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[A. Bacchetta and P. J. Mulders, Phys. Rev. D 62, 114004 (2000)]

A spin-1 target can have tensor polarization [associated with � = 0]
3 additional T -even and 7 additional T -odd quark TMDs compared to nucleon

Analogous situation for gluon TMDs [See talk of Mulders & Shanahan]

to fully expose role of gluons in nuclei need polarized nuclear targets [e.g. D, 6Li]
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• Quark correlator is the quantity that can be decomposed into 8 components (6 T -even and 2 T -odd
terms).
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Definition of ⇠:

Why light-cone coordinates are used? Because the manifestation of quark-parton structure of
QCD, and construction of multi-parton Fock states as eigen states of QCD Hamiltonian is only possible
in the light-cone quantization.

What’s the role of gauge-link

Why ⇠+ = 0 limit?

• Asymmetry measurements like A
sin�
UT

• The first measurement of the Sivers function was done by STAR collaboration.

• The origin of the non-Universality of the Sivers function (relative sign between DY and SIDIS) is the
gauge invariance in QCD.

• Usually, the “hard scale” is the intermediate photon/boson virtuality, and the “soft scale” is parton’s
transverse momentum.
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1.1 Formalism

Let’s consider a cross-section of Drell-Yan process for example. The transverse momentum dependent cross-
section can have two forms depending on the magnitude of the struck parton’s transverse momentum.
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Hij(Q) is “hard factor” which depends on the process, and bT is the Fourier conjugate to transverse
momentum kT.

fi/Pa
(⇠a,bT) and fj/Pb

(⇠b,bT) have been defined as a hadron matrix elements in LQCD

Momentum-space version of fi/Pa
(⇠a,bT) (or fj/Pb

(⇠b,bT)) was decomposed into 8 leading TMD PDFs.
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The Sivers function is the correlation between unpolarized quarks in a transversely polarized nucleon. It
vanishes by its naive definition in [13]

1.2 Single-transverse Spin Asymmetries (SSA)

For a general Drell-Yan (DY) process [14, 15] which involves only one hadron is polarized: h1 h
"
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The Collins-Soper frame was first proposed in [16].

1.3 Sivers Asymmetry

Sivers suggested [13] that the k? distribution could have an azimuthal asymmetry when the initial hadron
is transversely polarized, but this is in contradiction with parity and time-reversal invariance (PT) of QCD.
In other words, this asymmetry doesn’t exist according to the PT invariance of QCD.
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At leading-twist, the Quark correlator can be decomposed into 8 
components (6 T - even and 2 T -odd terms)
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Figure 9: Classification of the quark TMDs. Table taken from Ref. [3]. Note that in the table the
superscript q is omitted since it is understood that this table refers to quark TMDs.
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1 (x). Other TMDs that do not vanish when integrated over the
transverse momentum are the helicity gq1L(x, ~p

2
T
) and transversity hq

1(x, ~p
2
T
). The most important

TMD for our experiment is certainly the quark Sivers function f?q

1T (x, ~p
2
T
), which describes the

distribution of unpolarized quarks inside a transversely polarized nucleon, through a correlation
between the quark transverse momentum ~pT and the nucleon transverse spin ST . It is time-reversal
odd. Another naively time-reversal odd distribution is the Boer-Mulders function h?q

1 (x, ~p2
T
). All

the quark TMDs can be classified through the polarizations of the nucleon and the quark inside
the nucleon, as given by Fig. 9.

Of all these TMDs, the Sivers function has garnered considerable interest from both experimen-
tal and theoretical communities in QCD and hadron physics. The study of the Sivers function (as
well as other TMDs) has challenged and greatly improved our understanding of the interplay be-
tween hadron structure and the process in which this structure is probed. The Sivers function has
been measured in semi-inclusive deep inelastic polarized lepton-proton (` + p") scattering experi-
ments (SIDIS) by HERMES, COMPASS, and JLab, and will continue to be explored in the future
at the EIC. It can also be readily measured in polarized proton-proton (p+ p") collisions through
Drell-Yan production. Our proposed measurement of the Sivers function with E1039 in polarized
DY reactions can provide critical information for the following questions of great experimental and
theoretical significance:

• What is the magnitude and sign of the sea quark Sivers function and how does it compare to
the sign and magnitude in the valence quark region?

Current SIDIS experiments allow for the accurate extraction of the Sivers function in the
valence quark region. At smaller Bjorken x, where sea quarks dominate, the uncertainty
through global fitting becomes large. The lack of experimental data forces the fits to zero
and the systematic uncertainties cannot be properly evaluated. See for example Fig. 10.

• What is the relation of the Sivers asymmetry measured in SIDIS to the one measured in the
DY process, especially in the sea quark dominant region?

It is a fundamental prediction of QCD that the Sivers function should change sign in going
from SIDIS to DY,

f?q DY
1T (x, ~p2

T
) = �f?q SIDIS

1T (x, ~p2
T
). (9)
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TABLE II: Our results for the intrinsic spin ( 12�⌃), angular
(L) and total (J) momentum contributions to the nucleon
spin and to the nucleon momentum hxi, in the MS-scheme
at 2 GeV, from up (u), down (d) and strange (s) quarks and
from gluons (g), as well as the sum of all contributions (tot.),
where the first error is statistical and the second a systematic
due to excited states.

1
2�⌃ J L hxi

u 0.415(13)(2) 0.308(30)(24) -0.107(32)(24) 0.453(57)(48)
d -0.193(8)(3) 0.054(29)(24) 0.247(30)(24) 0.259(57)(47)
s -0.021(5)(1) 0.046(21)(0) 0.067(21)(1) 0.092(41)(0)
g - 0.133(11)(14) - 0.267(22)(27)

tot. 0.201(17)(5) 0.541(62)(49) 0.207(64)(45) 1.07(12)(10)

ours are in overall agreement [41]. Results within lattice
QCD for the individual quark hxiq and Jq contributions
are scarce. The current computation is the first one using
dynamical light quarks with physical masses. A recent
quenched calculation yielded values of hxiu,d consistent
with ours.

In Fig. 3 we show schematically the various contri-
butions to the spin and momentum fraction. Using a
di↵erent approach to ours, the gluon helicity was re-
cently computed within lattice QCD and found to be
0.251(47)(16) [8]. Although we instead compute the
gluon total angular momentum and the two approaches
have di↵erent systematic uncertainties, we both find non-
negligible gluon contributions to the proton spin.

FIG. 3: Left: Nucleon spin decomposition. Right: Nu-
cleon momentum decomposition. All quantities are given in
the MS-scheme at 2 GeV. The striped segments show valence
quark contributions (connected) and the solid segments the
sea quark and gluon contributions (disconnected).

Conclusions: In this work we present a calculation of
the quark and gluon contributions to the proton spin,
directly at the physical point.

Having a single ensemble, we can only assess lat-
tice systematic e↵ects due to the quenching of the
strange quark, the finite volume and the lattice spac-
ing indirectly from other twisted mass ensembles. A
direct evaluation of these systematic errors is cur-
rently not possible and will be carried out in the fu-
ture. Individual components are computed for the up,

down, strange and charm quarks, including both con-
nected (valence) and disconnected (sea) quark contri-
butions. Our final numbers are collected in Table II.
The quark intrinsic spin from connected and discon-
nected contributions is 1

2�⌃u+d+s=0.299(12)(3)|conn. �
0.098(12)(4)|disc.=0.201(17)(5), while the total quark
angular momentum is Ju+d+s=0.255(12)(3)|conn. +
0.153(60)(47)|disc.=0.408(61)(48). Our result for the
intrinsic quark spin contribution agrees with the up-
per bound set by a recent phenomenological analy-
sis of experimental data from COMPASS [50], which
found 0.13 < 1

2�⌃ < 0.18. Using the spin
sum one would deduce that Jg=

1
2�Jq=0.092(61)(48),

which is consistent with taking Jg=
1
2 hxig=0.133(11)(14)

via the direct evaluation of the gluon momen-
tum fraction, which suggests that Bg

20(0) is indeed
small. Furthermore, we find that the momentum
sum is satisfied

P
qhxiq + hxig=0.497(12)(5)|conn. +

0.307(121)(95)|disc.+0.267(12)(10)|gluon=1.07(12)(10) as
is the spin sum of quarks and gluons giving JN=

P
q Jq+

Jg=0.408(61)(48) + 0.133(11)(14)=0.541(62)(49) resolv-
ing a long-standing puzzle.
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Measuring the the asymmetry of jets and pions in longitudinally polarized 
proton-proton collision

RHIC data=> Non-
zero gluon 
contribution with 
very large uncertainty 
with 

EIC is expected to
provide a conclusive
answer

Abinash Pun, NMSU

Ø Sea quark OAM could be a major contribution
(J. Ellis and M. Karliner, Phys. I,ett. B213 (1988) 73)

Ø Separation of gluon intrinsic spin and OAM is 
constrained by gauge invariance

E. C. Aschenauer, et al PRD 92, 094030 (2015)
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The Nucleon Spin Sum Rule

M. Burkardt(1)

(1) New Mexico State University - Las Cruces, N.M.

Summary. — Definitions of orbital angular momentum based on Wigner distri-
butions are used as a framework to discuss the connection between the Ji definition
of the quark orbital angular momentum and that of Jaffe and Manohar. We find
that the difference between these two definitions can be interpreted as the change
in the quark orbital angular momentum due to final state interactions as it leaves
the target in a DIS experiment.

PACS 14.20 – Dh.

1. – Angular Momentum Decompositions

Since the famous EMC experiments revealed that only a small fraction of the nucleon
spin is due to quark spins [1], there has been a great interest in ‘solving the spin puzzle’,
i.e. in decomposing the nucleon spin into contributions from quark/gluon spin and orbital
degrees of freedom. In this effort, the Ji decomposition [2]

1

2
=

1

2

∑

q

∆q +
∑

q

Lz
q + Jz

g(1)

appears to be very useful: through GPDs, not only the quark spin contributions ∆q
but also the quark total angular momenta Jq ≡ 1

2∆q + Lz
q (and by subtracting the spin

piece also the the quark orbital angular momenta Lz
q) entering this decomposition can

be accessed experimentally. The terms in (1) are defined as expectation values of the
corresponding terms in the angular momentum tensor

M0xy =
∑

q

1

2
q†Σzq +

∑

q

q†
(

!r × i !D
)z

q +
[

!r ×
(

!E × !B
)]z

(2)

in a nucleon state with zero momentum. Here i !D = i!∂−g !A is the gauge-covariant deriva-
tive. The main advantages of this decomposition are that each term can be expressed as
the expectation value of a manifestly gauge invariant local operator and that the quark
total angular momentum Jq = 1

2∆q+Lq can be related to GPDs [2] and is thus accessible

c© Società Italiana di Fisica 1

2 M. BURKARDT

in deeply virtual Compton scattering and deeply virtual meson production and can also
be calculated in lattice gauge theory.

Jaffe and Manohar have proposed an alternative decomposition of the nucleon spin,
which does have a partonic interpretation [3], and in which also two terms, 1

2∆q and ∆G,
are experimentally accessible

1

2
=

1

2

∑

q

∆q +
∑

q

Lq +∆G+ Lg.(3)

The individual terms in (3) can be defined as matrix elements of the corresponding terms
in the +12 component of the angular momentum tensor

M+12=
1

2

∑

q

q†+γ5q+ +
∑

q

q†+

(

"r × i"∂
)z

q+ + ε+−ijTrF+iAj + 2TrF+j
(

"r × i"∂
)z

Aj(4)

for a nucleon polarized in the +ẑ direction. The first and third term in (3),(4) are the
‘intrinsic’ contributions (no factor of "r×) to the nucleon’s angular momentum Jz = + 1

2
and have a physical interpretation as quark and gluon spin respectively, while the second
and fourth term can be identified with the quark/gluon OAM. Here q+ ≡ 1

2γ
−γ+q is

the dynamical component of the quark field operators, and light-cone gauge A+ ≡ A0 +
Az = 0 is implied. The residual gauge invariance can be fixed by imposing anti-periodic
boundary conditions "A⊥(x⊥,∞) = − "A⊥(x⊥,−∞) on the transverse components of the
vector potential. L also naturally arises in a light-cone wave function description of
hadron states, where 1

2 = 1
2

∑

q ∆q +∆G + L, in the sense of an eigenvalue equation, is
manifestly satisfied for each Fock component individually [4].

A variation of (1) has been suggested in Ref. [5], where part of Lz
q is attributed to the

glue as ’potential angular momentum’. As we will discuss in the following, the potential
angular momentum also has a more physical interpretation as the effect from final state
interactions. Other decompositions, in which only one term is experimentally accessible,
will not be discussed in this brief note.

2. – Orbital Angular Momentum from Wigner Distributions

Wigner distributions can be defined as defined as off forward matrix elements of non-
local correlation functions [6, 7, 8]

WU (x,"b⊥,"k⊥) ≡

∫

d2"q⊥
(2π)2

∫

d2ξ⊥dξ
−

(2π)3
e−i!q⊥·!b⊥ei(xP

+ξ−−!k⊥·!ξ⊥)〈P ′S′|q̄(0)ΓU0ξq(ξ)|PS〉(5)

with P+ = P+′, P⊥ = −P ′
⊥ = q⊥

2 . Throughout this paper, we will chose "S = "S′ = "̂z.
Furthermore, we will focus on the ’good’ component by selecting Γ = γ+. In order to
ensure manifest gauge invariance, a Wilson line gauge link U0ξ connecting the quark field
operators at position 0 and ξ must be included [9, 10]. The issue of choice of path for
the Wilson line will be addressed below.

In terms of Wigner distributions, quark OAM can be defined as [11]

LU =

∫

dxd2"b⊥d
2"k⊥

(

"b⊥ × "k⊥

)

z
WU (x,"b⊥,"k⊥).(6)

Ji’s decomposition Jaffe-Manohar decomposition

Data from ‘sea’?
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SIDIS only

SIDIS + DY

Ø Lack of information on the ‘sea’ quarks is remaining.
Ø Assumptions were made on ‘sea’ in global fits
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dashed lines show the positivity limits |∆Nf | = 2f .

9

(x
)

(1
)

 fN
Δx

u
d

u
d

s
s

  )
 f(

x,
 k

N
Δx

u
d

u
d

s
s

x    (GeV)k

−0.06

−0.04

−0.02

0

0

0.02

0.04

0.06

−0.02

−0.01

0

0.01

0.02

−0.02

−0.01

0

0.01

0.02

−0.02

−0.01

0

0.01

0.02

−310 −210 −110 1

−0.02
−0.01

0
0.01
0.02

−0.6

−0.4

−0.2

0

0

0.2

0.4

0.6

−0.2

−0.1

0

0.1

0.2

−0.2

−0.1

0

0.1

0.2

−0.2

−0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1
−0.2
−0.1

0
0.1
0.2

FIG. 1: The Sivers distribution functions for u, d and s flavours as determined by our simultaneous fit of HERMES and
COMPASS data in Ref. [1]. The sign was reversed according to the prediction of Refs. [29, 30]. On the left panel, the first
moment, x∆Nf (1)(x), is shown as a function of x at Q2 = 2.4 GeV2 for each flavour. On the right panel, the Sivers distribution,
x∆Nf(x, k⊥), is shown as a function of k⊥ at a fixed value of x = 0.1 for each flavour. In each plot, the highest and lowest
dashed lines show the positivity limits |∆Nf | = 2f .

9

(x
)

(1
)

 fN
Δx

u
d

u
d

s
s

  )
 f(

x,
 k

N
Δx

u
d

u
d

s
s

x    (GeV)k

−0.06

−0.04

−0.02

0

0

0.02

0.04

0.06

−0.02

−0.01

0

0.01

0.02

−0.02

−0.01

0

0.01

0.02

−0.02

−0.01

0

0.01

0.02

−310 −210 −110 1

−0.02
−0.01

0
0.01
0.02

−0.6

−0.4

−0.2

0

0

0.2

0.4

0.6

−0.2

−0.1

0

0.1

0.2

−0.2

−0.1

0

0.1

0.2

−0.2

−0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1
−0.2
−0.1

0
0.1
0.2

FIG. 1: The Sivers distribution functions for u, d and s flavours as determined by our simultaneous fit of HERMES and
COMPASS data in Ref. [1]. The sign was reversed according to the prediction of Refs. [29, 30]. On the left panel, the first
moment, x∆Nf (1)(x), is shown as a function of x at Q2 = 2.4 GeV2 for each flavour. On the right panel, the Sivers distribution,
x∆Nf(x, k⊥), is shown as a function of k⊥ at a fixed value of x = 0.1 for each flavour. In each plot, the highest and lowest
dashed lines show the positivity limits |∆Nf | = 2f .

9

(x
)

(1
)

 fN
Δx

u
d

u
d

s
s

  )
 f(

x,
 k

N
Δx

u
d

u
d

s
s

x    (GeV)k

−0.06

−0.04

−0.02

0

0

0.02

0.04

0.06

−0.02

−0.01

0

0.01

0.02

−0.02

−0.01

0

0.01

0.02

−0.02

−0.01

0

0.01

0.02

−310 −210 −110 1

−0.02
−0.01

0
0.01
0.02

−0.6

−0.4

−0.2

0

0

0.2

0.4

0.6

−0.2

−0.1

0

0.1

0.2

−0.2

−0.1

0

0.1

0.2

−0.2

−0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1
−0.2
−0.1

0
0.1
0.2

FIG. 1: The Sivers distribution functions for u, d and s flavours as determined by our simultaneous fit of HERMES and
COMPASS data in Ref. [1]. The sign was reversed according to the prediction of Refs. [29, 30]. On the left panel, the first
moment, x∆Nf (1)(x), is shown as a function of x at Q2 = 2.4 GeV2 for each flavour. On the right panel, the Sivers distribution,
x∆Nf(x, k⊥), is shown as a function of k⊥ at a fixed value of x = 0.1 for each flavour. In each plot, the highest and lowest
dashed lines show the positivity limits |∆Nf | = 2f .

9

(x
)

(1
)

 fN
Δx

u
d

u
d

s
s

  )
 f(

x,
 k

N
Δx

u
d

u
d

s
s

x    (GeV)k

−0.06

−0.04

−0.02

0

0

0.02

0.04

0.06

−0.02

−0.01

0

0.01

0.02

−0.02

−0.01

0

0.01

0.02

−0.02

−0.01

0

0.01

0.02

−310 −210 −110 1

−0.02
−0.01

0
0.01
0.02

−0.6

−0.4

−0.2

0

0

0.2

0.4

0.6

−0.2

−0.1

0

0.1

0.2

−0.2

−0.1

0

0.1

0.2

−0.2

−0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1
−0.2
−0.1

0
0.1
0.2

FIG. 1: The Sivers distribution functions for u, d and s flavours as determined by our simultaneous fit of HERMES and
COMPASS data in Ref. [1]. The sign was reversed according to the prediction of Refs. [29, 30]. On the left panel, the first
moment, x∆Nf (1)(x), is shown as a function of x at Q2 = 2.4 GeV2 for each flavour. On the right panel, the Sivers distribution,
x∆Nf(x, k⊥), is shown as a function of k⊥ at a fixed value of x = 0.1 for each flavour. In each plot, the highest and lowest
dashed lines show the positivity limits |∆Nf | = 2f .

9

(x
)

(1
)

 fN
Δx

u
d

u
d

s
s

  )
 f(

x,
 k

N
Δx

u
d

u
d

s
s

x    (GeV)k

−0.06

−0.04

−0.02

0

0

0.02

0.04

0.06

−0.02

−0.01

0

0.01

0.02

−0.02

−0.01

0

0.01

0.02

−0.02

−0.01

0

0.01

0.02

−310 −210 −110 1

−0.02
−0.01

0
0.01
0.02

−0.6

−0.4

−0.2

0

0

0.2

0.4

0.6

−0.2

−0.1

0

0.1

0.2

−0.2

−0.1

0

0.1

0.2

−0.2

−0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1
−0.2
−0.1

0
0.1
0.2

FIG. 1: The Sivers distribution functions for u, d and s flavours as determined by our simultaneous fit of HERMES and
COMPASS data in Ref. [1]. The sign was reversed according to the prediction of Refs. [29, 30]. On the left panel, the first
moment, x∆Nf (1)(x), is shown as a function of x at Q2 = 2.4 GeV2 for each flavour. On the right panel, the Sivers distribution,
x∆Nf(x, k⊥), is shown as a function of k⊥ at a fixed value of x = 0.1 for each flavour. In each plot, the highest and lowest
dashed lines show the positivity limits |∆Nf | = 2f .J

H
E
P
0
5
(
2
0
2
1
)
1
5
1

Figure 13. The (b, x)-landscape of the optimal Sivers function f⊥1T (x, b) for d-quark (the left panel)
and u-quark (the right panel). The grid shows the CF value, whereas the shaded (blue and green)
regions on the boundaries demonstrate the 68%CI.

(a) (b)

(c) (d)

Figure 14. The Sivers function in the momentum space (black solid line) for u, d, sea, and s quarks
at x = 0.1 and µ = 2GeV. The blue band is the 68%CI. The gray dashed line is the unpolarized
TMD PDF extracted in SV19 shown for the comparison (for u and sea-quark the Sivers function
is multiplied by −1 and sea-quark the Sivers function is compared to ū unpolarized TMD PDF).
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Fig. 1. The first transverse moment xf ⊥(1)
1T of the Sivers TMD as a function of x for the up (left panel) and down quark (right panel). Solid band: the 68% confidence interval 

obtained in this work at Q 2 = 4 GeV2. Hatched bands from PV11 [15], EIKV [17], TC18 [18], JAM20 [20] parametrizations, and at different Q 2 as indicated in the figure.

The authors of Ref. [21] also find results very similar to the ones in Fig. 1 when they fit the same SIDIS data and COMPASS Drell–Yan 
data with pion beams [58]. In this case, they also compute predictions for W ± and Z 0 production at STAR kinematics which are very 
close to our fitted bands displayed in Fig. B.8. Their strategy is very similar to the one adopted in this work but at higher perturbative 
accuracy, although their unpolarized TMDs are not obtained from an actual fit. However, when they include the STAR data in the global 
fit they artificially increase the statistical weight of those data by a factor ∼ 13. Their global χ2 largely deteriorates and the uncertainty 
on the Sivers function significantly increases. Our finding is that because of large experimental errors STAR data does not affect much our 
final results when including them in the global fit, as discussed in detail in Appendix B.

The authors of Ref. [23] also perform a consistent extraction of both unpolarized and Sivers TMDs, and build contour plots of the 
density distribution in Eq. (1) similar to Fig. 2. A direct comparison is more difficult because the evolution of TMDs is achieved in a 
different framework, and the classification of the perturbative accuracy does not match the standard described in Ref. [10]. The displayed 
x-dependence of their Qiu-Sterman function (or related first kT -moment of the Sivers function as in Eq. (9)) is roughly similar, at least for 
up and down quarks. However, the sea-quark channel shows large oscillations at large x, which entail a strong breaking of the positivity 
constraint of Eq. (20).

