Inclusive Data Overview

Nadia Fomin

July 17, 2023

What have we learned from Jlab's 6GeV era?

2

3

5

-0.1

- Scaling of x>1 cross sections relative to the deuteron

 -implies high momentum tail is a result of short-range correlations
- NP dominance of short-range pairs --tensor interaction
- No trivial (A or density) dependence for SRC behavior or EMC effect
 - --from high-precision light nuclei data
- Suggestive correlation betweenEMC effect and SRC plateaus

Choosing an Appropriate Microscope

Choosing an Appropriate Microscope

1<x<2 is combination of 2-body and 1*-body contributions; 3+ body effect assumed to be small (*=Fermi-smeared)

Choosing an Appropriate Microscope

1<x<2 is combination of 2-body and 1*-body contributions; 3+ body effect assumed to be small (*=Fermi-smeared)

High momentum tails in A(e,e'p)

- E89-004: Measure of ³He(e,e'p)d
- Measured far into high momentum tail: Cross section is ~5-10x expectation
 Difficulty
- High momentum pair can come from SRC (initial state)

OR

"slow"

nucleons

• Final State Interactions (FSI) and Meson Exchange Contributions (MEC)

"fast" nucleons

A(e,e'p)

²H(e,e'p) Mainz PRC 78 054001 (2008)

E =0.855 GeV θ = 45° E'=0.657 GeV Q²=0.33 GeV² x=0.88

Unfortunately: FSI, MECs overwhelm the high momentum nucleons

FIG. 1: The experimental D(e,e'p)n cross section as a function of missing momentum measured at MAMI for $Q^2 = 0.33$ (GeV/c)² d compared to calculations d with (solid curve) and without (dashed curve) MEC and IC. Both calculations include FSI. The low p_m data have been re-analyzed and used in this work to determine f_{LT} (color online).

Inclusive Scattering

- Relative measurement
- Reduced FSI
- Test scaling in x and Q^2
- No direct information on isospin structure
 - Only via target isospin structure
- No direct information on momentum distribution for A>2

Inclusive Scattering

- Relative measurement
- Reduced FSI
- Test scaling in x and Q^2
- No direct information on isospin structure
 - Only via target isospin structure
- No direct information on momentum distribution for A>2

High momentum nucleons

- Short Range Correlations

Try inclusive scattering! Select kinematics such that the initial nucleon momentum $> k_f$

High momentum nucleons - Short Range Correlations

Short Range Correlations

• To experimentally probe SRCs, must be in the high-momentum region (x>1)

• To measure the relative probability of finding a correlation, ratios of heavy to light nuclei are taken

• In the high momentum region, FSIs are thought to be confined to the SRCs and therefore, cancel in the cross section ratios

$$\sigma(x, Q^2) = \sum_{j=1}^A A \frac{1}{j} a_j(A) \sigma_j(x, Q^2)$$
$$= \frac{A}{2} a_2(A) \sigma_2(x, Q^2) +$$
$$\frac{A}{3} a_3(A) \sigma_3(x, Q^2) + \dots$$

20th Century Data

- Moderate Q² data from SLAC
- Originally analyzed in the *y*-scaling picture

$$\sigma(x, Q^2) = \sum_{j=1}^{A} A \frac{1}{j} a_j(A) \sigma_j(x, Q^2)$$
$$= \frac{A}{2} a_2(A) \sigma_2(x, Q^2) +$$
$$\frac{A}{3} a_3(A) \sigma_3(x, Q^2) + \dots$$

TENNESSEE KNOXVILLE

 $2/\Delta \sigma^{Ie}(\mathbf{x},\mathbf{Q}^2)/\sigma^{D}(\mathbf{x},\mathbf{Q}^2)$

Jlab E02-019: 2N correlations in A/D ratios (early 21st century)

А	$\theta_e = 18^{\circ}$	6		
$^{3}\mathrm{He}$	2.14 ± 0.04	3	³ He	¹² C
$^{4}\mathrm{He}$	$3.66{\pm}0.07$	0		
Be	$4.00{\pm}0.08$	o (2) 9		
\mathbf{C}	$4.88{\pm}0.10$	λ)/(σ _Γ	⁴ He	6 ³ Cu
Cu	$5.37{\pm}0.11$	(σ _A / <i>H</i>	and the second sec	
Au	$5.34 {\pm} 0.11$	0		
$\langle Q^2 \rangle$	$2.7 \ {\rm GeV}^2$	6	⁹ Be	¹⁹⁷ Au
x_{\min}	1.5	3		
		0		8 1 12 14 16 18
$< Q^2 >= 2.7$	$/ \text{GeV}^2$		X	X

Fomin et al, PRL 108 (2012) Jlab E02-019

Note: $(a_2 = \sigma_A / \sigma_D)! = \text{Relative #of SRCs}$

NOTE:
$$a_2 = \frac{\sigma_A}{\sigma_D}$$
 ! = **RELATIVE #OF SRCS**
 $n_D^{OVV}(k)$ is the convolution of the CM motion of correlated pairs in
Following prescription from C. Ciofi
and S. Simula, Phys. Rev. C 53 (1996)
 $\frac{1}{3}$ He 1.93 ± 0.10 1.8 ± 0.3 –

 $\underline{a_2} = \underline{\sigma_A} / \underline{\sigma_D}$ → relative measure of high *momentum nucleons*

$$\underline{\mathbf{R}}_{2n}$$
 \rightarrow relative measure of correlated pairs

convolution of $n_{D}(k)$ with related pairs in iron

from C. Ciofi degli Atti ev. C 53 (1996)

