{0} + \tilde{\sigma}} \rho | \Psi_{0} \rangle$$

We need to solve

$$(H - E_0 + \tilde{\sigma}) | \tilde{\Psi} \rangle = \rho | \Psi \rangle \qquad \text{Schroding}$$

Schrodinger-like equation