In general, the result of a fit is biased whenever a specific fitting functional form is chosen at the initial scale. In our case, we tried to 
reduce this bias by adopting a flexible functional form, as it is evident particularly in Eq. (23). Nevertheless, we stress that our extraction is 
still affected by this bias and extrapolations outside the range where data exist (0.01 ! x ! 0.3) should be taken with due care. At variance 
with previous studies, in the denominator of the asymmetries in Eqs. (4) and (12) we are using unpolarized TMDs that were extracted 
from data in our previous Pavia17 fit, with their own uncertainties. Therefore, our uncertainty bands in Fig. 1 represent a realistic estimate 
of the statistical error of the Sivers function.

In Fig. 2, we show the density distribution ρa
p↑ of an unpolarized quark a in a transversely polarized proton defined in Eq. (1), at x = 0.1

(upper panels) and x = 0.01 (lower panels) and at the scale Q 2 = 4 GeV2. The proton is moving towards the reader and is polarized along 
the +y direction. Since the up Sivers function is negative, the induced distortion is positive along the +x direction for the up quark (left 
panels), and opposite for the down quark (right panels).

At x = 0.1 the distortion due to the Sivers effect is evident, since we are close to the maximum value of the function shown in Fig. 1. 
The distortion is more pronounced for down quarks, because the Sivers function is larger and at the same time the unpolarized TMD is 
smaller. The peak positions are approximately (kx)max ≈ 0.1 GeV for up quarks and −0.15 GeV for down quarks. At lower values of x, the 
distortion disappears. These plots suggest that a virtual photon hitting a transversely polarized proton effectively “sees” more up quarks 
to its right and more down quarks to its left in momentum space.

The existence of this distortion requires two ingredients. First of all, the wavefunction describing quarks inside the proton must have 
a component with nonvanishing angular momentum. Secondly, effects due to final state interactions should be present [59], which in 
Feynman gauge can be described as the exchange of Coulomb gluons between the quark and the rest of the proton [60]. In simplified 
models [61], it is possible to separate these two ingredients and obtain an estimate of the angular momentum carried by each quark [62]. 
It turns out that up quarks give almost 50% contribution to the proton’s spin, while all other quarks and antiquarks give less than 10% [15]. 
We will leave this model-dependent study to a future publication. A model-independent estimate of quark angular momentum requires 
the determination of parton distributions that depend simultaneously on momentum and position [63,64]. Nevertheless, the study of 
TMDs, and of the Sivers function in particular, can provide important constraints on models of the nucleon [65] and test lattice QCD 
computations [66].

In the near future, more data are expected from experiments at Jefferson Laboratory and CERN. Pioneering measurements in Drell-Yan 
processes with pion beams have been already reported [58], but they are not included in the present analysis because we do not have yet 
a consistent description of quark unpolarized TMDs in a pion. In the longer term, the recently approved Electron Ion Collider project [3,4]
will provide a large amount of data in different kinematic regions compared to present experiments [67]. With this abundance of data, we 
will be able to reduce the error bands, extend the range of validity of the extractions to lower and higher values of x, and obtain a much 
more detailed knowledge of the 3-dimensional distribution of partons in momentum space.
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FIG. 3. [Color online] The amplitude of the transverse single-spin asymmetry for W± and Z0 boson production measured by
STAR in proton-proton collisions at

√
s = 500 GeV with a recorded luminosity of 25 pb−1. The solid gray bands represent

the uncertainty on the KQ [11] model due to the unknown sea quark Sivers function. The crosshatched region indicates the
current uncertainty in the theoretical predictions due to TMD evolution.

fits to experimental data. A consensus on how to obtain
and handle the non-perturbative input in the TMD evo-
lution has not yet been reached [27]; therefore the results
presented here can help to constrain theoretical models.
A combined fit on W+ and W− asymmetries, AN (yW ),
to the theoretical prediction in the KQ model (no TMD
evolution), shown in Fig. 4, gives a χ2/ndf = 7.4/6 as-
suming a sign-change in the Sivers function (solid line)
and a χ2/ndf = 19.6/6 otherwise (dashed line). The cur-
rent data thus favor theoretical models that include a
change of sign for the Sivers function relative to observa-
tions in SIDIS measurements, if TMD evolution effects
are small.
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The solid gray bands represent the uncertainty due to 
the unknown sea quark Sivers functions estimated by 
saturating the sea quark Sivers function to their 
positivity limit in the KQ (Z.-B. Kang and J. -W. Qiu PRL 
103,172001 (2009) )calculation 

Ø Initial attempts to measure the Sivers asymmetry for sea quark Sivers have been reported by the STAR 
collaboration at RHIC using W/Z boson production. Their data is statistically limited and favor a sign-change 
only if TMD evolutions effects are significantly smaller than expected.

Ø  Recent COMPASS DY experiment was also focusing on valence quarks Sivers functions through pion induced DY.
Ø  SpinQuest will perform the first measurement of the Sivers asymmetry in proton-proton  Drell-Yan process 

from the sea quarks with high statistics!
Moreover, will provide an insight on the conditional universality for the (light) sea-quark Sivers functions.
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Figure 14: The kinematic acceptance of the E1039 experiment.

The experiment will be using the Fermilab main injector beam with an energy of 120 GeV and
a 4 second spill every minute. The maximum beam intensity will be ' 1013 protons per spill.

3.2 The Polarized Target

We will use the LANL-UVa polarized target which has been rebuilt and tested over the last three
years. The target system consists of a 5T superconducting split coil magnet, a 4He evaporation
refrigerator, a 140 GHz microwave source and a large 15000 m3/hr pumping system. The target
is polarized using Dynamic Nuclear Polarization (DNP) [52] and is shown schematically in Fig.
15. The beam direction is from left to right, and the magnetic field is vertical along the symmetry
axis, so that the target polarization is transverse to the beam direction. The target cells are shown
in gold color, with the top cell in the center of the split coils. The full system is shown in Fig. 16.

While the magnetic moment of the proton is too small to lead to a sizable polarization in a
5 T field, electrons in that field at 1 K are better than 99% polarized. By doping a suitable solid
target material with paramagnetic radicals to provide unpaired electron spins, one can make use
of the highly polarized state of the electrons. The dipole-dipole interaction between the nucleon
and the electron leads to hyperfine splitting, providing the coupling between the two spin species.
By applying a suitable microwave signal, the desired spin state is populated. We will use frozen
ammonia beads of NH3 and ND3 as the target material and create the paramagnetic radicals
(roughly 1019 spins/ml) through irradiation with a high intensity electron beam at the National
Institute of Standards and Technology (NIST). The cryogenic refrigerator, which works on the
principle of liquid 4He evaporation, can cool the bath to 1K, by lowering the 4He vapor pressure
down to less than 0.118 Torr. The polarization will be measured with three NMR coils per cell,
placed inside each target cell. The maximum polarization achieved with the proton (deuteron)
target is better than 98% (48%) and the ammonia bead packing fraction is about 60%. In our
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Figure 14: The kinematic acceptance of the E1039 experiment.

The experiment will be using the Fermilab main injector beam with an energy of 120 GeV and
a 4 second spill every minute. The maximum beam intensity will be ' 1013 protons per spill.

3.2 The Polarized Target

We will use the LANL-UVa polarized target which has been rebuilt and tested over the last three
years. The target system consists of a 5T superconducting split coil magnet, a 4He evaporation
refrigerator, a 140 GHz microwave source and a large 15000 m3/hr pumping system. The target
is polarized using Dynamic Nuclear Polarization (DNP) [52] and is shown schematically in Fig.
15. The beam direction is from left to right, and the magnetic field is vertical along the symmetry
axis, so that the target polarization is transverse to the beam direction. The target cells are shown
in gold color, with the top cell in the center of the split coils. The full system is shown in Fig. 16.

While the magnetic moment of the proton is too small to lead to a sizable polarization in a
5 T field, electrons in that field at 1 K are better than 99% polarized. By doping a suitable solid
target material with paramagnetic radicals to provide unpaired electron spins, one can make use
of the highly polarized state of the electrons. The dipole-dipole interaction between the nucleon
and the electron leads to hyperfine splitting, providing the coupling between the two spin species.
By applying a suitable microwave signal, the desired spin state is populated. We will use frozen
ammonia beads of NH3 and ND3 as the target material and create the paramagnetic radicals
(roughly 1019 spins/ml) through irradiation with a high intensity electron beam at the National
Institute of Standards and Technology (NIST). The cryogenic refrigerator, which works on the
principle of liquid 4He evaporation, can cool the bath to 1K, by lowering the 4He vapor pressure
down to less than 0.118 Torr. The polarization will be measured with three NMR coils per cell,
placed inside each target cell. The maximum polarization achieved with the proton (deuteron)
target is better than 98% (48%) and the ammonia bead packing fraction is about 60%. In our
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From E1039 proposal

Ø SpinQuest will be able to explore
a new region of kinematics for 𝐽/𝜓 
compare to the PHENIX measurements

Ø 𝐽/𝜓 production:
Ø PHENIX à 𝑔𝑔 fusion at 𝑠 =200 GeV
Ø SpinQuest à 𝑞(𝑞 annihilation + 𝑔𝑔 fusion 

at 𝑠 = 15.5	GeV



https://cerncourier.com/a/fermilab-
gears-up-for-an-intense-future

https://earth.google.com

NM4

Ø 120 GeV/c proton beam
Ø 𝑠 = 15.5 GeV
Ø Projected beam

v  5×10!"𝑝𝑟𝑜𝑡𝑜𝑛𝑠/𝑠𝑝𝑖𝑙𝑙  Where 𝑠𝑝𝑖𝑙𝑙	 ≈ 4.4	𝑠/𝑚𝑖𝑛
v  Bunches of 1𝑛𝑠 with 19𝑛𝑠	intervals ~	53	𝑀𝐻𝑧	
v   7×10!#𝑝𝑟𝑜𝑡𝑜𝑛𝑠/𝑦𝑒𝑎𝑟	 on target! 10



Fermilab E866/NuSea
Fermilab E906/E1039

Data in 1996-1997
1H, 2H and nuclear targets
800 GeV proton beam

Data in > 2010
1H, 2H and nuclear targets
120 GeV proton beam
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Therefore, the SpinQuest/E1039 
experiment will get,

Ø  Cross-Section scales as  ~7 times 
compare to that with 800 GeV beam

Ø  Luminosity is ~7 times compare to 
that with 800 GeV beam

Ø ~49 x Statistics with 800 GeV beam
  

Advantage of the Main Injector

And  E1039
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Figure 5. Density of data in the plane (Q, x) (a darker color corresponds to a higher density).

has been followed, and this is the purpose of this section. Finally, we also provide a suitable

definition of the χ2 that allows for a correct exploitation of experimental uncertainties.

4.1 Treatment of nuclear targets and charged hadrons

The data from E288, E605 (Cu), E772, COMPASS, part of HERMES (isoscalar targets)

come from nuclear target processes. In these cases, we perform the iso-spin rotation of the

corresponding TMDPDF that simulates the nuclear-target effects. For example, we replace

u-, and d-quark distributions by

f1,u←A(x, b) =
Z

A
f1,u←p(x, b) +

A− Z

A
f1,d←p(x, b), (4.1)

f1,d←A(x, b) =
Z

A
f1,d←p(x, b) +

A− Z

A
f1,u←p(x, b), (4.2)

where A(Z) is atomic number(charge) of a nuclear target. In principle, for E288, E605 data

extracted from very heavy targets one should also incorporate the nuclear modification

factor that depends on x. In the given kinematics the nuclear modification factor produces

effects of order 5-10% in the normalization of the cross-section. The shape of cross-section

is changed in much smaller amount, about 1% in a point, as it is shown in f.i. [21, 85].

Simultaneously, the systematic (correlated) errors of these experiments are large 25% and

20%, correspondingly, as well as the uncorrelated error (typically 2-5%). Therefore, we are

not sensitive to nuclear modification effect.

The measurements of SIDIS are made in a number of different channels. The HER-

MES data include π± and K±, and COMPASS data are for charged hadrons, h±. Pions

and kaons are described by an individual TMDFFs. However, charged hadrons are a com-
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E1039

Ø  SpinQuest (E1039) is attempting to push the proton beam 
intensity frontier on a solid polarized target.

Ø The combination of high luminosity, large 𝑥-coverage, and a 
high-intensity beam with significant time between proton spills 
makes Fermilab the best place for this novel approach to 
measuring polarized target asymmetries in Drell-Yan scattering 
with high precision. 

Ø With the current setting,
5×10!"𝑝𝑟𝑜𝑡𝑜𝑛𝑠/𝑠𝑝𝑖𝑙𝑙  Where 𝑠𝑝𝑖𝑙𝑙	 ≈ 4.4	𝑠/𝑚𝑖𝑛
Bunches of 1𝑛𝑠 with 19𝑛𝑠	intervals ~	53	𝑀𝐻𝑧

Ø Future plans at Fermilab (https://indico.fnal.gov/event/59663)
More frequent spills with the flexibility of adjusting the time 
between spills à Higher Statistics!!!

https://indico.fnal.gov/event/59663/


Polarized Target

• Designed for high intensity proton 
beam (4 × 10^12 proton/ 4 sec) by 
LANL-UVA group

• 8 cm long solid NH3 and ND3 targets

• Magnetic Field: B = 5 T with 
⁄,; ; < 10D9 over 8 cm

• 4He evaporation refrigerator ( 3 W of 
maximum cooling power)

• 140 GHz microwave source

3/23/21 26

Source: Zulkaida, Joshua 

Abinash Pun, NMSU
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Magnet, Hadron 
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dump
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polarized NH3

Spectrometer for Sivers asymmetry measurements

9

120 GeV
Proton

v Designed for high intensity proton beam 
(5×10!"𝑝𝑟𝑜𝑡𝑜𝑛𝑠/𝑠𝑝𝑖𝑙𝑙 with 4.4s spill) 
by LANL-UVA group

v 8 cm long solid NH3 and ND3 target cells 
v Magnetic Field: B = 5 T with uniformity 𝑑𝐵⁄𝐵 < 10#$ 

over 8 cm
v 4He evaporation refrigerator ( 3 W of maximum 

cooling power) keeping the target at 1.1 K.
v 140 GHz microwave source (with DNP technique) 

13



14From beam down-stream Beam-window and superconducting magnet From target cave to beam-upstream



ü  The SpinQuest superconducting magnet
ü  4He evaporating refrigerator
ü  140 GHz microwave source
ü   A large 17,000 m3/hr pumping system
ü   NMR systems (UVA & LANL)

15
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SpinQuest Experiment
Predicted sensitivity

• Conditions 
◦ Two years of data taking 

◦ NH3:ND3 = 50%:50% in time ◦ Details in the E1039 proposal 

 • Transverse Single-Spin Asymmetry (TSSA) 
◦ Measurement precision δAN ∼ 0.04

 22
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Ø Beam (∽ 2.5%)
• Relative luminosity (∽ 1%)
• Drifts (< 2%)
• Scraping (∽ 1%)

Ø Analysis sources (∽ 3.5%)
• Tracking efficiency (∽ 1.5%)
• Trigger & geometrical acceptance (<2%)
• Mixed background (∽ 3%)
• Shape of DY (∽ 1%)

Ø Target (∽ 6-7 %)
• TE calibration (proton ∽ 2.5%; deuteron ∽ 4.5%)
• Polarization inhomogeneity (∽ 2%)
• Density of target (NH3(s)) (∽ 1%)
• Uneven radiation damage (∽ 3%)
• Beam-Target misalignment (∽ 0.5%)
• Packing fraction (∽ 2%)
• Dilution factor (∽ 3%)

4

Updated Projections of Error 

Beam(2.5%):
• Relative Luminosity (~1%) 
• Drifts (<2%)
• Scraping (~1%) 

Analysis sources(3.5%):
• Tracking Efficiency (1.5%)
• Trigger and Geometrical Acceptance (<2%) 
• Mixed background  (3%)
• Shape of DY (~1%)

Target(6-7%)
• TE calibration (P-2.5% D-4.5%)
• Polarization inhomogeneity (2%) 
• Density of target (ammonia) (1%) 
• Uneven radiation damage (3%)
• Beam/target misalignment (0.5%)
• Packing fraction (2%)
• Dilution factor (3%)

Polarized Target

• Designed for high intensity proton 
beam (4 × 10^12 proton/ 4 sec) by 
LANL-UVA group

• 8 cm long solid NH3 and ND3 targets

• Magnetic Field: B = 5 T with 
⁄,; ; < 10D9 over 8 cm

• 4He evaporation refrigerator ( 3 W of 
maximum cooling power)

• 140 GHz microwave source

3/23/21 26

Source: Zulkaida, Joshua 

Abinash Pun, NMSU

x2 bin < x2 >
NH3 (p") ND3 (d") n"

N �A (%) N �A (%) �A(%)
0.10 - 0.16 0.139 5.0⇥ 104 3.2 5.8⇥ 104 4.3 5.4
0.16 - 0.19 0.175 4.5⇥ 104 3.3 5.2⇥ 104 4.6 5.7
0.19 - 0.24 0.213 5.7⇥ 104 2.9 6.6⇥ 104 4.1 5.0
0.24 - 0.60 0.295 5.5⇥ 104 3.0 6.4⇥ 104 4.1 5.1

Table 4: Event yield and statistical precision of the AN measurement in each of the x2 bins for the
NH3 (p") and ND3 (d") targets, and the deduced AN measurement precision for polarized n.

3.6 Polarization Measurements

3.6.1 Proton Polarization Measurements

The proton spin polarization is measured with a continuous-wave NMR system based on the
Liverpool Q-meter design [51] and recently upgraded at LANL. The Q-meter works as part of a
circuit with phase sensitivity designed to respond to the change of the impedance in the NMR
coil. The radio-frequent (RF) susceptibility of the material is inductively coupled to the NMR coil
which is part of a series LCR circuit, tuned to the Larmor frequency of the nuclei being probed.
The output, consisting of a DC level digitized and recorded as a target event [52] in the target
data acquisition system.

The polarized target NMR and data acquisition includes the software control system, the Rohde
& Schwarz RF generator (R&S), the Q-meter enclosure, and the target cavity insert. The Q-meter
enclosure is a standard VME crate, containing a series of Q-meter circuit boards with separate
connection cables which are used for di↵erent target cup cells during the experiment. The target
material and NMR coil are held in polychlorotrifluorethylene (Kel-F) cells with the whole target
insert cryogenically cooled to 1 K. Kel-F is used because it contains no free protons.

The R&S generator produces a RF signal which is frequency modulated to sweep over the
frequency range of interest. Typically, the R&S responds to an external modulation, sweeping
linearly from 400 kHz below to 400 kHz above the Larmor frequency. The signal from the R&S
is connected to the NMR coils within the target material. To avoid degrading reflections in the
long connection from the NMR coil to the electronics, a standing wave can be created in the
transmission cable by selecting a length of cable that is an integer multiple of the half-wavelength
of the resonant frequency. This specialized connection cable is known as the �/2 cable and is a
semi-rigid cable with a teflon based dielectric. The NMR coil consists of a set of loops made of
70/30 copper-nickel tube, which minimizes interaction with the proton beam. The coil opens up
into an oval shape spanning approximately 2 cm inside the cup. It is possible to enhance the signal
to noise ratio by taking multiple frequency sweeps and averaging the signals. A completion of the
set number of sweeps results in a single target event with a time stamp. The averaged signal is
integrated to obtain a NMR polarization area for that event. Each target event written contains
all NMR system parameters and the target environment variables needed to calculate the final
polarization.

A target NMR calibration measurement or Thermal Equilibrium measurement (TE) is used to
find a proportionality relation to determine the enhanced polarization under a range of thermal
conditions given the area of the “Q-curve” NMR signal at the same magnetic field. The magnetic
moment in the external field results in a set of 2J+1 energy sublevels through Zeeman interaction,
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fits to the available SIDIS data. The large discrepancy is a reflection of the fact that the current
SIDIS data are insensitive to the seaquark contribution, thus leading to large uncertainties in the
calculations. This is also reflected in the width of the uncertainty bands.
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Figure 22: Expected results after two years of combined running on NH3 and ND3 targets. The
red error bars are statistical only. Absolute systematic uncertainty is estimated to be <1.0% (see
Sec. 3.8), and the relative systematic uncertainty is 4.0%. The theory model predictions are for
the NH3 target only.

4 Comparison to Competition

There have been plans for about a decade to perform a variety of experiments around the globe
that aim to measure polarized Drell-Yan either with a polarized beam or a polarized target (see
Table 7). COMPASS at CERN, SeaQuest at FNAL and Panda at GSI plan to perform fixed
target experiments with either pion, proton or anti-proton beams, whereas PAX at GSI, NICA at
JINR and fsPHENIX at BNL plan collider experiments with polarized proton beams. The fixed
target experiments typically provide higher luminosity and the collider experiments tend to run at
higher center of mass energy, s. NICA, fsPHENIX and SeaQuest will be sensitive to the interaction
between valence quarks and sea antiquarks. PAX and COMPASS plan to measure the interaction
between valence quarks and valence antiquarks, and are not sensitive to sea antiquarks. Panda is
designed to study J/ formation rather than Drell-Yan physics due to the low antiproton beam
energy.

31

Ø Projections from existing frameworks
are limited by available data

also, separation of proton and neutron



Ø 2018, March: DOE approval 
Ø 2018, May: Fermilab stage-2 approval 
Ø 2018, June: E906 decommissioned 
Ø 2019, May: Transferred the polarized target from UVA to Fermilab 
Ø Now: commission all components using cosmic rays 
Ø Phase 1 of Polarized target commissioning is completed [January 2023]
Ø Phase 2 (with NH3, ND3): September 2023
Ø E1039 beam commissioning starts in this Fall 2023 

[Run for 2+ years, 2023-2025+] 
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Ø Profound limitation in other phenomenological fits:
The DY Sivers Asymmetry projections for SpinQuest has large uncertainties, 
and those projections are only for proton target. 

Ø A complete SU(3) flavor dependent Sivers functions have been not 
 extracted yet.

Ø  The impact from the Sivers asymmetries with polarized proton target 
 and neutron (deuteron) target was not explored yet.
 (mostly iso-spin symmetry condition was used with combined proton
   and deuteron data in global fits)

19



Sivers Asymmetry from SIDIS
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2.5 Sivers asymmetry from SIDIS

In SIDIS, one has to take the collinear distribution functions fq/p(x) and fragmentation functions Dh/q(z)
into the account with parameterisations that are taken from the available fits of the world data.