				\frown	
	E02-019	SLAC	CLAS	R_{2N} -ALI	a ₂ -ALL
³ He	$1.93{\pm}0.10$	$1.8{\pm}0.3$	—	1.92 ± 0.09	2.13 ± 0.04
4 He	$3.02 {\pm} 0.17$	$2.8{\pm}0.4$	2.80 ± 0.28	$2.94{\pm}0.14$	3.57 ± 0.09
Be	$3.37{\pm}0.17$	_	_	$3.37 {\pm} 0.17$	$3.91 {\pm} 0.12$
C	$4.00{\pm}0.24$	$4.2{\pm}0.5$	3.50 ± 0.35	$3.89 {\pm} 0.18$	$4.65 {\pm} 0.14$
Al	_	$4.4{\pm}0.6$	_	$4.40 {\pm} 0.60$	$5.30 {\pm} 0.60$
Fe	—	$4.3{\pm}0.8$	3.90 ± 0.37	$3.97 {\pm} 0.34$	$4.75 {\pm} 0.29$
Cu	$4.33{\pm}0.28$	—	—	$4.33 {\pm} 0.28$	$5.21 {\pm} 0.20$
Au	$4.26{\pm}0.29$	$4.0{\pm}0.6$	_	$4.21{\pm}0.26$	$5.13{\pm}0.21$

Inclusive Scattering

- Relative measurement
- Reduced FSI
- Test scaling in x and Q^2
- No direct information on isospin structure
 - Only via target isospin structure
- No direct information on momentum distribution for A>2

Inclusive Scattering

• Test scaling in x and Q²

Kinematic cutoff is A-dependent

- For heavy nuclei, the minimum momentum changes → heavier recoil system requires less kinetic energy to balance the momentum of the struck nucleon
- Larger fermi momenta for A>2 → MF contribution persists for longer
- Imperfect plateau, but the picture still holds

2N knockout experiments establish NP dominance

- Knockout high-initial-momentum proton, look for correlated nucleon partner.
- For 300 < P_{miss} < 600 MeV/c all nucleons are part of 2N-SRC pairs: 90% np, 5% pp (nn)

R. Subedi et al., Science 320, 1476 (2008)

R. Shneor et al., PRL 99, 072501 (2007)

2N knockout experiments establish NP dominance

R. Subedi et al., Science 320, 1476 (2008)

R. Shneor et al., PRL 99, 072501 (2007)

Relevant for interpretation of inclusive data

NP dominance

→ Sargsian, Abrahamyan, Strikman, Frankfurt PR C71 044615 (2005)

R. Schiavilla, R. B. Wiringa, S. C. Pieper, J. Carlson, Phys. Rev. Lett. 98 (2007) 132501

Where are we now? Publishing Nature Papers

S. Li, et al., Nature 609, 41 (2022)

Where are we now? Publishing Nature Papers

S. Li, et al., Nature 609, 41 (2022)

Inclusive Ca48/Ca40 Ratios

Absolute (e,e') cross-sections

More SRC pairs in ⁴⁸Ca!

Courtesy Dien Nguyen

Potentially in tension with upcoming results (see Justin's afternoon talk)

E12-10-008: J. Arrington, A Daniel, NF, D. Gaskell: Detailed Studies of the nuclear dependence of F_2 in light nuclei

E12-06-105: J. Arrington, D. Day, NF, P. Solvignon: Inclusive Scattering from Nuclei at x>1 in the quasielastic and deeply inelastic regimes

Preparing 2N SRC publication as well

Analysis by Casey Morean (UTK)

More nucleons in a correlation

 $1.4 < x < 2 \Longrightarrow 2$ nucleon correlation $2.4 < x < 3 \Longrightarrow 3$ nucleon correlation

$$\sigma(x, Q^2) = \sum_{j=1}^{A} A \frac{1}{j} a_j(A) \sigma_j(x, Q^2)$$
$$= \frac{A}{2} a_2(A) \sigma_2(x, Q^2) +$$
$$\frac{A}{3} a_3(A) \sigma_3(x, Q^2) + \dots$$

3N correlations (x>2 inclusive scattering)

Have we actually seen 3N SRC in ratios?

omment on "Measurement of 2- and 3-nucleon short range correlation probabilities in nuclei"

Douglas W. Higinbotham1 and Or Hen2

¹Jefferson Lab, Newport News, VA 23606, USA ²Tel Aviv University, Tel Aviv, Israel

3N correlations - still looking

Z. Ye et al, PRC 97 (2018) 6

3N correlations – are we there yet?

 α represents the light-cone momentum fraction of 3N SRCs carried by the correlated nucleon *i*

We were so close at 6 GeV in Hall C

We were so close at 6 GeV in Hall C

E12-10-008: J. Arrington, A Daniel, NF, D. Gaskell: Detailed Studies of the nuclear dependence of F_2 in light nuclei

E12-06-105: J. Arrington, D. Day, NF, P. Solvignon: Inclusive Scattering from Nuclei at x>1 in the quasielastic and deeply inelastic regimes

XEM2: Data taking completed

Ladder 1	Ladder 2		
Hydrogen/He3	Hydrogen /He3		
Deuterium/He4	Deuterium/He4		
Dummy	Dummy		
Optics	Optics		
Carbon hole	Carbon hole		
12C	12C		
40Ca	6Li*		
48Ca	7Li*		
10B	10B		
11B	11B		
9Be	9Be		
54Fe	AI		
58Ni	Cu		
64Ni	Au		
Ag	1 mm		
Sn	1 mm		
232Thorium	1 mm		
Titanium	Thicker carbon?		

XEM2: 2N correlations in A/D ratios

Summary

- Studies of SRCs continue at Jlab in the 12 GeV era with inclusive Scattering
- First observation of 3N SRC existence is yet to come
- New results in the next few years!
- This work was supported by DOE Award DE-SC0013615