Data from HERMES [16] on the SIDIS Sivers asymmetries for ⇡± and K
± production o↵ a proton target;

the COMPASS Collaboration data on LiD [17] and NH3 targets [18].
Simplified version of the SIDIS di↵erental cross-section can be written as,
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The Sivers asymmetry measured in SIDIS can be expressed as,
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4

Single Spin Asymmetry (Sivers Asymmetry)

Anselmino et al. (2017)

For instance, in order to produce a W+, u, d̄ and s̄ quarks from the polarised proton
combine with d̄, s̄, u quarks from the unpolarised proton, such that the asymmetry is
proportional to

|Vu,d|
2
⇣
�Nfu/p" ⌦ fd̄/p +�Nfd̄/p" ⌦ fu/p

⌘
+ |Vu,s|

2
⇣
�Nfu/p" ⌦ fs̄/p +�Nfs̄/p" ⌦ fu/p

⌘
.

(3.1)
Both quantities in the round brackets in the above equation contain a sea and a valence
quark distribution. However, because of the numerical values 2 of |Vu,d| and |Vu,s|, the last
two terms in Eq. (3.1) are much suppressed with respect to the first two. Thus, we expect
that AW+

N mainly depends on the u quark and d̄ sea quark Sivers functions.
Likewise, for W� production, the asymmetry is proportional to
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⌘
+ |Vu,s|

2
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�Nfū/p" ⌦ fs/p +�Nfs/p" ⌦ fū/p

⌘
,

(3.2)
and we expect that W� data are mainly sensitive to d quark and ū sea quark Sivers function.

A previous extraction of the Sivers functions that included anti-quark distributions was
reported in Ref. [8]. However, new data have become available since then and we perform
here a new complete extraction of the Sivers functions. We refer to Ref. [8] for more details
about the procedure.

One may notice that in our simple parameterisation of the Sivers functions as given in
Eqs. (2.12)-(2.15) the knowledge of the width hk2?i of the unpolarised TMDs is important.
Such a study was performed in Refs. [18, 19]. We adopt here the parameters from Ref. [18],
fixed by fitting the HERMES multiplicities [20]:

hk2?i = 0.57± 0.08 GeV2
hp2?i = 0.12± 0.01 GeV2 , (3.3)

where hp2?i is the width of unpolarised Transverse Momentum Dependent Fragmentation
Functions (TMD-FFs):

Dh/q(z, p?) = Dh/q(z)
1

⇡hp2?i
e�p2?/hp2?i . (3.4)

Notice that the study of Ref. [18] found no flavour dependence of the widths of the TMDs.
The collinear distribution and fragmentation functions, fq/p(x) and Dh/q(z), needed for our
parameterisations are taken from the available fits of the world data: in this analysis we use
the CTEQ6L set for the PDFs [21] and the DSS set for the fragmentation functions [22].
The LHAPDF [23] library is used for collinear PDFs. We fit the latest data from the
HERMES Collaboration on the SIDIS Sivers asymmetries for ⇡± and K± production off a
proton target [1], the COMPASS Collaboration data on LiD [24] and NH3 targets [25], and
JLab data on 3He target [26].

These available SIDIS data cover a relatively narrow region of x, typically in the so-
called valence region. It suffices to use the most simple parameterisation for the anti-quark
Sivers functions [see Eqs. (2.13), (2.14)]:

Nq̄(x) = Nq̄ . (3.5)
2|Vu,d| = 0.97417± 0.00021, |Vu,s| = 0.2248± 0.0006, from Ref. [17].
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and also after k? integration, the Sivers asymmetry can be analytically written as,
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2.5 Sivers asymmetry from SIDIS

In SIDIS, one has to take the collinear distribution functions fq/p(x) and fragmentation functions Dh/q(z)
into the account with parameterisations that are taken from the available fits of the world data.

Data from HERMES [16] on the SIDIS Sivers asymmetries for ⇡± and K
± production o↵ a proton target;

the COMPASS Collaboration data on LiD [17] and NH3 targets [18].
Simplified version of the SIDIS di↵erental cross-section can be written as,
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The Sivers asymmetry measured in SIDIS can be expressed as,
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3

anisotropy of quark momentum distributions for the up
and down quarks indicating that their motion in oppo-
site directions [1, 2]. This is manifestly due to quark or-
bital angular momentum (OAM). The most interesting
and relevant aspects of the OAM, such as magnitude and
partonic distribution shape as a function of the proton’s
state cannot be determined by the Sivers e↵ect alone.
However, systematic studies can be performed to investi-
gate the full 3D momentum distribution of the quarks in
a transversely polarized proton which can be used in con-
cert with other information to exploit multi-dimensional
partonic degrees of freedom using a variety of hard pro-
cesses. Here we focus specifically on SIDIS and DY but
it should be noted that there is significant potential in
broader model development that can come from combin-
ing all available data from multiple processes with ad-
ditional constraints using the simultaneous DNN fitting
approach presented here.

The Sivers function describes a di↵erence of probabili-
ties which implies it may not be positive definite. Making
a comparison between the Sivers function from the DY
process and the SIDIS process is still the focus of much
experimental and theoretical e↵ort. Under time reversal
the future-pointing Wilson lines are replaced by past-
pointing Wilson lines that are appropriate for factoriza-
tion in the DY process. This implies the Sivers function
is not uniquely defined and cannot exhibit process uni-
versality, as it depends on the contour of the Wilson line.
This feature of the Sivers function directly tied the QCD
interactions between the quarks (or gluons) active in the
process to the process dependence resulting in a condi-
tional universality such that [29],

�Nfq/p" (x, k?)
��
SIDIS

= � �Nfq/p" (x, k?)
��
DY

. (1)

This fundamental prediction remains to be tested. Direct
sign tests [4, 8, 30] can be performed but the experimental
proof would require an analysis over a broad phases space
of both SIDIS and DY with consideration to flavor and
kinematic sensitivity for both valance and sea quarks.
Our analysis will in part rely on this relationship rather
than making direct tests of the validity of the sign change.

A. SIDIS process

The Semi Inclusive Deep Inelastic Scattering (SIDIS)
process is scattering a lepton o↵ of a polarized nucleon,
and measuring the scattered lepton and a fragmented
hadron. In the nucleon-photon center of mass frame,
the nucleon three-momentum ~p is along the z-axis and
its spin-polarization ~ST is on the plane perpendicular
(transverse) to the ẑ-axis. In Fig. 1 the struct-quark,
virtual-photon (with four-momentum ~q), and the lep-
ton belong to a plane called “Lepton Plane” (represented
in yellow). The fragmented-hadron with momentum ~ph

and its projection onto the x̂ � ŷ (i.e. ~phT ) belong to
so-called “Hadron Plane” (represented in transparent-

green), therefore the transverse momentum ~k? of the
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FIG. 1. Kinematics of the SIDIS process in the nucleon-
photon center-of-mass frame.

struct-quark and ~phT are falling onto the transverse-plane
(represented in transparent-blue) perpendicular to both
lepton plane and hadron plane. The azimuthal angle �h

of the produced hadron h, and is the angle between the
lepton plane and the hadron plane [31]. The di↵erential
cross-section for the SIDIS process depends on both co-
linear parton distribution functions fq/p(x; Q2) and frag-
mentation functions Dh/q(z; Q2), where q is the quark
flavor, p represents the target proton, h is the hadron
type produced by the process and z is the momentum
fraction of the final state hadron with respect to the vir-
tual photon. A simplified version of the SIDIS di↵erential
cross-section can be written up to O(k?/Q) as [25, 32],
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⇥f̂q/p"(x, k?)Dh/q(z, p?) + O(k?/Q) , (2)

where ŝ, û are partonic Mandelstam invariants, and
f̂q/p"(x, k?) is the unpolarized quark distribution,

f̂q/p"(x, k?) = fq/p(x, k?) +
1

2
�Nfq/p"(x, k?)~ST · (p̂ ⇥ k̂?)

= fq/p(x, k?) �
k?
mp

f?q
1T (x, k?)~ST · (p̂ ⇥ k̂?)

(3)

with transverse momentum k? inside a transversely po-
larized (with spin ~ST ) proton with three-momentum
~p, where �Nfq/p"(x, k?) denotes Sivers functions that
carry the nucleon’s spin-polarization e↵ects on the quarks
which can be considered as a modulation to the unpolar-
ized quark PDFs [4],

�Nfq/p"(x, k?) = 2Nq(x)h(k?)fq/p(x, k?) (4)
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where,

fq/p(x, k?) = fq(x)
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?/m2

1 . (6)

Here Nq(x) is considered as a factorized x-dependent
function with a form that has yet to be formally estab-
lished, and m1 is a parameter that allows the k? Gaus-
sian dependence of the Sivers function to be di↵erent
from that of the unpolarized TMDs [4]. fq(x; Q2) is the
co-linear parton distribution function for flavor q that is
obtained from CTEQ6l [33] grid through LHAPDF [34],
whereas the fragmentation functions for ⇡±,0 are from
[35], and for K± are from [36] (DSS formalism), from re-
cent global analyses of fragmentation functions at next-
to-leading-order (NLO) accuracy in QCD. In terms of the
cross-section ratios, the Sivers asymmetry in the SIDIS
process can be written as,
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and can be parameterized [4] and further re-arranged
as,
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where,
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and fragmentation functions Dh/q(z, p?) (before p?-
integration),

Dh/q(z, p?) = Dh/q(z)
1

⇡hp2
?i

exp�p2
?/hp2

?i, (11)

with hk2
?i = 0.57 ± 0.08 GeV2 and hp2

?i = 0.12 ± 0.01
GeV2 from the fits [37, 38] to HERMES multiplicities
[39]. Note that we use the shorthand notation for the
PDFs, FFs as well as TMDs by omitting Q2 in the ex-
pressions for the sake of convenience as is done in the
literature.

Through this azimuthal asymmetry, the SIDIS process
provides information about the correlations between the

transverse momentum of the partons leaving through the
fragmented target and the spin of the target itself. In
this regard, SIDIS allows one to study the structure of
individual hadrons by selecting these decay fragments at
the detection level. In general, SIDIS provides access to
a wide range of TMDs, and allows for studying TMDs of
hadrons carrying di↵erent flavors and polarizations.

For our present analysis, HERMES and COMPASS
have the best-polarized proton target data for SIDIS,
while COMPASS has the best-polarized neutron target
data. In the COMPASS data, the neutron target is ac-
tually a polarized deuteron but the neutron carries over
90% of the deuteron polarization when polarized in solid-
state form. The JLab data on polarized 3He is of a di↵er-
ent class of experiments and will not be combined with
the polarized deuteron data from COMPASS. It is worth
noting that the uncertainties in the experimental data
can greatly di↵er depending on the choice of polarized
target.
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FIG. 2. Kinematics of the DY process in the hadronic center-
of-mass frame.

B. DY process

Consider the Drell-Yan process A"B ! l+l�X, where
A" is a transversely polarized target, and B is the hadron
beam. In the hadronic c.m frame, the 4-momentum q and
the invariant mass squared (QM ) of the final-state di-
lepton pair, Feynman-x (xF ) and the Mandelstam vari-
able s are related as,

q = (q0, qT , qL) , q2 = QM , xF =
2qL
p

s
,

s = (pA + pB)2 . (12)

In the kinematical region of,

q2
T ⌧ QM , k? ' qT , (13)

4

where,

fq/p(x, k?) = fq(x)
1

⇡hk2
?i

e�k2
?/hk2

?i, (5)

h(k?) =
p

2e
k?
m1

e�k2
?/m2

1 . (6)

Here Nq(x) is considered as a factorized x-dependent
function with a form that has yet to be formally estab-
lished, and m1 is a parameter that allows the k? Gaus-
sian dependence of the Sivers function to be di↵erent
from that of the unpolarized TMDs [4]. fq(x; Q2) is the
co-linear parton distribution function for flavor q that is
obtained from CTEQ6l [33] grid through LHAPDF [34],
whereas the fragmentation functions for ⇡±,0 are from
[35], and for K± are from [36] (DSS formalism), from re-
cent global analyses of fragmentation functions at next-
to-leading-order (NLO) accuracy in QCD. In terms of the
cross-section ratios, the Sivers asymmetry in the SIDIS
process can be written as,

Asin(�h��S)
UT (x, y, z, phT ) =

d�l"p!hlX
� d�l #p!lhX

d�l "p!hlX + d�l #p!hlX
,

(7)

and can be parameterized [4] and further re-arranged
as,

Asin(�h��S)
UT (x, z, phT )

= A0(z, phT , m1)

 P
q Nq(x)e2

qfq(x)Dh/q(z)
P

q e2
qfq(x)Dh/q(z)

!
, (8)

where,

A0(z, phT , m1)

=

p
2ezphT

m1

[z2
hk2

?i + hp2
?i]hk2

Si
2

[z2hk2
Si + hp2

?i]2hk2
?i

⇥ exp

"
�

p2
hT z2

�
hk2

Si � hk2
?i
�

(z2hk2
Si + hp2

?i) (z2hk2
?i + hp2

?i)

#
, (9)

hk2
Si =

m1hk2
?i

m2
1 + hk2

?i
, (10)

and fragmentation functions Dh/q(z, p?) (before p?-
integration),

Dh/q(z, p?) = Dh/q(z)
1

⇡hp2
?i

exp�p2
?/hp2

?i, (11)

with hk2
?i = 0.57 ± 0.08 GeV2 and hp2

?i = 0.12 ± 0.01
GeV2 from the fits [37, 38] to HERMES multiplicities
[39]. Note that we use the shorthand notation for the
PDFs, FFs as well as TMDs by omitting Q2 in the ex-
pressions for the sake of convenience as is done in the
literature.

Through this azimuthal asymmetry, the SIDIS process
provides information about the correlations between the

transverse momentum of the partons leaving through the
fragmented target and the spin of the target itself. In
this regard, SIDIS allows one to study the structure of
individual hadrons by selecting these decay fragments at
the detection level. In general, SIDIS provides access to
a wide range of TMDs, and allows for studying TMDs of
hadrons carrying di↵erent flavors and polarizations.

For our present analysis, HERMES and COMPASS
have the best-polarized proton target data for SIDIS,
while COMPASS has the best-polarized neutron target
data. In the COMPASS data, the neutron target is ac-
tually a polarized deuteron but the neutron carries over
90% of the deuteron polarization when polarized in solid-
state form. The JLab data on polarized 3He is of a di↵er-
ent class of experiments and will not be combined with
the polarized deuteron data from COMPASS. It is worth
noting that the uncertainties in the experimental data
can greatly di↵er depending on the choice of polarized
target.
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FIG. 2. Kinematics of the DY process in the hadronic center-
of-mass frame.

B. DY process

Consider the Drell-Yan process A"B ! l+l�X, where
A" is a transversely polarized target, and B is the hadron
beam. In the hadronic c.m frame, the 4-momentum q and
the invariant mass squared (QM ) of the final-state di-
lepton pair, Feynman-x (xF ) and the Mandelstam vari-
able s are related as,

q = (q0, qT , qL) , q2 = QM , xF =
2qL
p

s
,

s = (pA + pB)2 . (12)

In the kinematical region of,

q2
T ⌧ QM , k? ' qT , (13)

3

of hard processes. Here, we focus specifically on SIDIS
and DY, but it should be noted that there is significant
potential for broader model development that can come
from combining all available data from multiple processes
with additional constraints using the simultaneous DNN
fitting approach presented here.

The Sivers function describes a di↵erence in probabil-
ities, which implies that it may not be positive definite.
Making a comparison between the Sivers function from
the DY process and the SIDIS process is still the focus
of much experimental and theoretical e↵ort. Under time
reversal, the future-pointing Wilson lines are replaced by
past-pointing Wilson lines that are appropriate for fac-
torization in the DY process. This implies that the Sivers
function is not uniquely defined and cannot exhibit pro-
cess universality, as it depends on the contour of the Wil-
son line. This feature of the Sivers function is directly
tied to the QCD interactions between the quarks (or glu-
ons) active in the process, resulting in a conditional uni-
versality, as shown in [29],

�Nfq/p" (x, k?)
��
SIDIS

= � �Nfq/p" (x, k?)
��
DY

. (1)

This fundamental prediction still needs to be tested. Di-
rect sign tests [4, 8, 30] can be performed, but experimen-
tal proof would require an analysis over a broad phase
space of both SIDIS and DY, with consideration given to
flavor and kinematic sensitivity for both valence and sea
quarks. Our analysis will, in part, rely on this relation-
ship rather than making direct tests of the validity of the
sign change.

A. SIDIS process
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FIG. 1. Kinematics of the SIDIS process in the nucleon-
photon center-of-mass frame.

The Semi Inclusive Deep Inelastic Scattering (SIDIS)
process involves scattering a lepton o↵ of a polarized nu-
cleon and measuring the scattered lepton and a frag-
mented hadron. In the nucleon-photon center of mass

frame, the nucleon three-momentum ~p is along the z-axis
and its spin-polarization ~ST is on the plane perpendic-
ular (transverse) to the ẑ-axis. In Fig. 1 the struct-
quark, virtual-photon (with four-momentum ~q), and the
lepton belong to a plane called ”Lepton Plane” (repre-
sented in yellow). The fragmented-hadron with momen-
tum ~ph and its projection onto the x̂� ŷ (i.e. ~phT ) belong
to so-called ”Hadron Plane” (represented in transparent-

green). Thus, the transverse momentum ~k? of the struct-
quark and ~phT are falling onto the transverse-plane (rep-
resented in transparent-blue) perpendicular to both lep-
ton plane and hadron plane. The azimuthal angle �h

of the produced hadron h, and is the angle between the
lepton plane and the hadron plane [31]. The di↵erential
cross-section for the SIDIS process depends on both co-
linear parton distribution functions (PDFs) fq/p(x; Q2)
and fragmentation functions Dh/q(z; Q2), where q is the
quark flavor, p represents the target proton, h is the
hadron type produced by the process, and z is the mo-
mentum fraction of the final state hadron with respect
to the virtual photon. A simplified version of the SIDIS
di↵erential cross-section can be written up to O(k?/Q)
as [25, 32],

d5�lp!lhX

dxdQ2dzd2p?
=

X

q

e2
q

Z
d2k?

✓
2⇡↵2

x2s2

ŝ2 + û2

Q4

◆

⇥f̂q/p"(x, k?)Dh/q(z, p?) + O(k?/Q) , (2)

where ŝ, û are partonic Mandelstam invariants, and
f̂q/p"(x, k?) is the unpolarized quark distribution,

f̂q/p"(x, k?) = fq/p(x, k?) +
1

2
�Nfq/p"(x, k?)~ST · (p̂ ⇥ k̂?)

= fq/p(x, k?) �
k?
mp

f?q
1T (x, k?)~ST · (p̂ ⇥ k̂?)

(3)

with transverse momentum k? inside a transversely po-
larized (with spin ~ST ) proton with three-momentum
~p, where �Nfq/p"(x, k?) denotes Sivers functions that
carry the nucleon’s spin-polarization e↵ects on the quarks
which can be considered as a modulation to the unpolar-
ized quark PDFs [4],

�Nfq/p"(x, k?) = 2Nq(x)h(k?)fq/p(x, k?) (4)

where,

fq/p(x, k?) = fq(x)
1

⇡hk2
?i

e�k2
?/hk2

?i, (5)

h(k?) =
p

2e
k?
m1

e�k2
?/m2

1 . (6)

Here Nq(x) is considered as a factorized x-dependent
function with a form that has yet to be formally estab-
lished, and m1 is a parameter that allows the k? Gaus-
sian dependence of the Sivers function to be di↵erent

4

from that of the unpolarized TMDs [4]. fq(x; Q2) is the
co-linear PDF for flavor q that is obtained from CTEQ6l
[33] grid through LHAPDF [34], whereas the fragmen-
tation functions for ⇡±,0 are from [35], and for K± are
from [36] (DSS formalism), from recent global analyses of
fragmentation functions at next-to-leading-order (NLO)
accuracy in QCD. In terms of the cross-section ratios, the
Sivers asymmetry in the SIDIS process can be written as,

Asin(�h��S)
UT (x, y, z, phT ) =

d�l"p!hlX
� d�l #p!lhX

d�l "p!hlX + d�l #p!hlX
,

(7)

and can be parameterized [4] and further re-arranged as,

Asin(�h��S)
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= A0(z, phT , m1)
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where,
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m1hk2
?i
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and fragmentation functions Dh/q(z, p?) (before p?-
integration),

Dh/q(z, p?) = Dh/q(z)
1

⇡hp2
?i

exp�p2
?/hp2

?i, (11)

with hk2
?i = 0.57 ± 0.08 GeV2 and hp2

?i = 0.12 ± 0.01
GeV2 from the fits [37, 38] to HERMES multiplicities
[39]. Note that we use the shorthand notation for the
PDFs, FFs as well as TMDs by omitting Q2 in the ex-
pressions for the sake of convenience as is done in the
literature.

Through this azimuthal asymmetry, the SIDIS process
provides information about the correlations between the
transverse momentum of the partons leaving through the
fragmented target and the spin of the target itself. In
this regard, SIDIS allows one to study the structure of
individual hadrons by selecting these decay fragments at
the detection level. In general, SIDIS provides access to
a wide range of TMDs, and allows for studying TMDs of
hadrons carrying di↵erent flavors and polarizations.

For our present analysis, HERMES and COMPASS
have the best-polarized proton target data for SIDIS,

while COMPASS has the best-polarized neutron target
data. In the COMPASS data, the neutron target is ac-
tually a polarized deuteron but the neutron carries over
90% of the deuteron polarization when polarized in solid-
state form. The JLab data on polarized 3He is of a di↵er-
ent class of experiments and will not be combined with
the polarized deuteron data from COMPASS. It is worth
noting that the uncertainties in the experimental data
can greatly di↵er depending on the choice of polarized
target.
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FIG. 2. Kinematics of the DY process in the hadronic center-
of-mass frame.

B. DY process

Consider the Drell-Yan process A"B ! l+l�X, where
A" is a transversely polarized target, and B is the hadron
beam. In the hadronic c.m frame, the 4-momentum q and
the invariant mass squared (QM ) of the final-state di-
lepton pair, Feynman-x (xF ) and the Mandelstam vari-
able s are related as,

q = (q0, qT , qL) , q2 = QM , xF =
2qL
p

s
,

s = (pA + pB)2 . (12)

In the kinematical region of,

q2
T ⌧ QM , k? ' qT , (13)

at order O(k?/QM ), and in the hadronic c.m frame,
the Sivers Single Spin Asymmetry can be given as [3, 40],

3

anisotropy of quark momentum distributions for the up
and down quarks indicating that their motion in oppo-
site directions [1, 2]. This is manifestly due to quark or-
bital angular momentum (OAM). The most interesting
and relevant aspects of the OAM, such as magnitude and
partonic distribution shape as a function of the proton’s
state cannot be determined by the Sivers e↵ect alone.
However, systematic studies can be performed to investi-
gate the full 3D momentum distribution of the quarks in
a transversely polarized proton which can be used in con-
cert with other information to exploit multi-dimensional
partonic degrees of freedom using a variety of hard pro-
cesses. Here we focus specifically on SIDIS and DY but
it should be noted that there is significant potential in
broader model development that can come from combin-
ing all available data from multiple processes with ad-
ditional constraints using the simultaneous DNN fitting
approach presented here.

The Sivers function describes a di↵erence of probabili-
ties which implies it may not be positive definite. Making
a comparison between the Sivers function from the DY
process and the SIDIS process is still the focus of much
experimental and theoretical e↵ort. Under time reversal
the future-pointing Wilson lines are replaced by past-
pointing Wilson lines that are appropriate for factoriza-
tion in the DY process. This implies the Sivers function
is not uniquely defined and cannot exhibit process uni-
versality, as it depends on the contour of the Wilson line.
This feature of the Sivers function directly tied the QCD
interactions between the quarks (or gluons) active in the
process to the process dependence resulting in a condi-
tional universality such that [29],

�Nfq/p" (x, k?)
��
SIDIS

= � �Nfq/p" (x, k?)
��
DY

. (1)

This fundamental prediction remains to be tested. Direct
sign tests [4, 8, 30] can be performed but the experimental
proof would require an analysis over a broad phases space
of both SIDIS and DY with consideration to flavor and
kinematic sensitivity for both valance and sea quarks.
Our analysis will in part rely on this relationship rather
than making direct tests of the validity of the sign change.

A. SIDIS process

The Semi Inclusive Deep Inelastic Scattering (SIDIS)
process is scattering a lepton o↵ of a polarized nucleon,
and measuring the scattered lepton and a fragmented
hadron. In the nucleon-photon center of mass frame,
the nucleon three-momentum ~p is along the z-axis and
its spin-polarization ~ST is on the plane perpendicular
(transverse) to the ẑ-axis. In Fig. 1 the struct-quark,
virtual-photon (with four-momentum ~q), and the lep-
ton belong to a plane called “Lepton Plane” (represented
in yellow). The fragmented-hadron with momentum ~ph

and its projection onto the x̂ � ŷ (i.e. ~phT ) belong to
so-called “Hadron Plane” (represented in transparent-

green), therefore the transverse momentum ~k? of the
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~p

FIG. 1. Kinematics of the SIDIS process in the nucleon-
photon center-of-mass frame.

struct-quark and ~phT are falling onto the transverse-plane
(represented in transparent-blue) perpendicular to both
lepton plane and hadron plane. The azimuthal angle �h

of the produced hadron h, and is the angle between the
lepton plane and the hadron plane [31]. The di↵erential
cross-section for the SIDIS process depends on both co-
linear parton distribution functions fq/p(x; Q2) and frag-
mentation functions Dh/q(z; Q2), where q is the quark
flavor, p represents the target proton, h is the hadron
type produced by the process and z is the momentum
fraction of the final state hadron with respect to the vir-
tual photon. A simplified version of the SIDIS di↵erential
cross-section can be written up to O(k?/Q) as [25, 32],

d5�lp!lhX

dxdQ2dzd2p?
=

X

q

e2
q

Z
d2k?

✓
2⇡↵2

x2s2

ŝ2 + û2

Q4

◆

⇥f̂q/p"(x, k?)Dh/q(z, p?) + O(k?/Q) , (2)

where ŝ, û are partonic Mandelstam invariants, and
f̂q/p"(x, k?) is the unpolarized quark distribution,

f̂q/p"(x, k?) = fq/p(x, k?) +
1

2
�Nfq/p"(x, k?)~ST · (p̂ ⇥ k̂?)

= fq/p(x, k?) �
k?
mp

f?q
1T (x, k?)~ST · (p̂ ⇥ k̂?)

(3)

with transverse momentum k? inside a transversely po-
larized (with spin ~ST ) proton with three-momentum
~p, where �Nfq/p"(x, k?) denotes Sivers functions that
carry the nucleon’s spin-polarization e↵ects on the quarks
which can be considered as a modulation to the unpolar-
ized quark PDFs [4],

�Nfq/p"(x, k?) = 2Nq(x)h(k?)fq/p(x, k?) (4)

Unpol.
quark-dist.

Sivers
function
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FIG. 4. A generic representation of the DNN architecture
for Nq(x), where q = {u, d, s, ū, d̄, s̄}, and a

(n)
m represent the

node m in the hidden layer n. The figure represents only up
to n = 3 for demonstration purposes.

sider the SU(3)flavor breaking in QCD, we have Nu(x),
Nū(x), Nd(x), Nd̄(x), Ns(x), and Ns̄(x) to handle the six
light-quark-flavors independently. Bjorken-x is the only
input as the initial layer of each Nq(x), and the final
layer is a single-node output. The m1 in A0(z, phT , m1)
as defined in Eq. (9) is treated as a free parameter with
the initialization obtained from our first chi-square mini-
mization fit (discussed in section IV B) and then allowed
to vary throughout the DNN training process with SIDIS
data as shown in Fig. 3. The DNN model results are then
used to infer the projections for both SIDIS kinematics
and DY kinematics (see Fig. 11).

A deep feedforward architecture is used with the hid-
den layers expanded with multiple numbers of nodes
which are initialized randomly with Gaussian sampling
of weights around zero with a standard deviation of 0.1.
The degree of potential Non-linearity is introduced into
the network by the choice of the activation function. The
selection of the activation function can have a substan-
tial impact on DNN performance and training dynam-
ics. We chose the Relu6 activation. This activation
is a variant of the Rectified Linear Unit (ReLU) func-
tion. The (ReLU6) activation function has been shown
to empirically perform better under low-precision condi-
tions by encouraging the model to learn sparse features
earlier which is beneficial for learning complex patterns
and relationships from the experimental data. We also
use Least Absolute Shrinkage and Selection Operator Re-

gression which is a regularization technique used to pre-
vent overfitting and improve the model’s performance
and generalization ability, while also encouraging spar-
sity and feature selection. We also use L1 regularization.
L1 regularization encourages sparsity in the activation by
adding a penalty term to the loss function that is pro-
portional to the absolute value of the weights [51]. By
adding this regularization term, the most important in-
puts are weighed the greatest so that noisy or redundant
information is discarded. The strength of the regulariza-

tion is controlled by the magnitude of the regularization
coe�cient, which is set to 10�12. Additionally, we use a
dynamically decreasing learning rate. The learning rate
is automatically reduced by 10% if the training loss has
not decreased within the last 200 epochs1 (i.e. patience =
200). The optimizer used was Adam while the loss func-
tion used was Mean Squared Error. During the hyperpa-
rameter optimization process there are slight deviations
in the number of layers, nodes per layer, the initial learn-
ing rate, batch size, and the number of epochs but the
basics of the scheme just described remains consistent for
all DNNs used.

Our strategy is to first perform an exercise using only
pseudodata to verify the extraction method that will ul-
timately be used on the real experimental data. First, we
devise a generating function for the SIDIS Sivers asym-
metry data using a conventional �2-minimization routine
(MINUIT in this case), without following the popular as-
sumption of “unbroken sea” [4] in order to generalize the
treatment of quarks and antiquarks. We perform a series
of conventional MINUIT fits step-wise to obtain the final
19 parameters for the case of broken SU(3)flavor symme-
try in QCD. Then, we produce pseudodata (or replicas)
for the SIDIS asymmetry by sampling from the mock
experimental errors using the generating function with
kinematics and binning in x, z and phT as in the exper-
imental data. Then a DNN model is constructed with
all hyperparameters tuned in order to achieve the high-
est possible accuracy and precision. Here our nomencla-
ture becomes quite specific and we refer to the result-
ing distribution of DNN fits as a DNN model. The first
model obtained with the method for a particular set of
data is referred to as the First Iteration. At this stage,
we use the distribution of fit results to obtain the mean
and the error band from the initial DNN model to re-
parameterize the generating function so that it produces
more realistic pseudodata. The DNN fits are performed
again improving the quality (both accuracy and preci-
sion) of the resulting fits to result in a Second Iteration
DNN model. One can repeat the number of iterations
until the resulting model is no longer improving within
the experimental uncertainties. In this way, the DNN
model approaches the best approximation of the Sivers
functions in comparison to the true values put into the
generating function.

After confirming that the method works well, the ex-
traction of Sivers function using the SIDIS experimental
data is performed. The data for a polarized proton-target
and deuteron-target are treated separately for two rea-
sons. First, fitting these together would introduce an-
other bias that would need to be managed directly. This
is the case even assuming isospin symmetry in the u and
d-quarks’ Sivers functions. Second, our approach leaves
open the possibility to explore the nuclear dependence of

1 An epoch is a complete cycle of the passing of training data
through the algorithm.
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CTEQ6l

DSS

Ø The exceptional capacity of DNN to be ideal for function approximation (Universal 
Approximation Theorem). 

Ø Each quark flavor q is independently handled by a separate           .
Ø The only input to to each             is    .
Ø Statistical & Systematic uncertainties from the experimental data are combined in

quadrature; then propagated using bootstrap method by generating replicas. 
Ø Systematic uncertainty in method is evaluated with variations in generating function.
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generating function

Generate Pseudo-data 
(with exp. Uncert.)

First Iteration: DNN model Fit
                        hyperparameter tuning

Experimental data 

Intermediate DNN Fit

Generate pseudo-data
on fine-binned 3D
kinematics 
(with 68% CL of 
1000 replicas)
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for anti-quarks. In this fit, there are three parameters ↵q

and �q and Nq for each quark flavor, and for each anti-
quark it’s just Nq̄ plus m1. This results in a 9-parameter
fit. Fit 2 is a test to reproduce the same parameteri-
zation as in Fit 1. We note that in Fit 2 non of the
9 parameters are fixed or have bounds imposed. Both
of these first columns only consider u and d quarks and
antiquarks. The Fit 1 parameters were used as the ini-
tial values to perform Fit 2. The di↵erence in these two
sets of fit parameters demonstrates the challenge of sys-
tematic consistency with this method though some pa-
rameters match reasonably well. For fit 3 we use the
same convention but add in the strange quark so there is
an additional four parameters Ns, ↵s, �s, and Ns̄ which
leads to a 13-parameter fit. In order to initialize the 13
parameters in Fit 3, we use the corresponding values for
those parameters from Fit 2 and zeros for the rest. Fit
4 uses Eq. (27) for both quarks and antiquarks so that
the treatment of all three light-quark-flavors is the same.
In addition to the parameters from Fit 3, Fit 4 contains
six more parameters for the antiquarks. The result of Fit
4 leads to a larger Nq̄ value to compensate for the fact
that ↵s̄ and �s̄ are now present in the fit. However, the
motivation to perform Fit 4 in this way is to generalize
the Nq(x) in a flavor-independent fashion for quarks and
anti-quarks. Fit 4 is the final fit that we will use to gener-
ate pseudodata for testing purposes of the DNN fits and
for calculating model accuracy.

Parameter Fit 1 Fit 2 Fit 3 Fit 4
m1 0.8±0.9 3.87±0.31 7.0±0.6 7.0±4.0
Nu 0.18±0.04 0.475±0.03 0.89±0.05 0.89±0.06
↵u 1.0±0.6 2.41±0.16 2.78±0.17 2.75±0.11
�u 6.6±5.2 15.0±1.4 19.4±1.6 20.0±2.0
Nū -0.01±0.03 -0.032±0.017 -0.07±0.06 -0.12±0.06
↵ū - - - 0.4±0.5
�ū - - - 20.0±16.0
Nd -0.52±0.20 -1.25±0.19 -2.33±0.31 -2.4±0.4
↵d 1.9±1.5 1.5±0.4 2.5±0.4 2.7±0.6
�d 10±11 7.0±2.6 15.8±3.2 17.0±4.0
Nd̄ -0.06±0.06 -0.05±0.11 -0.29±-0.27 -0.7±0.5
↵d̄ - - - 1.5±0.6
�d̄ - - - 20±17
Ns - - -14.0±10.0 -20.0±40.0
↵s - - 4.9±3.3 4.7±3.0
�s - - 3.0±4.0 2.3±3.1
Ns̄ - - -0.1±0.2 20.0±5.0
↵s̄ - - - 9.5±1.4
�s̄ - - - 20.0±14.0

�
2
/Ndata 1.29 1.59 1.69 1.66

TABLE II. Collection of MINUIT fit results. Fit 1 is from
Anselmino et al [4], Fit 2: Re-fit as similar to [4], Fit 3: fit
results including strange-quarks, Fit 4: fit results with the
same treatment for all three light-quark-flavors.

C. DNN Method Testing

A systematic method of constructing, optimizing, and
testing the DNN fits is developed using pseudodata to
ensure a quality extraction from the experimental data.
Our approach uses a combination of Monte Carlo sam-
pling and synthetic data generation. The pseudodata
points are randomly generated by sampling within multi-
Gaussian distributions centered around each experimen-
tal data point, with variance given by the experimental
uncertainty. Many pseudodata DNN fits (instances) are
performed together to obtain the uncertainty of the re-
sulting DNN model (mean and distribution). The general
approach is to use existing experimental data to parame-
terize a fit function and then use it to generate new syn-
thetic data (replicas) with similar characteristics. The
pseudodata is generated with a known Sivers function
so that the extraction technique can be explicitly tested.
An error bar is assigned to each new data point which
is taken directly from the experimental uncertainties re-
ported for the complete set of kinematic bins. This ap-
proach aims to produce pseudodata that simulates the
experimental data as closely as possible with particular
sensitivity to phase space so that the test metrics are
also relevant for the real experimental extraction. To do
this the pseudodata generator must be very well-tuned to
the kinematic range of the experimental data. Hence, the
generating function contains as much feature space infor-
mation as possible. It’s important to emphasize here that
the metrics that we use to quantify the improvement in
the Second Iteration compared to the First Iteration
are sensitive to phase space. The accuracy (proximity of
the mean of the DNN fits to the true Sivers) is defined
as,

✏q(x, k?) =
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The generating-function used to produce the true value
of the Sivers is improved in the process of optimizing
the DNN hyperparameters. This approach allows the
generating-function and the DNN fit to improve with
each iteration. This allows more realistic data to be gen-
erated with each iteration which in turn allows better
hyperparameter optimization and testing for the exper-
imental data in the next iteration. Note that experi-
mental data still refers to pseudodata replicas that are
generated using the real experimental data rather than
the generating-function.

In the pseudodata test, the same number of replicas are
used in the First Iteration and in the Second Itera-
tion. The number of replicas should be kept the same if
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imental data in the next iteration. Note that experi-
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the generating-function.
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Ø  Dashed lines represent the 
generating function in each 
iteration.
 

Ø  Solid-lines and the band represent 
the mean and 68% CL with 1000 
replicas of the DNN model.



DNN Method: With Real data
Ø  We trained two separate models for “proton” and “neutron” (deuteron)
Ø  To take full advantage of the information provided by the model testing in the previous slide, 

  the steps from method testing with pseudo-data are performed again separately for proton and deuteron SIDIS data. 
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Ø Systematic study for both DNN models were performed separately using various generating functions.
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and also after k? integration, the Sivers asymmetry can be analytically written as,
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2.5 Sivers asymmetry from SIDIS

In SIDIS, one has to take the collinear distribution functions fq/p(x) and fragmentation functions Dh/q(z)
into the account with parameterisations that are taken from the available fits of the world data.

Data from HERMES [16] on the SIDIS Sivers asymmetries for ⇡± and K
± production o↵ a proton target;

the COMPASS Collaboration data on LiD [17] and NH3 targets [18].
Simplified version of the SIDIS di↵erental cross-section can be written as,
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The Sivers asymmetry measured in SIDIS can be expressed as,
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FIG. 4. A generic representation of the DNN architecture
for Nq(x), where q = {u, d, s, ū, d̄, s̄}, and a

(n)
m represent the

node m in the hidden layer n. The figure represents only up
to n = 3 for demonstration purposes.

sider the SU(3)flavor breaking in QCD, we have Nu(x),
Nū(x), Nd(x), Nd̄(x), Ns(x), and Ns̄(x) to handle the six
light-quark-flavors independently. Bjorken-x is the only
input as the initial layer of each Nq(x), and the final
layer is a single-node output. The m1 in A0(z, phT , m1)
as defined in Eq. (9) is treated as a free parameter with
the initialization obtained from our first chi-square mini-
mization fit (discussed in section IV B) and then allowed
to vary throughout the DNN training process with SIDIS
data as shown in Fig. 3. The DNN model results are then
used to infer the projections for both SIDIS kinematics
and DY kinematics (see Fig. 11).

A deep feedforward architecture is used with the hid-
den layers expanded with multiple numbers of nodes
which are initialized randomly with Gaussian sampling
of weights around zero with a standard deviation of 0.1.
The degree of potential Non-linearity is introduced into
the network by the choice of the activation function. The
selection of the activation function can have a substan-
tial impact on DNN performance and training dynam-
ics. We chose the Relu6 activation. This activation
is a variant of the Rectified Linear Unit (ReLU) func-
tion. The (ReLU6) activation function has been shown
to empirically perform better under low-precision condi-
tions by encouraging the model to learn sparse features
earlier which is beneficial for learning complex patterns
and relationships from the experimental data. We also
use Least Absolute Shrinkage and Selection Operator Re-

gression which is a regularization technique used to pre-
vent overfitting and improve the model’s performance
and generalization ability, while also encouraging spar-
sity and feature selection. We also use L1 regularization.
L1 regularization encourages sparsity in the activation by
adding a penalty term to the loss function that is pro-
portional to the absolute value of the weights [51]. By
adding this regularization term, the most important in-
puts are weighed the greatest so that noisy or redundant
information is discarded. The strength of the regulariza-

tion is controlled by the magnitude of the regularization
coe�cient, which is set to 10�12. Additionally, we use a
dynamically decreasing learning rate. The learning rate
is automatically reduced by 10% if the training loss has
not decreased within the last 200 epochs1 (i.e. patience =
200). The optimizer used was Adam while the loss func-
tion used was Mean Squared Error. During the hyperpa-
rameter optimization process there are slight deviations
in the number of layers, nodes per layer, the initial learn-
ing rate, batch size, and the number of epochs but the
basics of the scheme just described remains consistent for
all DNNs used.

Our strategy is to first perform an exercise using only
pseudodata to verify the extraction method that will ul-
timately be used on the real experimental data. First, we
devise a generating function for the SIDIS Sivers asym-
metry data using a conventional �2-minimization routine
(MINUIT in this case), without following the popular as-
sumption of “unbroken sea” [4] in order to generalize the
treatment of quarks and antiquarks. We perform a series
of conventional MINUIT fits step-wise to obtain the final
19 parameters for the case of broken SU(3)flavor symme-
try in QCD. Then, we produce pseudodata (or replicas)
for the SIDIS asymmetry by sampling from the mock
experimental errors using the generating function with
kinematics and binning in x, z and phT as in the exper-
imental data. Then a DNN model is constructed with
all hyperparameters tuned in order to achieve the high-
est possible accuracy and precision. Here our nomencla-
ture becomes quite specific and we refer to the result-
ing distribution of DNN fits as a DNN model. The first
model obtained with the method for a particular set of
data is referred to as the First Iteration. At this stage,
we use the distribution of fit results to obtain the mean
and the error band from the initial DNN model to re-
parameterize the generating function so that it produces
more realistic pseudodata. The DNN fits are performed
again improving the quality (both accuracy and preci-
sion) of the resulting fits to result in a Second Iteration
DNN model. One can repeat the number of iterations
until the resulting model is no longer improving within
the experimental uncertainties. In this way, the DNN
model approaches the best approximation of the Sivers
functions in comparison to the true values put into the
generating function.

After confirming that the method works well, the ex-
traction of Sivers function using the SIDIS experimental
data is performed. The data for a polarized proton-target
and deuteron-target are treated separately for two rea-
sons. First, fitting these together would introduce an-
other bias that would need to be managed directly. This
is the case even assuming isospin symmetry in the u and
d-quarks’ Sivers functions. Second, our approach leaves
open the possibility to explore the nuclear dependence of

1 An epoch is a complete cycle of the passing of training data
through the algorithm.

Generate pseudo-data
on fine-binned 3D
kinematics 
(with 68% CL of 1000 
replicas)

generating function



DNN Method: With Real data 
(Quality of the extraction)

The qualitative improvement of the extracted Sivers functions for u (blue), d (red), and s (green) quarks at x = 0.1 and Q2=2.4 GeV2 
using the optimized proton-DNN model at the Second Iteration (solid-lines with dark-colored error bands with 68% CL), compared to 
the First Iteration (dashed-lines with light-colored error bands with 68% CL) 25

Optimum # of epochs to avoid over-training
Like the over-fitting in analytical function fitting
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the Sivers functions. The construction of the DNN mod-
els for proton and deuteron is analogous. To perform the
fit another First Iteration, as previously described, is
performed by developing and tuning a DNN model using
the data from the real experiment rather than pseudo-
data from the generating function. In the proceeding it-
erations, we use the generating function in order to tune
the hyperparameters to achieve the highest possible qual-
ity of fit in comparison with the results from the First
Iteration. Once a tuned model is obtained, we perform
an extended study for evaluating the algorithmic uncer-
tainty2 as well as the systematic uncertainty of the DNN
extraction method.

In order to elaborate on the pedagogy of this method,
we organize the remainder of this section into the follow-
ing subsections; (IVA) Data selection, (IVB) MINUIT
fits for the case of SU(3)flavor, (IV C) DNN model train-
ing with pseudodata, (IV D) DNN model training with
real experimental data.

A. Data selection

No data points were left out of our dataset intention-
ally because they were suspect or classified as outliers.
No kinematic cuts to exclude data points were applied.
There is more world data available that could be included
in our fit. Still, we chose to limit our data based on the
similarity of process and experimental configuration to
preserve consistency in this trial global fit with DNNs.
In this regard, we focus our attention on the fixed tar-
get SIDIS and DY data. For the proton DNN fits, some
data points will be left out of the training process for
validation studies but they will be reincorporated after
the appropriate number of epochs is determined for the
optimal model performance. For the neutron DNN fits,
the polarized 3He data from Je↵erson Lab [52] is used to
test the new projections of the DNN model trained on
the deuteron COMPASS data only.

Table I summarizes the kinematic coverage, the num-
ber of data points, and reaction types of the datasets
that are considered in this work. In addition to the
SIDIS datasets that are used in the fits, the polarized
DY dataset from the COMPASS experiment is also listed
in Table I as we demonstrate the predictive capability of
the DNN model by comparing the projections with the
real data points. The DY projections are made using
the trained SIDIS DNN model assuming a sign change
expected from conditional universality. For the case
of training the DNN model related to proton-target we
use HERMES2009 [53], COMPASS2015 [54] and HER-
MES2020 [55] data points associated with 1D kinematic
binning, leaving the HEREMES2020[55] data associated

2 Algorithmic uncertainty is the degree of increase in the distri-
bution of the resulting fits that is not directly from propagated
experimental error.

with the 3D kinematic binning to compare with the pro-
jections from the trained model. The COMPASS2009
[49] dataset with a polarized-deuteron target is used for
the neutron Sivers extraction as a separate DNN model.

Dataset Kinematic Reaction Data
coverage points

HERMES2009 0.023 < x < 0.4 p
" + �

⇤ ! ⇡
+ 21

(SIDIS) 0.2 < z < 0.7 p
" + �

⇤ ! ⇡
� 21

[53] 0.1 < phT < 0.9 p
" + �

⇤ ! ⇡
0 21

Q
2
> 1 GeV2

p
" + �

⇤ ! K
+ 21

p
" + �

⇤ ! K
� 21

HERMES2020 0.023 < x < 0.6 p
" + �

⇤ ! ⇡
+ 27, 64

(SIDIS) 0.2 < z < 0.7 p
" + �

⇤ ! ⇡
� 27, 64

[55] 0.1 < phT < 0.9 p
" + �

⇤ ! ⇡
0 27

Q
2
> 1 GeV2

p
" + �

⇤ ! K
+ 27, 64

p
" + �

⇤ ! K
� 27, 64

COMPASS2015 0.006 < x < 0.28 p
" + �

⇤ ! ⇡
+ 26

(SIDIS) 0.2 < z < 0.8 p
" + �

⇤ ! ⇡
� 26

[54] 0.15 < phT < 1.5 p
" + �

⇤ ! K
+ 26

Q
2
> 1 GeV2

p
" + �

⇤ ! K
� 26

COMPASS2009 0.006 < x < 0.28 d
" + �

⇤ ! ⇡
+ 26

(SIDIS) 0.2 < z < 0.8 d
" + �

⇤ ! ⇡
� 26

[49] 0.15 < phT < 1.5 d
" + �

⇤ ! K
+ 26

Q
2
> 1 GeV2

d
" + �

⇤ ! K
� 26

JLAB2011 0.156 < x < 0.396 3
He

" + �
⇤ ! ⇡

+ 4
(SIDIS) [52] 0.50 < z < 0.58 3

He
" + �

⇤ ! ⇡
� 4

0.24 < phT < 0.43
1.3 < Q

2
< 2.7

COMPASS2017 0.1 < xN < 0.25 p
" + ⇡

� ! l
+
l
�
X 15

(DY) [50] 0.3 < x⇡ < 0.7
4.3 < QM < 8.5
0.6 < qT < 1.9

TABLE I. The SIDIS and DY datasets that are considered
in the fits. The DY data is used as a demonstration of the
predictive capability of the DNN model. The projections are
made using the trained SIDIS DNN model assuming the sign
change to make predictions on the real experimental DY data
points. For HERMES2020, data is available with 1D kine-
matic bins as well as with 3D kinematic bins. Those with 3D
bin numbers are represented in bold font.

For the initial �2-minimization fit with MINUIT the
same datasets are used as in [4] for consistency which
is HERMES2009 [53], COMPASS2009 [49], and COM-
PASS2015 [54]. This fit is described in the next subsec-
tion.

B. MINUIT fits for SU(3)flavor

The analysis begins with a �2-minimization fit with
MINUIT similar to the approach in [4] except we expand
the number of parameters to treat each of the light-quark
flavors separately. The results of the MINUIT fits are
shown in Table II. Fit 1 is from the original fit results
from Anselmino et al directly from [4]. Here the Nq(x)
for the u and d quark used is Eq. (27) but Nq̄(x) = Nq̄

26

Proton DNN
model

Deuteron DNN
model

HERMES2020 
3D binned data

Projections from 
Proton DNN model

Projections from 
Deuteron DNN model

3

anisotropy of quark momentum distributions for the up
and down quarks indicating that their motion in oppo-
site directions [1, 2]. This is manifestly due to quark or-
bital angular momentum (OAM). The most interesting
and relevant aspects of the OAM, such as magnitude and
partonic distribution shape as a function of the proton’s
state cannot be determined by the Sivers e↵ect alone.
However, systematic studies can be performed to investi-
gate the full 3D momentum distribution of the quarks in
a transversely polarized proton which can be used in con-
cert with other information to exploit multi-dimensional
partonic degrees of freedom using a variety of hard pro-
cesses. Here we focus specifically on SIDIS and DY but
it should be noted that there is significant potential in
broader model development that can come from combin-
ing all available data from multiple processes with ad-
ditional constraints using the simultaneous DNN fitting
approach presented here.

The Sivers function describes a di↵erence of probabili-
ties which implies it may not be positive definite. Making
a comparison between the Sivers function from the DY
process and the SIDIS process is still the focus of much
experimental and theoretical e↵ort. Under time reversal
the future-pointing Wilson lines are replaced by past-
pointing Wilson lines that are appropriate for factoriza-
tion in the DY process. This implies the Sivers function
is not uniquely defined and cannot exhibit process uni-
versality, as it depends on the contour of the Wilson line.
This feature of the Sivers function directly tied the QCD
interactions between the quarks (or gluons) active in the
process to the process dependence resulting in a condi-
tional universality such that [29],

�Nfq/p" (x, k?)
��
SIDIS

= � �Nfq/p" (x, k?)
��
DY

. (1)

This fundamental prediction remains to be tested. Direct
sign tests [4, 8, 30] can be performed but the experimental
proof would require an analysis over a broad phases space
of both SIDIS and DY with consideration to flavor and
kinematic sensitivity for both valance and sea quarks.
Our analysis will in part rely on this relationship rather
than making direct tests of the validity of the sign change.

A. SIDIS process

The Semi Inclusive Deep Inelastic Scattering (SIDIS)
process is scattering a lepton o↵ of a polarized nucleon,
and measuring the scattered lepton and a fragmented
hadron. In the nucleon-photon center of mass frame,
the nucleon three-momentum ~p is along the z-axis and
its spin-polarization ~ST is on the plane perpendicular
(transverse) to the ẑ-axis. In Fig. 1 the struct-quark,
virtual-photon (with four-momentum ~q), and the lep-
ton belong to a plane called “Lepton Plane” (represented
in yellow). The fragmented-hadron with momentum ~ph

and its projection onto the x̂ � ŷ (i.e. ~phT ) belong to
so-called “Hadron Plane” (represented in transparent-

green), therefore the transverse momentum ~k? of the
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ẑ

<latexit sha1_base64="2w/yVgh60ZWoJIlHfqHjkkJMPvM=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9kPaUDbbSbt0Nwm7m0IJ/RVePCji1Z/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSNsGG4EthOFVAYCW8Hobua3xqg0j6NHM0nQl3QQ8ZAzaqz01B0jy5Jpb9grV9yqOwdZJV5OKpCj3it/dfsxSyVGhgmqdcdzE+NnVBnOBE5L3VRjQtmIDrBjaUQlaj+bHzwlZ1bpkzBWtiJD5urviYxKrScysJ2SmqFe9mbif14nNeGNn/EoSQ1GbLEoTAUxMZl9T/pcITNiYgllittbCRtSRZmxGZVsCN7yy6ukeVH1rqqXD5eV2m0eRxFO4BTOwYNrqME91KEBDCQ8wyu8Ocp5cd6dj0VrwclnjuEPnM8fJqiQpg==</latexit>

~ph
<latexit sha1_base64="VUCXst6giLvIQPMPJCZ3N4mhKIU=">AAAB+HicbVBNS8NAEN3Ur1o/GvXoJVgETyWRoh6LXjxWsB/QhLDZTtqlm82yuynU0F/ixYMiXv0p3vw3btsctPXBwOO9GWbmRYJRpV332yptbG5t75R3K3v7B4dV++i4o9JMEmiTlKWyF2EFjHJoa6oZ9IQEnEQMutH4bu53JyAVTfmjngoIEjzkNKYEayOFdtWfAMnHszD3BUgxC+2aW3cXcNaJV5AaKtAK7S9/kJIsAa4Jw0r1PVfoIMdSU8JgVvEzBQKTMR5C31COE1BBvjh85pwbZeDEqTTFtbNQf0/kOFFqmkSmM8F6pFa9ufif1890fBPklItMAyfLRXHGHJ068xScAZVANJsagomk5laHjLDERJusKiYEb/XlddK5rHtX9cZDo9a8LeIoo1N0hi6Qh65RE92jFmojgjL0jF7Rm/VkvVjv1seytWQVMyfoD6zPH5EAk7E=</latexit>

~k?

<latexit sha1_base64="Pj6IhsdItD0rVPofiBJCT1av3PA=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWy2k3bpZhN2N4US+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx/dxvT1BpHssnM03Qj+hQ8pAzaqzU7k2QZcmsX664VXcBsk68nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclXqpxoSyMR1i11JJI9R+tjh3Ri6sMiBhrGxJQxbq74mMRlpPo8B2RtSM9Ko3F//zuqkJb/2MyyQ1KNlyUZgKYmIy/50MuEJmxNQSyhS3txI2oooyYxMq2RC81ZfXSeuq6l1Xa4+1Sv0uj6MIZ3AOl+DBDdThARrQBAZjeIZXeHMS58V5dz6WrQUnnzmFP3A+fwCoqY/L</latexit>

~p

FIG. 1. Kinematics of the SIDIS process in the nucleon-
photon center-of-mass frame.

struct-quark and ~phT are falling onto the transverse-plane
(represented in transparent-blue) perpendicular to both
lepton plane and hadron plane. The azimuthal angle �h

of the produced hadron h, and is the angle between the
lepton plane and the hadron plane [31]. The di↵erential
cross-section for the SIDIS process depends on both co-
linear parton distribution functions fq/p(x; Q2) and frag-
mentation functions Dh/q(z; Q2), where q is the quark
flavor, p represents the target proton, h is the hadron
type produced by the process and z is the momentum
fraction of the final state hadron with respect to the vir-
tual photon. A simplified version of the SIDIS di↵erential
cross-section can be written up to O(k?/Q) as [25, 32],

d5�lp!lhX

dxdQ2dzd2p?
=

X

q

e2
q

Z
d2k?

✓
2⇡↵2

x2s2

ŝ2 + û2

Q4

◆

⇥f̂q/p"(x, k?)Dh/q(z, p?) + O(k?/Q) , (2)

where ŝ, û are partonic Mandelstam invariants, and
f̂q/p"(x, k?) is the unpolarized quark distribution,

f̂q/p"(x, k?) = fq/p(x, k?) +
1

2
�Nfq/p"(x, k?)~ST · (p̂ ⇥ k̂?)

= fq/p(x, k?) �
k?
mp

f?q
1T (x, k?)~ST · (p̂ ⇥ k̂?)

(3)

with transverse momentum k? inside a transversely po-
larized (with spin ~ST ) proton with three-momentum
~p, where �Nfq/p"(x, k?) denotes Sivers functions that
carry the nucleon’s spin-polarization e↵ects on the quarks
which can be considered as a modulation to the unpolar-
ized quark PDFs [4],

�Nfq/p"(x, k?) = 2Nq(x)h(k?)fq/p(x, k?) (4)
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In the global fits to the date in the literature, a few distinct treatments have been followed regarding the 
preservation of the TMD Factorization Theorem.
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Figure 2. Distribution of the experimental data over the values of x and δ eq. (3.1).

as possible, still preserving applicability of TMD factorization, see figure 2. Summarizing
our data selection cuts, we apply the following selection criteria

〈Q〉 > 2 GeV and δ < 0.3. (3.2)

These restrictions are consistent with the applicability of the TMD factorization theorem
as discussed in ref. [65]. However, we hope that a part of power corrections cancels in the
ratio of structure functions measured experimentally (2.16), (2.22). The more stringent
conditions (say δ < 0.2) would secure the TMD approach, but they are hardly applicable
to the modern data, which is dominated by the low-energy measurements. Our data
selection cuts (3.2) are the most stringent among all other extractions of Sivers function,
compare to refs. [19–22, 25–30].

The Sivers asymmetry in SIDIS has been measured by HERMES [34, 35], COM-
PASS [36, 39]5 and JLab Hall A [41] collaborations. DY measurements of the transverse
spin-asymmetry were performed by the COMPASS Collaboration [40] in the pion-induced
DY process and by the STAR Collaboration [43] in W±/Z production. After application
of our data selection cuts (3.2) we have 76 data points in total (63 for SIDIS, and 13 for
DY). The distribution of the points in the (x, δ)-plane is shown in figure 2. The synopsis
of data is presented in table 1.

A large portion of the SIDIS data comes from a recent HERMES analysis [35] that uses
a three-dimensional kinematic binning and enlarged phase space. It is the three-dimensional
binning that allows a clean separation of the TMD factorization region. On the contrary,
the Compass and JLab measurements provide effectively “one-dimensional binning”, i.e.,
only one of the kinematic variables has narrow binning, while the rest are integrated over
a wide range. Only the PhT -differential measurements could be studied in such cases. The
z-differential and x-differential measurements have PhT integrated over the full kinematic
range and thus could not be fully described by the TMD factorization theorem. Even for the
PhT -differential binning, the TMD factorization is hard to apply due to the presence of z−1
in the data selection rules (3.2). Almost every bin of COMPASS and JLab measurements
borders with a region of the phase space where the TMD factorization is strongly violated

5We do not include COMPASS measurements [37, 38] because we are interested in multi-dimensional
binning of [39] and these two measurements overlap substantially in their experimental sample with [39].
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d, s quark flavors but is not sufficient to distinguish other sea quarks, such as ū, d̄, and s̄.
The Sivers function for heavy quark flavors b and c cannot be extracted with the current
data either. Thus, we will distinguish separate functions for u, d, s quarks, and a single
sea Sivers function for ū, d̄ and s̄ quarks. We nullify the Sivers function for b and c flavors.
We also set βs = βsea and εs = εsea = 0, since they are not restricted by the existing
experimental data. Large-x region of the data is also limited at the moment to x ! 0.5 and
we therefore are using a general (1 − x) factor in our parametrization. In total we have 12
free parameters: Nu, Nd, Ns and Nsea that dictates the general scale, βu, βd and βsea that
gives small-x asymptotic (βi > −1), εu and εd to fine-tune of valence distributions, and r0,
r1 and r2 for x-dependence in parameterization of transverse momentum behavior (ri > 0).

Let us emphasize that the absence of small-b matching in the optimal Sivers function
is not in contradiction with the perturbative order of TMD evolution (NNLO and N3LO
in the current case) or the perturbative order of matching to other distributions (NNLO
for unpolarized distributions). The utilization of different orders for components in TMD
factorization is consistent within the ζ-prescription, as well as, in other schemes with fixed
reference scale for TMD distributions, discussed e.g. in ref. [94], but is not consistent in
the resummation-like schemes e.g. used in refs. [27, 29, 31]. In the latter scheme, one
would need to use the matching function for Sivers function at N3LO, which is not yet
available [73]. For resummation-like schemes of scale-fixation, where the scales of TMD
distributions depend on b in an arbitrary manner, such an approach is inconsistent. In this
case, the orders of TMD evolution and matching coefficients must be adjusted to guarantee
the compensation of scaling logarithms.

3 Global analysis procedure

In this section we discuss basic principles of the global QCD analysis, data selection, fit
procedure, and the study of the limits of TMD factorization.

3.1 Data selection

The TMD factorization theorem is derived in the limit of large-Q and a small relative
transverse momentum δ, defined as

δ = |PhT |
zQ

(in SIDIS), δ = |qT |
Q

(in DY). (3.1)

The large-Q requirement is needed to suppress the power corrections ∼ M2/Q2 and ∼
Λ2/Q2, where Λ is a general nonperturbative scale of QCD. Since M and Λ are ∼ 1GeV,
we impose the restriction 〈Q〉 > 2GeV, which limits possible power corrections to around
10 − 20% for the lowest energy data points. The optimal values of δ for applicability of
TMD factorization were studied in ref. [65] (and were further confirmed by independent
studies in refs. [18, 67]), where it was shown that phenomenologically TMD factorization
is valid for δ < 0.2− 0.3, and is strongly violated for large values of δ. In the current study
we impose δ < 0.3, assuring that we accommodate data points from as many experiments
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M. Bury, A. 
Prokudin , 
A. Vladimirov,, 
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(2021)

Only 64 out of 388 data points survived

Only 126 out of 314 data points survived
J. Cammarota et al (JAM) PRD 102, 054002 (2020)

We now perform our simultaneous QCD global analysis
of the SSA data summarized in Table I. The standard cuts
of 0.2 < z < 0.6; Q2 > 1.63 GeV2, and 0.2 < PhT <
0.9 GeV have been applied to all SIDIS datasets [97],
and PhT > 1 GeV has been applied to all Aπ

N datasets
[83,84], giving us a total of 517 SSA data points in the fit

along with 807 HERMES multiplicity [116] data points.
The extracted functions [118] and their comparison to other
groups are shown in Fig. 2. We obtain a good agreement
between theory and experiment, as one sees in Figs. 3–5.
Specifically, we find ðχ2=Npts:ÞSSA ¼ 520=517 ¼ 1.01 for
SSA data alone, and χ2=Npts: ¼ 1373=1324 ¼ 1.04 for all
data, including HERMES multiplicities.
Figure 6 displays our extracted tensor charges of the

nucleon. The individual flavor charges δq≡ R
1
0 dx½h

q
1ðxÞ −

hq̄1ðxÞ% are shown along with the isovector combination
gT ≡ δu − δd. We compare our results to those from lattice
QCD computations at the physical point [121–123], other
phenomenological extractions [82,95,115,119,120,124,125],
and a calculation using Dyson-Schwinger equations [126].
From Fig. 6, the strong impact of including more SSA
datasets is clear, highlighting the importance of carrying
out a simultaneous extraction of partonic functions in
a global analysis. In going from SIDIS → ðSIDISþ SIAÞ →
GLOBAL (where GLOBAL in particular includes Aπ

N), we
find gT ¼ 1.4ð6Þ → 0.87ð25Þ → 0.87ð11Þ. This is the most
precise phenomenological determination of gT to date. All of
the inferred tensor charges (δu, δd, and gT) are in excellent
agreement with lattice QCD data. As can be seen from Fig. 6,
includingAπ

N is crucial to achieve the agreement between our
results δu ¼ 0.72ð19Þ; δd ¼ −0.15ð16Þ and those from lat-
tice QCD.

V. CONCLUSIONS

In this paper, we have performed the first simultaneous
QCD global analysis of the available SSA data in SIDIS,
DY, eþe− annihilation, and proton-proton collisions. The
predictive power exhibited by the results of the combined
analysis indicates SSAs have a common origin. Namely,
they are due to the intrinsic quantum-mechanical interfer-
ence from multiparton states. Our findings imply that the
effects are predominantly nonperturbative and intrinsic to
hadronic wave functions. Also, the extracted up and down
quark tensor charges are in excellent agreement with
lattice QCD.

FIG. 4. Theory compared to experiment for ACol=Siv
SIDIS .

FIG. 5. Theory compared to experiment for Aπ
N and ASiv

DY.

FIG. 6. The tensor charges δu, δd, and gT . Our (JAM20) results
at Q2 ¼ 4 GeV2 along with others from phenomenology (black),
lattice QCD (purple), and Dyson-Schwinger (cyan).
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fit scheme SIDIS Drell-Yan W/Z Ndata η in evolution
fit 1 √ √

× 226 NC

fit 2a √ √ √ 243 NC

fit 2b √ √ √ 243 0

Table 1. Description of each of the fits that we present. Fit 1 is presented in section 4.1, fit 2a is
presented in section 4.3, and fit 2b is presented in section 4.4.

Figure 7. The extracted transverse moment of the Sivers function from fit 1 at µ0 =
√
1.9GeV.

The black curve is the fit to the experimental data with no Gaussian noise.

was projected into two sets of data zh > 0.1 and zh > 0.2. To avoid fitting correlated data
sets, we choose to fit only the zh > 0.1 data set. We then compare our prediction for the
RHIC asymmetry against the RHIC data.

While typical kinematic cuts from unpolarized SIDIS fits for instance in [23] select
only data which has q⊥/Q < 0.25, we find that this selection process leaves very few data
points for the available Sivers data. In figure 6 we plot a histogram of the selected data
SIDIS data as a function of q⊥ and Q. We find that the cut q⊥/Q < 0.25 leaves only 12
SIDIS data points, while the cut q⊥/Q < 0.5 leaves 97 data points. In fact, we find that the
majority of the data has q⊥/Q > 0.5. In order to retain a large enough data set to perform
a meaningful fit we perform the cut q⊥/Q < 0.75. Furthermore to restrict the selected
data set to the TMD region, we also enforce that the SIDIS data must have Ph⊥ < 1GeV.
At the same time in order to avoid the threshold resummation region, we also enforce that
zh < 0.7.

In order to perform the fit, we use the MINUIT package [73, 74] to minimize the χ2. In
this section, we define the χ2 as

χ2 ({a}) =
N∑

i=1

(Ti ({a}) − Ei)
∆E2

i

, (4.1)

where Ei are the central values of the experimental measurements, ∆Ei are the total
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~ M. Echevarria, Z. Kang, J. Terry_JHEP_01_126_(2021)

ØTMD factorization loses accuracy at large qhT, with fractional errors characterized 
    as (qhT /Q)α. 
ØThe Collins and Soper (1982a) approach gives (m/Q) errors for the full range of qhT 

which treats the TMD term as a first approximation to the cross-section 
and allows for the application of a correction by applying an additive approximation 
(Y- Term) from the ordinary collinear factorization. 

ØSuch corrections can be implicitly captured when training a DNN model over the full range of phT.

~ TMD Handbook (pg153)
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Figure 1. Extracted Sivers distributions for u = uv + ū, d = dv + d̄, ū and d̄ at Q2 = 2.4 GeV2.
Left panel: the first moment of the Sivers functions, Eqs. (2.16) and (2.17) of the text, versus x.
Right panel: plots of the Sivers functions, Eq. (2.14) of the text, at x = 0.1 versus k?. The solid
lines correspond to the best fit. The dashed lines correspond to the positivity bound of the Sivers
functions. The shaded bands correspond to our estimate of 95% C.L. error.

It means that we assume the anti-quark Sivers functions to be proportional to the cor-
responding unpolarised PDFs; we have checked that a fit allowing for more complicated
structures of Eq. (2.14) for the anti-quarks, results in undefined values of the parameters ↵
and �.

The Sivers asymmetry measured in SIDIS can be expressed using our parameterisations
of TMD functions from Eqs. (2.12-2.15, 3.4) as

Asin(�h��S)
UT (x, y, z, PT ) =

[z2hk2?i+ hp2?i]hk
2
Si

2

[z2hk2Si+ hp2?i]
2hk2?i

exp

"
�

P 2
T z2(hk2Si � hk2?i)

(z2hk2Si+ hp2?i)(z
2hk2?i+ hp2?i)

#

⇥

p
2 e z PT

M1

P
q e

2
q Nq(x)fq(x)Dh/q(z)P
q e

2
q fq(x)Dh/q(z)

· (3.6)

Thus, we introduce a total of 9 free parameters for valence and sea-quark Sivers functions:
Nuv , Ndv , Nū, Nd̄, ↵u, �u, ↵d, �d, and M2

1 (GeV2). In order to estimate the errors on the
parameters and on the calculation of the asymmetries we follow the Monte Carlo sampling
method explained in Ref. [8]. That is, we generate samples of parameters ↵i, where each
↵i is an array of random values of {Nuv , Ndv , Nū, Nd̄,↵u,↵d,�u,�d,M2

1 }, in the vicinity of
the minimum found by MINUIT, ↵0, that defines the minimal total �2 value, �2

min. We

– 6 –
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Proton DNN Fit Results
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Calculated χtotal
2/Npt = 1.04 Ø  All data points are well-described by the proton-DNN model.

Ø  No kinematic cuts were implemented.



Deuteron DNN Fit Results
Ø No kinematic cuts are applied

Deuteron-DNN model can describe data reasonably well
Ø No iso-spin symmetry conditions are applied

30

Bacchetta et al (2022)

Bury et al (2021)

Echavarria et al (2021)

χ2/Npt = 0.76 



DNN Projections for JLab Kinematics

Echevarria
2014

Echevarria
2021

Deuteron-DNN

31

Bacchetta et al (2022)

Qian et al [JLab] (2011)

Echevarria et al (2014) Echevarria et al (2021)

Bury et al (2021)
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We can make unique projections for Helium3 and Deuteron for upcoming proposals at JLab! 



DNN Model Projections: DY COMPASS 2017 DY Projections

The dilution factor f and the depolarization factor D2

entering the definition of TSAs are calculated on an event-
by-event basis and are used to weight the asymmetries. For
the magnitude of the target polarization PT , an average
value is used for each data-taking period in order to avoid
possible systematic bias. In the evaluation of the depolari-
zation factors, the approximation λ ¼ 1 is used. Known
deviations from this assumption with λ ranging between 0.5
and 1 [35,36] decrease the normalization factor by at
most 5%.
The TSAs resulting from different periods are checked

for possible systematic effects. The largest systematic
uncertainty is due to possible residual variations of exper-
imental conditions within a given period. They are quanti-
fied by evaluating various types of false asymmetries in a
similar way as described in Refs. [12,30]. The systematic
point-to-point uncertainties are found to be about 0.7 times
the statistical uncertainties. The normalization uncertainties
originating from the uncertainties on target polarization
(5%) and dilution factor (8%) are not included in the quoted
systematic uncertainties.
The TSAs AsinφS

T , Asinð2φCS−φSÞ
T , and Asinð2φCSþφSÞ

T are
shown in Fig. 5 as a function of the variables xN , xπ ,
xF, and qT . Because of relatively large statistical uncer-
tainties, no clear trend is observed for any of the TSAs. The
full set of numerical values for all TSAs, including
correlation coefficients and mean kinematic values from
this measurement, is available on HepData [37]. The last
column in Fig. 5 shows the results for the three extracted
TSAs integrated over the entire kinematic range. The
average Sivers asymmetry AsinφS

T ¼ 0.060% 0.057ðstatÞ %
0.040ðsysÞ is found to be above 0 at about one standard
deviation of the total uncertainty. In Fig. 6, it is compared
with recent theoretical predictions from Refs. [19–21] that
are based on standard DGLAP and two different TMD
evolution approaches. (Note that the kinematic constraints
used in Refs. [19–21] differ from one another and also from
those used in our analysis.) The positive sign of these
theoretical predictions for the DY Sivers asymmetry was
obtained by using the sign-change hypothesis for the Sivers
TMD PDFs, and the numerical values are based on a fit of
SIDIS data for the Sivers TSA [9,11,12]. Figure 6 shows
that this first measurement of the DY Sivers asymmetry is

consistent with the predicted change of sign for the Sivers
function.
The average value for the TSAAsinð2φCS−φSÞ

T is measured to
be below 0 with a significance of about two standard
deviations. The obtained magnitude of the asymmetry is
in agreement with the model calculations of Ref. [38] and
can be used to study the universality of the nucleon trans-
versity function. The TSA Asinð2φCSþφSÞ

T , which is related to
the nucleon pretzelosity TMD PDFs, is measured to be
above 0 with a significance of about one standard deviation.
Since both Asinð2φCS−φSÞ

T and Asinð2φCSþφSÞ
T are related to the

pion Boer-Mulders PDFs, the obtained results may be used
to study this function further and to possibly determine its
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FIG. 4. The xF distribution (left) and qT distribution (right) of
the selected high mass dimuons.
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error bars represent statistical (total experimental) uncertainties.
The normalization uncertainties due to target polarization (5%)
and dilution factor (8%) are not included in the error bars.
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out) the sign-change hypothesis. Uncertainties are as described
in Fig. 5.
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DNN Model Projections: DY @ SpinQuest
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Ø  SpinQuest (E1039) experiment at 
Fermilab is aiming to extract the Sivers 
function for the light-sea quarks.

Ø  Unpolarized 120 GeV proton beam 
with polarized proton and deuteron 
targets (separately).

Ø  Proton-DNN model predictions (Red)
 Deuteron-DNN model predictions 
(Orange)

DNN Models



3D Tomography from the “Proton” DNN Model

17

FIG. 12. The proton-DNNmodel’s predictions (red) including
68% CL error-bands, for Sivers asymmetries in x1, x2, xF , qT ,
and QM kinematic projections for COMPASS DY kinematics
[50] in contrast with the measured data (blue).

part of a global e↵ort to understand the nucleon’s miss-
ing spin. A non-zero sea-quark Sivers asymmetry is in-
ferring that the sea quarks have non-zero orbital angular
momentum. The proton-DNN model predictions exhibit
consistency with the non-zero Sivers asymmetry from the
sea-quarks, with higher precision compared to the exist-
ing predictions [4, 6, 45], for the SpinQuest kinematics.
Additionally, in this work, we are reporting our projec-
tions for the polarized Drell-Yan Sivers asymmetries for
a deuteron target at the SpinQuest experiment, as shown
in Figure 13 by the orange-colored bands. Those central
lines are negative in all kinematic projections x1, x2, xF ,
and qT , nevertheless are consistent with zero which cor-
relates to the extracted Sivers functions shown in Fig. 8,
and Fig. 9. The proton-DNN model predicts a positive
slope with respect to qT for proton-target and a rela-
tively small negative slope for deuteron-target as shown
in the lower-right plot of the Fig. 13. To date, with the
exception of this work, no predictions have been made
for the polarized DY Sivers asymmetry using a deuteron

target, which will be measured during the SpinQuest ex-
periment. A noteworthy aspect of the forthcoming Spin-
Quest experiment is that, in addition to measuring the

Sivers asymmetry from proton and deuteron targets, it
will also ascertain the transversity distributions of both
quarks and gluons utilizing a tensor-polarized deuteron
Spin 1 target, as proposed in [62].

FIG. 13. The proton-DNN model (red) and the deuteron-
DNN model (orange) predictions including 68% CL error-
bands, for Sivers asymmetries in x1, x2, xF , and qT kinematic
projections for the SpinQuest DY kinematics [60, 61].

E. The 3D Tomography of Proton

The TMD density of unpolarized quarks inside a pro-
ton polarized in the ŷ-direction can be graphically repre-
sented using the relation [9, 47],

⇢a
p"(x, kx, ky; Q2) = fa

1 (x, k2
?; Q2) �

kx

mp
f?a
1T (x, k2

?; Q2),

(33)

where k? is a two-dimensional vector (kx, ky), and
the unpolarized TMD and the Sivers function for
quark-flavor a are represented as fa

1 (x, k2
?; Q2), and

f?a
1T (x, k2

?; Q2) respectively. The corresponding quark-
density distributions from our proton-DNN model for all
the light quark flavors in SU(3)flavor at x = 0.1 and
Q2 = 2.4 GeV2 are shown in Fig. 14. The observed
shift on each quark flavor is linked to the correlation be-
tween the OAM of quarks and the spin of the proton.
The results shown in Fig. 14 provide some evidence of
non-zero OAM in the wave function of the proton’s va-
lence quarks as well as for the sea quarks. The proton-
DNN model calculations for the u and d are similar to
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Summing over the polarizations of the produced leptons, the expression for the Drell-Yan cross-section using a
transversely polarized nucleon target contains five transverse spin-dependent asymmetries. This part of the di↵erential
cross-section can be expressed as [45],

d�

dq4d⌦
/ �̂U

n
1 + ST

h
D1A

sin's

T
sin's +D2

⇣
A

sin(2'cs�'s)
T

sin (2'cs � 's) +A
sin(2'cs+'cs)
T

sin (2'cs + 's)
⌘io

, (4)

where q is the four-momentum of the virtual photon, �̂U = (F 1
U
+ F

2
U
)(1 + �cos2✓cs), F 1

U
, F 2

U
are the polarization

and azimuth-independent structure functions, and polar asymmetry � is given as � = (F 1
U
� F

2
U
)/(F 1

U
+ F

2
U
). D1 =

(1+cos2✓cs)/(1+�cos2✓cs) and D2 = sin2✓cs/(1+�cos2✓cs). The angles 'cs, ✓cs, and ⌦, the solid angle of the lepton,
are defined in the Collins-Soper frame [37]. Naturally, ST is the transverse part of the nucleon spin, and the azimuthal
angle 'S is the transverse spin orientation ST of the target (determined in the target rest frame).

With the deuteron, one can measure observables from the spin-1/2 neutron-proton pair; with our kinematics, these
are specific to the sea-quarks. It is also possible to measure observables specific to the spin-1 target as a whole. To
extract the transverse spin TMDs in the deuteron, one has to measure the p+d

" transverse spin asymmetry with the
target either in the vector or tensor polarization state. The polarization of the solid-state target can be manipulated
with RF-techniques. The RF spin manipulation to orient the target ensemble specific to a particular observable can
be achieved in-between beam spills, optimizing the figure of merit for the beam-target interaction time. The time
between beam spills required by the FNAL main injector (55.6 sec) is an advantage, in this case, allowing time to
selectively optimize the target to isolate specific sea-quark and gluon observables of interest using novel RF polarized
target technology. The time between beam spills also allows target spin flips per spill, reducing the time-dependant
drifts in the target asymmetry measurements.

In Drell-Yan lepton-pair production with transversely polarized nucleons in the initial state, the TSA A
sin's

T
is

related to the Sivers TMD by a convolution, and the QCD predicted sign-change can be measured in the Drell-Yan
process when compared at the same kinematics to the semi-inclusive deep inelastic scattering process (SIDIS). The

other two asymmetries, Asin(2'cs�'s)
T

and A
sin(2'cs+'s)
T

, are related to convolutions of the beam Boer-Mulders (h?
1 )

and the target transversity (h1) or pretzelosity (h?
1T ) such that,

Boer-Mulders⌦ Boer-Mulders : A
cos 2'cs

T
/ h

?q

1 ⌦ h
?q

1 (5)

Unpolarized⌦ Sivers : A
sin's

T
/ f

q

1 ⌦ f
?q

1T (6)

Boer-Mulders⌦ Transversity : A
sin(2'cs�'s)
T

/ h
?q

1 ⌦ h
q

1 (7)

Boer-Mulders⌦ Pretzelosity : A
sin(2'cs+'s)
T

/ h
?q

1 ⌦ h
?q

1T . (8)

Combined with the kinematic information and the target polarization, we can access the TMDs given the experimental
asymmetries. Specifically, for a vector polarized deuteron target at SpinQuest, we can get access to the sea-quark
transversity by focusing on the single spin asymmetry [46],

A
sin('cs+'s)

qT

MN

UT

����
pD"!l+l�X

' �

h
4h?(1)

1u (xp) + h
?(1)
1d (xp)

i ⇥
h̄1u (xD") + h̄1d (xD")

⇤

[4f1u (xp) + f1d (xp)]
⇥
f̄1u (xD") + f̄1d (xD")

⇤ . (9)

Here, the Boer-Mulders function (h?q

1 ) portion can also be measured in the cos(2'cs) term of the unpolarized Drell-
Yan measurement [47]. Using the strictly vector polarized deuteron target provides a clean probe to the d̄-quark
transversity h̄1d. This is a primary motivation of this proposal and physically represents the d̄-quark polarization in
the transversely polarized deuteron. To optimize such an experiment, the target should be only vector polarized in
the transverse vertical direction, unlike the standard Boltzmann equilibrium spin configured deuteron target required
for SpinQuest E1039, which contains a mix of vector and tensor polarized deuterons. It is necessary to mitigate
contamination from the tensor polarized observables to isolate quark polarization contribution to the TSA. Such a
target requires special treatment and is discussed later in Section IVC5.
Unlike the Sivers function [35], the quark transversity and pretzelosity are predicted to exhibit true, or genuine,

universality and do not have a sign-change between SIDIS and Drell-Yan exhibited by conditional universality. These
universality relations provide a set of fundamental QCD predictions that must be checked experimentally. These are
summarized as,

h
q

1|SIDIS
= h

q

1|DY
(10)

h
?q

1T

���
SIDIS

= h
?q

1T

���
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(11)

h
?q

1

���
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= � h
?q

1

���
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f
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1T

���
SIDIS

= � f
?q

1T

���
DY

. (13)
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as the pretzelosity h
?
1T [58], but considerably less exists for the sea. Beyond this, there is essentially no experimental

information on any of the other functions. In Fig. 4, the list is shown of leading twist quark TMDs for the spin-1
target, which contain 3 additional T -even and 7 additional T -odd TMDs compared to spin-1/2 nucleons. The rows
indicate target polarization, and the columns indicate quark polarization. The bold-face functions survive integration
over transverse momenta.

FIG. 4. The list of leading twist quark TMDs for the spin-1 target, which contain 3 additional T -even and 7 additional T -odd
TMDs (all T -odd are shown in red) compared to spin-1/2 nucleons. The blue indicates collinear PDFs. Here, the rows indicate
target polarization, and the columns indicate quark polarization. The bold-face functions survive integration over transverse
momenta.

To zero in on some observables of interest, we can integrate over transverse momenta and force many functions to
vanish. The collinear correlator can then be parametrized as,

�(x;P, S, T ) =
1

2


6 Pf1(x) + SL�5Pg1(x) +

[ 6 BT , 6 P ] �5
2

h1(x)

+SLLPf1LL(x) +
[ 6 BLT , P ]

2
ih1LT

�
x, k

2
T

��
.

(23)

So, even for the spin-1 target (deuteron), the quark PDFs for the spin-1/2 constituents are easiest to access. They,
of course, represent the distribution of quarks in the longitudinal momentum space of unpolarized f1, longitudinally
polarized g1, and transversely polarized h1 quarks in the proton and neutron. For the polarized cases, the neutron
dominates in its contribution to the observables, as it caries more than 90% of the deuteron polarization.
Then, there are the extra collinear functions from the tensor polarization contributions f1LL and h1LT . For quarks,

there is a measurement of f1LL [59] indirectly as the b1 structure function in DIS. This observable deserves its own
Drell-Yan experimental e↵ort (mentioned later). Information on sea-quark f1LL specifically is needed [60, 61]. This is
also an attractive function because it contains non-nucleonic degrees of freedom that are detectable in nuclei. There
is also the tensor polarized observable h1LT , which is T -odd and simultaneously survives integration over transverse
momenta. At first order, the function h1LT vanishes due to the gauge link structure and the behavior under naive
time reversal transformations. In any case, these tensor polarized observables are mitigated when the spin-1 target
has zero tensor polarization but some finite vector polarization.
Naturally, valence quarks have been the focus for the last few decades. There has also been considerable theoret-

ical e↵ort in the last several years to understand the gluonic content of hadrons. Gluon observables can be easily
overwhelmed by the valence quarks depending on the target and the kinematics available at the facility. However,
the structure and dynamics produced by the gluons and the quark sea are turning out to be critical to answer many
pressing questions, and they must be studied in detail.
There is a clear need for sea-quark specific experiments; however, the information on gluon distributions is far more

scarce and essentially restricted to the collinear gluon PDFs for spin-1/2 targets. Gluon TMDs are mostly unknown
because it is generally very challenging to access the relevant kinematic regions for a spin-1/2 target. What little
information that is available on gluons comes from the LHC at CERN.
Little GPD or TMD information is available on spin-1 targets, and absolutely no experimental information is

available on the tensor polarization contributions in TMDs. However, the interest in the gluon content of nuclei is
growing, even if restricted to the collinear quantities. The collinear structure function for gluons in spin-1 targets was

Ø  For Spin 1, There are 3 T-even 
and 7 T-odd additional TMDs 
appear for quarks.

Ø  Similarly for the gluon TMDs,
with polarized nuclear targets.

The use of the Transverse Momentum Distribution functions (TMDs) of polarizable nuclei 
offers the necessary connective bridge, allowing us to explore how these geometric 
properties emerge from quark and gluon dynamics.

At leading twist
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The resulting list of leading twist TMDs for gluons is shown in Fig. 5. The Gluon TMD functions are divided in terms
of target polarization and gluon polarization, as shown in the figure. The bold-face functions survive integration over
transverse momenta.
The parametrization of this correlator in terms of collinear PDFs is given by,

�ij(x) =
x

2

h
�g

ij

T
f1(x) + i✏

ij

T
SLg1(x)� g

ij

T
SLLf1LL(x) + S

ij

TT
h1TT (x)

i
. (27)

The surviving collinear PDF for vector polarization is gg1 or gg1L, while the tensor polarized observables are f
g

1LL
, and

the transversity term h
g

1TT
. The function f

g

1LL
is expected to be very small [60, 61] for a transversely polarized target,

but this, too, is an interesting observable and deserves its own experimental e↵ort in the future.
The phenomenological studies of gluons generally focus on characterizing the appropriate angular dependencies to

access gluon distributions. The extraction of these functions should rely on all-order TMD factorization, even though,
for processes initiated by gluons, factorization breaking e↵ects are often present [65–69]. Here, complexity can arise
in factorization, breaking from color entanglement and color-singlet configurations. It is worth pointing out that the

FIG. 5. The list of leading twist TMDs gluons. The rows indicate the target polarization, while the columns indicate the gluon
polarization. The bold-face functions survive integration over transverse momenta, and the red indicates T -odd. For gluons, all
the new h TMDs from the tensor polarized target are T -even, unlike the quark case.

extraction of the gluon TMDs from di↵erent high energy processes requires taking into account the appropriate gauge
link structures. In situations where a higher number of hadrons are involved, the gauge links can be combinations of
future and past pointing Wilson lines, with the possibility of additional loops [70].
The gluon Sivers function (fg

1T
?) can be studied at RHIC and COMPASS and now Fermilab. The Sivers function

can be accessed through the measurement of the Sivers asymmetry in pp
" ! ⇡X and in J/ production [71–73]. As

far as the universality of the gluon Sivers function is concerned, we should expect a sign-change analogous to the quark
case.
As mentioned, the longitudinal tensor polarized TMD f

g

LL
can also be measured at Fermilab [74]. This would require

a di↵erent target magnet, which the University of Virginia presently owns. This would require the disassembly and
reassembly of the target, so it is better to measure everything possible within the transverse case first. In both the
longitudinal and transverse case, these gluon TMDs are related to a transfer of two units of helicity to the nuclear
target, and vanish for any target with spin less than 1. For the transverse case, this becomes strictly a probe of linearly
polarized gluons in targets using transverse tensor polarization to access the gluon transversity h

g

1TT
.

The observable h
g

1TT
provides unique information about gluon distributions and sheds light on the spin correlations

between the gluon polarization content and the role it plays in the deuteron structure and wave-function. This, in
essence, yields a novel path for studying gluon based Spin Physics that can be accessible at higher-x and lower Q

2

kinematics and is sensitive to momentum and polarization degrees of freedom that arise in nucleons bound inside
nuclei.
We also point out that, unlike the Sivers function, these gluon T -even observables can provide an unusually clean test

of universality, as the contribution from quarks and sea-quarks in SIDIS is also disentangled from the gluon distributions
when using a purely tensor polarized spin-1 target. This is promising in providing additional fundamental tests of
TMD theory and their role in QCD. Specifically, for gluon transversity a genuine universality relation holds,

h
g

1TT
|
SIDIS

= h
g

1TT
|
DY

.

All these new tensor polarized TMDs for spin-1 that are T -even will have analogous relations for the interpretation to
be consistent. The same corresponding quark distributions are T -odd [75]. This is an important distinction and will
help to impose constraints with data from multiple future experiments.
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1T [58], but considerably less exists for the sea. Beyond this, there is essentially no experimental

information on any of the other functions. In Fig. 4, the list is shown of leading twist quark TMDs for the spin-1
target, which contain 3 additional T -even and 7 additional T -odd TMDs compared to spin-1/2 nucleons. The rows
indicate target polarization, and the columns indicate quark polarization. The bold-face functions survive integration
over transverse momenta.

FIG. 4. The list of leading twist quark TMDs for the spin-1 target, which contain 3 additional T -even and 7 additional T -odd
TMDs (all T -odd are shown in red) compared to spin-1/2 nucleons. The blue indicates collinear PDFs. Here, the rows indicate
target polarization, and the columns indicate quark polarization. The bold-face functions survive integration over transverse
momenta.

To zero in on some observables of interest, we can integrate over transverse momenta and force many functions to
vanish. The collinear correlator can then be parametrized as,

�(x;P, S, T ) =
1

2


6 Pf1(x) + SL�5Pg1(x) +

[ 6 BT , 6 P ] �5
2

h1(x)

+SLLPf1LL(x) +
[ 6 BLT , P ]

2
ih1LT

�
x, k

2
T

��
.

(23)

So, even for the spin-1 target (deuteron), the quark PDFs for the spin-1/2 constituents are easiest to access. They,
of course, represent the distribution of quarks in the longitudinal momentum space of unpolarized f1, longitudinally
polarized g1, and transversely polarized h1 quarks in the proton and neutron. For the polarized cases, the neutron
dominates in its contribution to the observables, as it caries more than 90% of the deuteron polarization.
Then, there are the extra collinear functions from the tensor polarization contributions f1LL and h1LT . For quarks,

there is a measurement of f1LL [59] indirectly as the b1 structure function in DIS. This observable deserves its own
Drell-Yan experimental e↵ort (mentioned later). Information on sea-quark f1LL specifically is needed [60, 61]. This is
also an attractive function because it contains non-nucleonic degrees of freedom that are detectable in nuclei. There
is also the tensor polarized observable h1LT , which is T -odd and simultaneously survives integration over transverse
momenta. At first order, the function h1LT vanishes due to the gauge link structure and the behavior under naive
time reversal transformations. In any case, these tensor polarized observables are mitigated when the spin-1 target
has zero tensor polarization but some finite vector polarization.
Naturally, valence quarks have been the focus for the last few decades. There has also been considerable theoret-

ical e↵ort in the last several years to understand the gluonic content of hadrons. Gluon observables can be easily
overwhelmed by the valence quarks depending on the target and the kinematics available at the facility. However,
the structure and dynamics produced by the gluons and the quark sea are turning out to be critical to answer many
pressing questions, and they must be studied in detail.
There is a clear need for sea-quark specific experiments; however, the information on gluon distributions is far more

scarce and essentially restricted to the collinear gluon PDFs for spin-1/2 targets. Gluon TMDs are mostly unknown
because it is generally very challenging to access the relevant kinematic regions for a spin-1/2 target. What little
information that is available on gluons comes from the LHC at CERN.
Little GPD or TMD information is available on spin-1 targets, and absolutely no experimental information is

available on the tensor polarization contributions in TMDs. However, the interest in the gluon content of nuclei is
growing, even if restricted to the collinear quantities. The collinear structure function for gluons in spin-1 targets was
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The decomposition of the correlators in terms of relevant structures allowed by symmetry and scaling by the non-
perturbative TMD functions is now a common and advantageous practice. This enables a singling out of the relevant
quantities that contribute to the cross-section of a selected process. The complete parametrization of the TMD
correlator for quarks, including the T -odd structure, is given in [53] for spin-1/2 hadrons, and complemented in [54, 62]
with the addition of spin-1 hadrons with the tensor polarization parts for quarks. For gluons, the first parametrization
was performed in [55], followed by [56], with extended parameterization in [57]. The work on gluons indicate that
some distributions are accessible in polarized nuclei. Exploring nuclei in pursuit of gluonic content of hadrons of spin
greater than 1/2 is highly attractive, especially because they are expected to be accessible at high-x. Looking at novel
gluon distributions, not related to the ones from the nucleons, is very interesting in the study of exotic e↵ects in the
binding of nuclei, as well as their dynamic contribution to spin and mass.
To consider the application to the full spin-1 target including the tensor polarization components, we have to

start with the deuteron polarization density matrix. In being consistent with the popular work on the subject, the
subscript U is used to denote unpolarized hadrons, the subscripts L and T are used to denote respectively longitudinal
and transverse vector polarization, and the subscripts LL, LT , and TT are used to denote longitudinal-longitudinal,
longitudinal-transverse, and transverse-transverse tensor polarization. The tensor polarizations have double index,
indicating a specific orientation of the tensor polarized state (MJ = 0) of the spin-1 target. It is also necessary to
use superscripts to indicate which axis is the axis of quantization. For example, SLL is the longitudinal component of
the spin tensor, and it is oriented longitudinally along the z-axis, or the beam-line. However, the S

x

TL
term indicates

a tensor polarization pointed ⇡/4 with respect to the beam line in the xz-plane, where the x-axis is pointing directly
vertical transverse to the beam-line, and the y-axis is pointing sideways transverse to the beam-line.
The density matrix has the form:

⇢(S, T ) =
1

3

✓
I +

3

2
S
i⌃i + 3T ij⌃ij

◆
, (18)

where the components S
i of the vector S represent the vector part of the spin. The tensor part of the spin state is

represented by the T
ij by demanding PµT

µ⌫ . With this notation in mind, the density matrix is parameterized in
terms of a spacelike spin vector S and a symmetric traceless spin tensor T [57]:

S
µ = SL

P
µ

M
+ S

µ

T
�MSLn

µ (19)

and,
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The density matrix would take the form,
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. (21)

To explore both transversity of quarks and gluons with the same spin-1 target, we must take a closer look at the
leading-twist correlators for both. For parametrization of the quarks, the leading-twist TMD correlator is,

� (x,kT ) ⌘ �[U ] (x,kT ;n, P, S, T )

⌘
Z

d(⇠ · P )d2kT

(2⇡)3
e
ik·⇠hP, S, T | ̄(0)U(0, ⇠) (⇠)|P, S, T i

����
⇠+=0

.
(22)

Using the indicated notation, the quark correlator is organized in terms of target polarization such that,

� = �U + �L + �T + �LL + �LT + �TT ,

and the decomposition is expressed as:
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first defined by Ja↵e and Manohar [34] and referred to as nuclear gluonometry. This observable is related to a transfer
of two units of helicity to the polarized target and vanishes for any target of spin smaller than 1. A finite value of this
observable requires the existence of a tower of gluon operators contributing to the scattering amplitude, where such
a double-helicity flip cannot be linked to single nucleons. This observable is exclusive to hadrons and nuclei of spin
� 1, and measures a gluon distribution, providing a clear signature for exotic gluonic components in the target. In
the parton model language, this observable comes from the linearly polarized gluons in targets with transverse tensor
polarization and is related to the TMD h1TT . This interesting function is the focal point of our motivation and is
one of the least investigated aspects in the gluonic structure linked to the target polarization where non-nucleonic
dynamics becomes accessible. TMD h

g

1TT
is expected to yield new insights into the internal dynamics of hadrons and

nuclei.
Going beyond the collinear case, one can define new TMDs, see Fig 5. These TMDs appear in the parametrization of

a TMD correlator, which is a bilocal matrix element containing nonlocal field strength operators and Wilson lines. The
Wilson lines, or gauge links, guarantee color gauge invariance by connecting the nonlocality and give rise to a process
dependence of the TMDs. The description of spin-1 TMDs is presented by Bacchetta and Mulders [62] for quarks
and Boeret al. [57] for gluons. Additionally, a study of the properties of and the relations between the gluon TMDs
for spin-1 hadrons has recently been published [64]. Positivity bounds were derived that provide model-independent
inequalities that help in relating and estimating the magnitude of the gluon TMDs.
In [57], the gluon-gluon TMD correlator was parametrized in terms of TMDs for unpolarized, vector, and tensor

polarized targets. We use a decomposition for the gluon momentum k in terms of the hadron momentum P and the
lightlike four-vector n, such that,

k
µ = xP

µ + k
µ

T
+
�
k · P � xM

2
�
n
µ
,

satisfying P · n = 1 and P
2 = M

2, where M is the mass of the hadron. The gluon-gluon TMD correlator for spin-1
hadrons is defined as:
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(24)

where the process-dependent Wilson lines U[0,⇠] and U
0
[0,⇠] are required for color gauge invariance. The leading-twist

terms are identified as the ones containing the contraction of the field strength tensor with n and one transverse index
(i, j = 1, 2), explicitly indicating the dependence of the vector and tensor part of the spin. The correlator is then
expressed as,

�ij (x,kT ) ⌘
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d(⇠ · P )d2kT
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⇠+=0 (25)

where there is a trace over color, and the dependence on the gauge links is omitted. After the separation in terms of
the possible hadronic polarization states, the correlator can be expressed using the indicated notation as the following,
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The parametrization in terms of TMDs with specific polarizations and orientations can then be expressed as,
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as the pretzelosity h
?
1T [58], but considerably less exists for the sea. Beyond this, there is essentially no experimental

information on any of the other functions. In Fig. 4, the list is shown of leading twist quark TMDs for the spin-1
target, which contain 3 additional T -even and 7 additional T -odd TMDs compared to spin-1/2 nucleons. The rows
indicate target polarization, and the columns indicate quark polarization. The bold-face functions survive integration
over transverse momenta.

FIG. 4. The list of leading twist quark TMDs for the spin-1 target, which contain 3 additional T -even and 7 additional T -odd
TMDs (all T -odd are shown in red) compared to spin-1/2 nucleons. The blue indicates collinear PDFs. Here, the rows indicate
target polarization, and the columns indicate quark polarization. The bold-face functions survive integration over transverse
momenta.

To zero in on some observables of interest, we can integrate over transverse momenta and force many functions to
vanish. The collinear correlator can then be parametrized as,

�(x;P, S, T ) =
1

2


6 Pf1(x) + SL�5Pg1(x) +

[ 6 BT , 6 P ] �5
2

h1(x)

+SLLPf1LL(x) +
[ 6 BLT , P ]

2
ih1LT

�
x, k

2
T

��
.

(23)

So, even for the spin-1 target (deuteron), the quark PDFs for the spin-1/2 constituents are easiest to access. They,
of course, represent the distribution of quarks in the longitudinal momentum space of unpolarized f1, longitudinally
polarized g1, and transversely polarized h1 quarks in the proton and neutron. For the polarized cases, the neutron
dominates in its contribution to the observables, as it caries more than 90% of the deuteron polarization.
Then, there are the extra collinear functions from the tensor polarization contributions f1LL and h1LT . For quarks,

there is a measurement of f1LL [59] indirectly as the b1 structure function in DIS. This observable deserves its own
Drell-Yan experimental e↵ort (mentioned later). Information on sea-quark f1LL specifically is needed [60, 61]. This is
also an attractive function because it contains non-nucleonic degrees of freedom that are detectable in nuclei. There
is also the tensor polarized observable h1LT , which is T -odd and simultaneously survives integration over transverse
momenta. At first order, the function h1LT vanishes due to the gauge link structure and the behavior under naive
time reversal transformations. In any case, these tensor polarized observables are mitigated when the spin-1 target
has zero tensor polarization but some finite vector polarization.
Naturally, valence quarks have been the focus for the last few decades. There has also been considerable theoret-

ical e↵ort in the last several years to understand the gluonic content of hadrons. Gluon observables can be easily
overwhelmed by the valence quarks depending on the target and the kinematics available at the facility. However,
the structure and dynamics produced by the gluons and the quark sea are turning out to be critical to answer many
pressing questions, and they must be studied in detail.
There is a clear need for sea-quark specific experiments; however, the information on gluon distributions is far more

scarce and essentially restricted to the collinear gluon PDFs for spin-1/2 targets. Gluon TMDs are mostly unknown
because it is generally very challenging to access the relevant kinematic regions for a spin-1/2 target. What little
information that is available on gluons comes from the LHC at CERN.
Little GPD or TMD information is available on spin-1 targets, and absolutely no experimental information is

available on the tensor polarization contributions in TMDs. However, the interest in the gluon content of nuclei is
growing, even if restricted to the collinear quantities. The collinear structure function for gluons in spin-1 targets was

The collinear correlators after integrating over the momentum, 
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The resulting list of leading twist TMDs for gluons is shown in Fig. 5. The Gluon TMD functions are divided in terms
of target polarization and gluon polarization, as shown in the figure. The bold-face functions survive integration over
transverse momenta.
The parametrization of this correlator in terms of collinear PDFs is given by,

�ij(x) =
x

2

h
�g

ij

T
f1(x) + i✏

ij

T
SLg1(x)� g

ij

T
SLLf1LL(x) + S

ij

TT
h1TT (x)

i
. (27)

The surviving collinear PDF for vector polarization is gg1 or gg1L, while the tensor polarized observables are f
g

1LL
, and

the transversity term h
g

1TT
. The function f

g

1LL
is expected to be very small [60, 61] for a transversely polarized target,

but this, too, is an interesting observable and deserves its own experimental e↵ort in the future.
The phenomenological studies of gluons generally focus on characterizing the appropriate angular dependencies to

access gluon distributions. The extraction of these functions should rely on all-order TMD factorization, even though,
for processes initiated by gluons, factorization breaking e↵ects are often present [65–69]. Here, complexity can arise
in factorization, breaking from color entanglement and color-singlet configurations. It is worth pointing out that the

FIG. 5. The list of leading twist TMDs gluons. The rows indicate the target polarization, while the columns indicate the gluon
polarization. The bold-face functions survive integration over transverse momenta, and the red indicates T -odd. For gluons, all
the new h TMDs from the tensor polarized target are T -even, unlike the quark case.

extraction of the gluon TMDs from di↵erent high energy processes requires taking into account the appropriate gauge
link structures. In situations where a higher number of hadrons are involved, the gauge links can be combinations of
future and past pointing Wilson lines, with the possibility of additional loops [70].
The gluon Sivers function (fg

1T
?) can be studied at RHIC and COMPASS and now Fermilab. The Sivers function

can be accessed through the measurement of the Sivers asymmetry in pp
" ! ⇡X and in J/ production [71–73]. As

far as the universality of the gluon Sivers function is concerned, we should expect a sign-change analogous to the quark
case.
As mentioned, the longitudinal tensor polarized TMD f

g

LL
can also be measured at Fermilab [74]. This would require

a di↵erent target magnet, which the University of Virginia presently owns. This would require the disassembly and
reassembly of the target, so it is better to measure everything possible within the transverse case first. In both the
longitudinal and transverse case, these gluon TMDs are related to a transfer of two units of helicity to the nuclear
target, and vanish for any target with spin less than 1. For the transverse case, this becomes strictly a probe of linearly
polarized gluons in targets using transverse tensor polarization to access the gluon transversity h

g

1TT
.

The observable h
g

1TT
provides unique information about gluon distributions and sheds light on the spin correlations

between the gluon polarization content and the role it plays in the deuteron structure and wave-function. This, in
essence, yields a novel path for studying gluon based Spin Physics that can be accessible at higher-x and lower Q

2

kinematics and is sensitive to momentum and polarization degrees of freedom that arise in nucleons bound inside
nuclei.
We also point out that, unlike the Sivers function, these gluon T -even observables can provide an unusually clean test

of universality, as the contribution from quarks and sea-quarks in SIDIS is also disentangled from the gluon distributions
when using a purely tensor polarized spin-1 target. This is promising in providing additional fundamental tests of
TMD theory and their role in QCD. Specifically, for gluon transversity a genuine universality relation holds,

h
g

1TT
|
SIDIS

= h
g

1TT
|
DY

.

All these new tensor polarized TMDs for spin-1 that are T -even will have analogous relations for the interpretation to
be consistent. The same corresponding quark distributions are T -odd [75]. This is an important distinction and will
help to impose constraints with data from multiple future experiments.
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FIG. 8. Parton-hadron forward scattering amplitude A⇤i�i,⇤f�f
with the hadron helicities ⇤i and ⇤f and parton helicities �i

and �f .

where the direction of the polarization is perpendicular to the beam, and the amplitudes are defined by the transversely-
polarized states, so the transversity distribution is

�T q(x) = q"(x)� q#(x) ⇠ Im (A"","" �A"#,"#) . (33)

The SpinQuest polarized target configuration can be used to probe the sea-quark transversity distributions and help
determine the tensor charge in the nucleon. The already proposed experiment E1039 will take data on both transversely
polarized protons and neutrons; however, without additional data to separate the vector and tensor polarization
contributions, the neutron transversity will be very di�cult to decipher. This proposal is specific to the control of the
deuteron polarization states where a large part of the vector polarization actually comes from the neutron. Transversity
is an important physical quantity for clarifying the nature of the nucleon spin and also for exploring possible signatures
beyond the standard model [91–93] by observing electric dipole moments of the neutron. There is also considerable
theoretical work in lattice QCD [92, 94–102] as well as the Dyson-Schwinger Equation (DSE) [103, 104].
The neutron electromagnetic current can be written as[105–111],
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Here, the time-reversal odd term is included with the form factor F3, in addition to the ordinary parity and time-
reversal even terms with F1 and F2, the Dirac and Pauli form factors, respectively, and  as the anomalous magnetic
moment. The initial and final neutron momenta are denoted as p and p0, where q is the momentum transfer given by
q = p�p

0, and u(p) is the Dirac spinor for the neutron. Finally, F3 is the time-reversal odd form factor, in combination
with the electromagnetic field A

µ in the Hamiltonian, with the factor of the neutron electric dipole moment (EDM)
dn in units of e/(2Mn).

The nucleon tensor charge is a fundamental nuclear property, and its determination is among the main goals of
several experiments [112–118]. In terms of the partonic structure of the neutron, the tensor charge, for a particular
quark type q, is constructed from the quark transversity distribution, h1(x,Q2) [112–116], where the neutron EDM is
expressed by integrals of the transversity distributions to obtain the tensor charge,
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where dq is the quark EDM. The neutron EDM is investigated theoretically by calculating the quark EDMs in the
standard model, or theories that deviate from the standard model. The EDM is multiplied by the tensor charge in order
to compare with experimental measurements. The contributions from the sea-quarks to the transversity distributions
of the neutron are critical to a detailed understanding and physics interpretation.

2. Gluon Transversity

Equation 33 shows that the transversity distribution h1(x) is associated with the quark spin flip (�i = +, �f = �),
a chiral-odd distribution. Clearly, the gluon transversity cannot exist in the nucleon where the spin flip �s = 2 is

Ø The SpinQuest polarized target configuration can be used to probe the sea-quark transversity distributions 
and help determine the tensor charge in the nucleon. 

Ø The already proposed experiment E1039 will take data on both transversely polarized protons and neutrons.
Ø  However, without additional data to separate the vector and tensor polarization contributions, the neutron 

transversity will be very difficult to decipher. 
Ø The nucleon tensor charge is a fundamental nuclear property, and its determination is among the main goals 

of several experiments 
Ø In terms of the partonic structure of the neutron, the tensor charge, for a particular quark type q, is 

constructed from the quark transversity distribution 
Ø The neutron EDM is expressed by integrals of the transversity distributions to obtain the tensor charge

Ø The neutron polarization is always over 90% of the vector polarization of the deuteron. 
       That means: the deuteron target is a very good source of neutron polarized TMDs 
                            when the tensor polarization of the deuteron is mitigated.
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where dq is the quark EDM. The neutron EDM is investigated theoretically by calculating the quark EDMs in the
standard model, or theories that deviate from the standard model. The EDM is multiplied by the tensor charge in order
to compare with experimental measurements. The contributions from the sea-quarks to the transversity distributions
of the neutron are critical to a detailed understanding and physics interpretation.
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a chiral-odd distribution. Clearly, the gluon transversity cannot exist in the nucleon where the spin flip �s = 2 is
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where dq is the quark EDM. The neutron EDM is investigated theoretically by calculating the quark EDMs in the
standard model, or theories that deviate from the standard model. The EDM is multiplied by the tensor charge in order
to compare with experimental measurements. The contributions from the sea-quarks to the transversity distributions
of the neutron are critical to a detailed understanding and physics interpretation.
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Equation 33 shows that the transversity distribution h1(x) is associated with the quark spin flip (�i = +, �f = �),
a chiral-odd distribution. Clearly, the gluon transversity cannot exist in the nucleon where the spin flip �s = 2 is
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where dq is the quark EDM. The neutron EDM is investigated theoretically by calculating the quark EDMs in the
standard model, or theories that deviate from the standard model. The EDM is multiplied by the tensor charge in order
to compare with experimental measurements. The contributions from the sea-quarks to the transversity distributions
of the neutron are critical to a detailed understanding and physics interpretation.

2. Gluon Transversity

Equation 33 shows that the transversity distribution h1(x) is associated with the quark spin flip (�i = +, �f = �),
a chiral-odd distribution. Clearly, the gluon transversity cannot exist in the nucleon where the spin flip �s = 2 is
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Ø The deuterons have nonzero quadrupole moments 
Ø The structural arrangement of the nuclei in the solid 

generate electric field gradients (EFG) which couple to the 
quadrupole moment. 

This results in an additional degree 
of freedom in polarization that the 
spin-1/2 nucleons do not possess. 

Vector Polarization Tensor Polarization
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quantum
spin
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in
com

posite
system

s?
This

is
the

quintessential question
of Spin

Physics.
E↵orts

to
answer this question

have
resulted

in
the

realization
that hadrons and

nuclei have
an
increasingly

com
plex

internal

structure, likely
involving

quark
orbital angular

m
om
entum

(O
A
M
)
as
well as

gluonic
and

sea-quark
contributions.

The
depth

of this
structure

and
these

dynam
ics

is
just

m
ore

recently
beginning

to
be

realized, due
in
large

part
to

novel experim
entation. The

next generation
of Spin

Physics experim
ents is now

driven
by
a
m
odern

understanding
of

spin
and

m
ust

leverage
the

techniques
and

technology
developed

in
recent

years
to
acquire

new
data

with
a
broader

physics reach.

The spin
of nucleons and

nuclei is well known, but how
the internal m

echanism
s of m

otion
and

conservation
m
anifest

to
preserve

this fixed
quantized

spin
is still not clear. W

hat is clear is that spin, like
m
ass, appears to

be
an
em
ergent

quantity
based

on
constituent m

ovem
ent and

interaction
with

the
vacuum

.
Since

the
pivotal results

provided
by

the

EM
C
collaboration

[1], the
particle

physics
com

m
unity

has
striven

to
m
ake

sense
of experim

ental results, leading
to

extensive
theoretical developm

ent.
D
ecades

of experim
ental studies

on
high-energy

polarized-hadron
reactions

have

been
perform

ed
to
clarify

the
origin

of
spin

m
ainly

through
longitudinally-polarized

structure
functions,

sparking

considerable
work

on
how

to
decom

pose
the

nucleon
spin, see

reviews [2–6].

Studying
the

spin
structure

of the
nucleon

and
nuclei is

a
com

plex
subject, as

the
internal m

otion
of the

partons

is
relativistic, and

it is
non-trivial to

define
the

angular m
om
enta.

In
addition, gluon

spin
is
generally

thought to
be

gauge
dependent [7], but there

are
investigations into

quark-gluon
spin

com
ponents and

O
A
M
contribution

in
a
gauge

invariant way
[8]. Considering

the
nonpeturbative

nature
of these

studies, calculations based
solely

on
first principles

of Q
CD

are prohibitively
challenging. The parton

m
odel [9] illustrates the nucleon

as a
collection

of quasi-free quarks,

antiquarks, and
gluons, with

longitudinal m
om
entum

distributions
described

by
parton

densities.
The

form
alism

of

collinear
factorization

directly
connects

these
concepts

to
Q
CD

and
provides

the
foundational fram

ework
needed

in

Spin
Physics, but only

quantifies structure
in
a
single

spatial dim
ension.

To investigate partons in
the plane transverse to the direction

of m
otion

of its parent nucleon
requires the G

eneralized

Parton
D
istributions (G

PD
s) and

Transverse
M
om
entum

D
istributions (TM

D
s) [10]. For both

G
PD

s and
TM

D
s, the

relevant
scales

are
in
the

non-perturbative
dom

ain, in
contrast

to
the

longitudinal m
om
entum

fractions
on

which
all

types of parton
distributions depend. Subject to

kinem
atics, the TM

D
s and

G
PD

s can
contain

m
uch

m
ore inform

ation

on
non-perturbative

phenom
ena

and
are

critical to
the

interpretation
of spin

dependent
hadron-hadron

and
lepton-

hadron
collisions, providing

the
advantage

of a
m
ulti-dim

ensional exploration
of the

structure
of nucleons and

nuclei.

Through
this

avenue, Spin
Physics

studies
of the

strong
force

in
its

non-perturbative
dom

ain
and

beyond
can

also

provide
insight

into
color

confinem
ent

as
well as

the
origin

of dynam
ic
m
ass

and
charge

density.
The

culm
ination

of Spin
Physics

has
yet

to
com

e, but, ultim
ately, experim

ents
will reveal exactly

how
partonic

interactions
m
anifest

into
hadronic

and
nuclear

degrees
of
freedom

.
The

spin
decom

position
using

lattice
Q
CD

(LQ
CD

)
[11–15]

also

FIG
. 1.

G
raphical representation

of the
shape

of the
deuteron

for
two

specified
equidensity

surfaces.
H
ere, the

deuteron
is
in

the
M

J

=
1
spin

state. The
sam

e
is
sim

ilar for
M

J

=
�
1. Im

age
from

A
rgonne

N
ational Lab.

provides a
guiding

light. E↵orts have been
m
ade recently

to
obtain

x-dependent parton
distributions from

LQ
CD

[16].

Calculations of the
nucleon

spin
from

first principle
sim

ulations are
beginning

to
provide

results with
control over all

system
atics

[17].
The

best
determ

ined
contributions

so
far

are
⌃
q ( 1

2 �
q), the

quark
intrinsic

spin
contribution

with

quark
flavor

(q
=
u
,
d
,
s,
c);

J
q ,
the

quark
total

angular
m
om
entum

;
J
g ,
the

gluon
total

angular
m
om
entum

;

and
L
q ,
the

O
A
M

of
the

quarks.
The

PN
M
D
E
[18]

collaboration
have

published
results

for
⌃
q ( 1

2 �
q)
and

find

4

FIG
. 2.

G
raphical representation

of the
shape

of the
deuteron

for
two

specified
equidensity

surfaces.
H
ere

the
deuteron

is
in

the
M

J =
0
spin

state. Im
age

from
A
rgonne

N
ational Lab.

⌃
q =

0
.143(31)(36), consistent

with
the

CO
M
PASS

value
0.13

< 1
2 �
⌃
<
0.18

obtained
at
3
G
eV 2

[19].
The

ETM
C

[20] collaboration
has

presented
first

results
for

J
q ,
J
g , and

L
q [21] for

the
OAM

of quarks.
W
ithin

the
next

several

years, im
proved

high
perform

ance com
puting

resources will allow
m
uch

higher precision
LQ
CD

calculations, which
will

require
m
uch

m
ore

experim
ental inform

ation
as
a
basis

for
com

parison.
In
fact, the

greatest
opportunity

to
deepen

our understanding
will com

e
from

the
intersection

of consistent results from
LQ
CD

, phenom
enology, and

experim
ents

over a
broad

range
of kinem

atics.

The
next

generation
of
experim

ents
m
ust

attem
pt
to
m
easure

gluon-spin
and

partonic
OAM

contributions
and

further
explore

spin
on

a
com

posite
level by

studying
nuclei.

To
extract

and
understand

this
inform

ation, we
need

to
investigate

both
the

longitudinal spatial structure
and

the
transverse

m
om
entum

structure
using

novel m
ethods.

Though
significant experim

ental progress has been
m
ade adding

to
the understanding

of the spin
structure of hadrons,

the
data

frequently
leaves

m
ore

questions
to
be
answered.

To
understand

the
spin

configuration
of the

nucleon
and

nuclei
in
term

s
of
quarks

and
gluons

rem
ains

one
of
the

m
ost

challenging
and

critical
open

problem
s
in
nuclear

physics [22, 23]. Vital experim
ental inform

ation
is m

issing, especially
around

the transversely-polarized
structure [24–

28], with
only

m
inim

al studies
on

quark
transversity

distributions
[29].

The
transverse

polarized
target

observables

provide
unique

and
crucial details

on
the

3D
picture.

The
internal workings

of these
observables

are
distinct

from

those
of the

longitudinal structure, as the
quark

transversity
distributions are

decoupled
from

the
gluon

transversity

in
the Q 2

evolution
[30–32] for polarized

nuclei with
spin �

1, such
as the deuteron, due to

the helicity-flip
(chiral-odd)

property.

The deuteron
is the sim

plest spin-1
system

and
o↵ers a

vast array
of observables to

explore as we begin
to
build

the

com
posite spin

picture of nuclei. The
deuteron

initially
appears as a

loosely
bound

pair of nucleons with
spins aligned

(spin
triplet state).

However, the
existence

of the
sm
all quadrupole

m
om
ent im

plies
that these

two
nucleons

are
not

in
a
pure

S-state
of relative

orbital angular
m
om
entum

and
that

the
force

between
them

is
not

central.
Taking

into

account total spin
and

parity, an
additional D

-wave
com

ponent is allowed.
There

are
several layers to

understanding

this
system

, starting
with

the
tensor

force.
The

deuteron
would

sim
ply

not
be
bound

without
the

tensor
force, and

there
are

geom
etric

im
plications

of this
force

on
the

deuteron
structure

which
have

yet
to
be
explored

on
the

quark

and
gluon

level. The
spin

configuration
and

alignm
ent of the

deuteron
is a

tool yet to
be
taken

full advantage
of. If a

deuteron
can

be aligned
in
such

a
fashion

that it is in
a
M

J =
±
1
m
agnetic substate (Fig. 1), where

J
is the spin

of the

deuteron, then
the

deuteron
can

have
two

separate
equidensity

surface
lobes

depending
on

the
energy

density.
This

configuration
is associated

with
the

standard
spin-up

and
spin-down

com
m
on
to
the

spin-1/2
nucleon, but, for spin-1,

it is distinctly
referred

to
as vector polarization. O

n
the other hand, if the deuteron

is in
the

M
J =

0
m
agnetic substate

(Fig. 2), then
the equidensity

surfaces that enclose the deuteron
are toroidal in

shape [33]. The hole in
the torus is due

to
the

repulsive
core

of the
N
–
N

interaction, and
the

overall shape
is largely

governed
by
the

tensor force.
It is only

recently
that

the
highly

controlled
m
anipulation

of a
solid-polarized

target
spin

ensem
ble

has
allowed

access
to
the

optim
ally

aligned
high

density
deuteron

targets, allowing
increased

sensitivity
to
the

correlations
between

geom
etric

properties and
partonic

degrees of freedom
.
The

use
of the

Transverse
M
om
entum

D
istribution

functions (TM
D
s) of

polarizable nuclei o↵ers the necessary
connective bridge, allowing

us to
explore how

these geom
etric properties em

erge

from
quark

and
gluon

dynam
ics.

W
e
propose

the
first

ever
Spin-1

TM
D
m
easurem

ents
using

a
polarized

deuteron
target, including

a
direct

m
ea-

surem
ent

of gluon
transversity, while

also
for

the
first

tim
e
m
easuring

the
sea-quark

transversity
distribution

of the

deuteron/neutron. The
gluon

transversity
was first m

entioned
in
regards to

D
eep

Inelastic
Scattering

[34]. Contribu-
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FIG. 17. An example of the NMR lineshape of a spin-1 target with a non-cubic symmetry demonstrating the two overlapping
absorption lines. The two intensities of the signal I+ and I� are shown in blue and pink respectively. Figure from [122].
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FIG. 18. The energy level diagram for deuterons in a magnetic field for three values of ✓ where ~!D is the deuteron Zeeman
energy, and ~!Q is the quadrupole energy. The color indicates which transition corresponds to which peak shown in Fig. 17.
Figure from [122].

of the coupling interaction, being perpendicular (✓ = ⇡/2) to the magnetic field. This is the most probable configuration within
each transition, as indicated by the height in the intensity of each peak. The opposing end in each absorption line, called the
pedestal, corresponds to the configuration when the principal axis of the coupling interaction is parallel (✓ = 0) to the magnetic
field, which has much less statistical significance, as indicated by the small relative height in the intensities in each transition
around (R ⇠ ⌥2).

If the ensemble of the spin system is in thermodynamic equilibrium, the ratio of the intensities (r = I+/I�) can be used to
extract the polarizations directly [128].

P =
r
2
� 1

r2 + r + 1
Pzz =

r
2
� 2r + 1

r2 + r + 1
(61)

or simply,
Pzz

P
=

r � 1
r + 1

. (62)

The extracted information from the fit also gives the sum of the two intensities, which provides the vector polarization P =
C(I+ + I�), while the di↵erence provides the tensor polarization Pzz = C(I+ � I�). It is important to note that these two
expressions remain true even if the system is not in thermodynamic equilibrium, unlike Eq. 61 and 62. Once the calibration
constant C is measured, these expressions can be used to extract the averaged polarizations of the ensemble over the course of
the experiment [125].
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of the coupling interaction, being perpendicular (✓ = ⇡/2) to the magnetic field. This is the most probable configuration within
each transition, as indicated by the height in the intensity of each peak. The opposing end in each absorption line, called the
pedestal, corresponds to the configuration when the principal axis of the coupling interaction is parallel (✓ = 0) to the magnetic
field, which has much less statistical significance, as indicated by the small relative height in the intensities in each transition
around (R ⇠ ⌥2).

If the ensemble of the spin system is in thermodynamic equilibrium, the ratio of the intensities (r = I+/I�) can be used to
extract the polarizations directly [128].
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r
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� 1
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Pzz =

r
2
� 2r + 1

r2 + r + 1
(61)

or simply,
Pzz

P
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r � 1
r + 1

. (62)

The extracted information from the fit also gives the sum of the two intensities, which provides the vector polarization P =
C(I+ + I�), while the di↵erence provides the tensor polarization Pzz = C(I+ � I�). It is important to note that these two
expressions remain true even if the system is not in thermodynamic equilibrium, unlike Eq. 61 and 62. Once the calibration
constant C is measured, these expressions can be used to extract the averaged polarizations of the ensemble over the course of
the experiment [125].
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extract the polarizations directly [128].
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(61)
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=

r � 1
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. (62)

The extracted information from the fit also gives the sum of the two intensities, which provides the vector polarization P =
C(I+ + I�), while the di↵erence provides the tensor polarization Pzz = C(I+ � I�). It is important to note that these two
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of the coupling interaction, being perpendicular (✓ = ⇡/2) to the magnetic field. This is the most probable configuration within
each transition, as indicated by the height in the intensity of each peak. The opposing end in each absorption line, called the
pedestal, corresponds to the configuration when the principal axis of the coupling interaction is parallel (✓ = 0) to the magnetic
field, which has much less statistical significance, as indicated by the small relative height in the intensities in each transition
around (R ⇠ ⌥2).

If the ensemble of the spin system is in thermodynamic equilibrium, the ratio of the intensities (r = I+/I�) can be used to
extract the polarizations directly [128].

P =
r
2
� 1

r2 + r + 1
Pzz =

r
2
� 2r + 1

r2 + r + 1
(61)

or simply,
Pzz

P
=
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. (62)

The extracted information from the fit also gives the sum of the two intensities, which provides the vector polarization P =
C(I+ + I�), while the di↵erence provides the tensor polarization Pzz = C(I+ � I�). It is important to note that these two
expressions remain true even if the system is not in thermodynamic equilibrium, unlike Eq. 61 and 62. Once the calibration
constant C is measured, these expressions can be used to extract the averaged polarizations of the ensemble over the course of
the experiment [125].
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C(I+ + I�), while the di↵erence provides the tensor polarization Pzz = C(I+ � I�). It is important to note that these two
expressions remain true even if the system is not in thermodynamic equilibrium, unlike Eq. 61 and 62. Once the calibration
constant C is measured, these expressions can be used to extract the averaged polarizations of the ensemble over the course of
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and

I� =C(r0 �r�),

where rx is the population density in the m = x energy level, and C is the calibration

constant. The term intensity is used here to indicate both the height and area of these

two individual regions. The frequency is indicated by a dimensionless position in the

NMR line R = (w �wD)/3wQ which spans the domain of the NMR signal, where wQ

is the quadrupolar coupling constant. In these units, R = 0 corresponds to the Larmor

frequency of the deuteron at 5 T (wD = 32.679 MHz). The local electric field gradi-

ents that couple to the quadrupole moments of the spin-1 system cause an asymmetric

splitting of the energy levels into two overlapping absorption lines. The energy levels

of the non-cubic symmetry spin-1 system can be expressed as,

Em =�h̄wDm+ h̄wQ(3cos2q �1+hsin2qcos2f)(3m
2 �2),

where q is the polar angle between the axis of the deuteron bond and the magnetic

field, see Fig. 2. The azimuthal angle f and parameter h are fixed parameters used

to characterize the electric field gradient with respect to the deuteron bond axis. The

degree of axial symmetry and dependence on the polar angle can be understood from

the basis lineshape for an isotropic rigid solid which is known as a Pake doublet [18].

The polarization information can be extracted from a fit of the NMR data providing the

areas of the two intensities [17, 19]. The peaks of the Pake doublet (R ⇠ ±1) corre-

spond to the principal axis of the coupling interaction being perpendicular (q = p/2)

to the magnetic field. This is the most probable configuration within each transition, as

indicated by the height in the intensity of each peak. The opposing end in each absorp-

tion line, called the pedestal, corresponds to the configuration when the principal axis

of the coupling interaction is parallel (q = 0) to the magnetic field, which has much

less statistical significance as indicated by the small relative height in the intensities in

each transition around (R ⇠⌥2).

If the ensemble of the spin system is in thermodynamic equilibrium, the ratio of the

intensities (r = I+/I�) can be used to extract the polarizations directly [19].

P =
r

2 �1
r2 + r+1

Pzz =
r

2 �2r+1
r2 + r+1

(1)
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In this paper, we introduce a concise and simple formalism needed
to manipulate and measure the dynamic polarization of these special-
ized targets. Though the examples used are for spin-1, such technol-
ogy can be extended and applied to higher spin nuclei with multiple
polarization axes.

The piece-wise absorption functions we describe in this paper do not
assume that the spin temperature of the system is uniform throughout
the frequency domain. There are two keys to accurately measuring RF-
manipulated signals: the change in the area of the enhanced portion of
the NMR line and the determination of the area of the depleted portion
of the NMR line where the absorption lines overlap. In both cases, it
is necessary to know how the area of each absorption line changes
at any point in time. Such information provides a simple set of tools
allowing accurate measurement and the capacity to simulate and pre-
dict optimization of bulk polarization states of RF-manipulated targets.
These tools are essential for configuring the automation process of spin
manipulation and online polarization measurement during scattering
experiments.

For optimized enhancement and measurement, the NMR sweep rate
must be faster than changes in the spectrum from RF-driven transi-
tions and relaxation pathways. For the standard Q-meter NMR system
widely used [13], this is usually 200 full-range sweeps with a triangle
waveform over about 13 s, which passes across the voltage domain
containing 500 bins. This leads to a bin scan frequency of about 15 kHz.
The RF modulation and enhancement are optimally controlled with
high-speed automation and data acquisition that are timed in sequen-
tial phases of measurement and manipulation at a rate greater than
15 kHz. Continuous DNP target observables require near-continuous
maintenance of microwaves to ensure the best figure-of-merit during
the scattering experiment. This would be even more true for ss-RF with
continuous DNP targets. Along with microwave frequency adjustment
to offset polarization loss from radiation damage, there would need
to be ss-RF applied with a different power profile to maximize tensor
enhancement with every sweep. This would offset changes from the
spin–lattice relaxation, spin diffusion, and the DNP process. This ss-
RF manipulation must be done fast enough to be in between the NMR
measurement sweeps so that continuous online monitoring can be used
to measure and configure the power profile for the next ss-RF sweep.
This paper is intended to address all of these needs using elementary
tools.

There are three essential concepts that allow simple and accurate
measurement of ss-RF manipulated NMR signals in the spin-1 Pake
doublet lineshape. The first of these is the fact that arbitrary-sized
binning in the frequency domain of the signal with equal partitions in
the domain of each absorption line preserves a Boltzmann equilibrium
of a subset of the total population of the sample. We refer to this as
Differential Binning. Differential binning is required for the second
concept: in any bin in the frequency domain where ss-RF irradiation has
been applied, there will be a reduction of area in the absorption lines
while an increase in the area that is 1/2 the size of the area that was lost
in the opposing absorption lines. This is a direct result of the equations
of motion for ss-RF so we refer to this as the Rates Response. The final
concept requires differential binning as well: for any frequency domain
under ss-RF irradiation, the polarization and depolarization pathways
lead to a ratio of overlapping absorption line heights that pertain
to a unique spin temperature for that frequency that is calculable
and consistent. We refer to this as Spin Temperature Consistency.
Each of these conditions is universally true, requiring no model of the
polarization mechanism or any material-specific parameterization.

The remainder of this article is as follows. In the next section, we
provide the standard description of the spin-1 system with uniform
spin temperature and non-degenerate energy levels. We then describe
the three critical concepts in the sections that follow: Differential
Binning (Section 3), the Rates Response (IV), and Spin Temperature
Consistency (V). This section breaks down how non-uniform spin tem-
perature imposed by selective semi-saturating RF can still be accurately

understood on a bin-by-bin level. In Section 6, concerning Precision of
Application, we explain the limitations of the ss-RF in the spectrum
and how to account for it. Section 7, Simulations, describes how to
use the provided as to build real-time simulations. Section 8 provides
some information about how to automate the hardware for the best
experiment figure-of-merit. We then provide some concluding remarks.

2. Description of Spin-1 target

2.1. Spin-1 polarizations

For the polarizing environment, one can assume that the magnetic
field íB is parallel to the target’s central axis, which sits in the most ho-
mogeneous region of the field, and that the orientation of the polarized
material crystals domain is arbitrary. In this regard, the static magnetic
susceptibility tensor is isotropic and approximated by the unit tensor.

Under the influence of the magnetic field, the spin-1 target has both
Zeeman splitting and a quadrupole contribution which depends on field
strength. At 5 T a small correction can be made to the Zeeman energy
levels. The spin-1 target undergoes separation into three energy levels,
denoted Em, with m = ±1, 0 [11]. In the case of a polarized target
apparatus including a magnet producing a cylindrically symmetric field
oriented in the z-direction (and a similar symmetry for the electric field
gradient), the energy levels of a deuteron can be written as [11,14]

Em = *`!dm + `!q
�

3 cos2(✓)
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with `!d as the deuteron Zeeman energy, and `!q as the quadrupole
energy. The polar angle between the magnetic field and the deuteron
electric field gradient is ✓. The azimuthal angles � and ⌘ are parameters
that describe the deuterons’ bonds’ orientation in the target molecule,
where the electric field gradient is not symmetric about the bond
axis. These parameters are very material-specific. Neglecting these
characteristics, the transitions between these energy levels occur at
frequencies !+ and !*, defined by [11,14,15]

`!+ = `!d + 3`!q(3 cos2 ✓ * 1) (2)
`!* = `!d * 3`!q(3 cos2 ✓ * 1)

The total vector (nuclear) and tensor (quadrupolar) polarizations of a
deuteron NMR system can be written in terms of the populations of
each energy level respectively as,

Pn =
n+1 * n*1

n
(3)

Qn =
n * 3n0

n
(4)

where ni is the population of the mi magnetic substate, and n is the total
population n = n+1 + n0 + n*1, when normalized, n = 1.

In practice, Pn and Qn are the observable quantities in NMR, and so
the population densities can be understood in terms of Pn and Qn:

n+1 = 1
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1
2Pn +

1
6Qn (5)
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The populations nm are the values of the corresponding population
densities integrated over ✓. These densities are generally written ⇢m
(with m = +1, 0,*1) and are contained within the range (0 < ✓ < ⇡_2).

By definition, the vector polarization must be in a range (*1 f Pn f
1) where the tensor polarization must be in the range (*2 f Qn f 1).
Fig. 1 shows the full range (in blue) for the potential polarization values
of Pn and Qn. However, when the system is in Boltzmann equilibrium,
the range in Qn is limited to (0 f Qn f 1) and the relationship between
Pn and Qn follows a strict relation. Under normal DNP-enhancement
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In this paper, we introduce a concise and simple formalism needed
to manipulate and measure the dynamic polarization of these special-
ized targets. Though the examples used are for spin-1, such technol-
ogy can be extended and applied to higher spin nuclei with multiple
polarization axes.

The piece-wise absorption functions we describe in this paper do not
assume that the spin temperature of the system is uniform throughout
the frequency domain. There are two keys to accurately measuring RF-
manipulated signals: the change in the area of the enhanced portion of
the NMR line and the determination of the area of the depleted portion
of the NMR line where the absorption lines overlap. In both cases, it
is necessary to know how the area of each absorption line changes
at any point in time. Such information provides a simple set of tools
allowing accurate measurement and the capacity to simulate and pre-
dict optimization of bulk polarization states of RF-manipulated targets.
These tools are essential for configuring the automation process of spin
manipulation and online polarization measurement during scattering
experiments.

For optimized enhancement and measurement, the NMR sweep rate
must be faster than changes in the spectrum from RF-driven transi-
tions and relaxation pathways. For the standard Q-meter NMR system
widely used [13], this is usually 200 full-range sweeps with a triangle
waveform over about 13 s, which passes across the voltage domain
containing 500 bins. This leads to a bin scan frequency of about 15 kHz.
The RF modulation and enhancement are optimally controlled with
high-speed automation and data acquisition that are timed in sequen-
tial phases of measurement and manipulation at a rate greater than
15 kHz. Continuous DNP target observables require near-continuous
maintenance of microwaves to ensure the best figure-of-merit during
the scattering experiment. This would be even more true for ss-RF with
continuous DNP targets. Along with microwave frequency adjustment
to offset polarization loss from radiation damage, there would need
to be ss-RF applied with a different power profile to maximize tensor
enhancement with every sweep. This would offset changes from the
spin–lattice relaxation, spin diffusion, and the DNP process. This ss-
RF manipulation must be done fast enough to be in between the NMR
measurement sweeps so that continuous online monitoring can be used
to measure and configure the power profile for the next ss-RF sweep.
This paper is intended to address all of these needs using elementary
tools.

There are three essential concepts that allow simple and accurate
measurement of ss-RF manipulated NMR signals in the spin-1 Pake
doublet lineshape. The first of these is the fact that arbitrary-sized
binning in the frequency domain of the signal with equal partitions in
the domain of each absorption line preserves a Boltzmann equilibrium
of a subset of the total population of the sample. We refer to this as
Differential Binning. Differential binning is required for the second
concept: in any bin in the frequency domain where ss-RF irradiation has
been applied, there will be a reduction of area in the absorption lines
while an increase in the area that is 1/2 the size of the area that was lost
in the opposing absorption lines. This is a direct result of the equations
of motion for ss-RF so we refer to this as the Rates Response. The final
concept requires differential binning as well: for any frequency domain
under ss-RF irradiation, the polarization and depolarization pathways
lead to a ratio of overlapping absorption line heights that pertain
to a unique spin temperature for that frequency that is calculable
and consistent. We refer to this as Spin Temperature Consistency.
Each of these conditions is universally true, requiring no model of the
polarization mechanism or any material-specific parameterization.

The remainder of this article is as follows. In the next section, we
provide the standard description of the spin-1 system with uniform
spin temperature and non-degenerate energy levels. We then describe
the three critical concepts in the sections that follow: Differential
Binning (Section 3), the Rates Response (IV), and Spin Temperature
Consistency (V). This section breaks down how non-uniform spin tem-
perature imposed by selective semi-saturating RF can still be accurately

understood on a bin-by-bin level. In Section 6, concerning Precision of
Application, we explain the limitations of the ss-RF in the spectrum
and how to account for it. Section 7, Simulations, describes how to
use the provided as to build real-time simulations. Section 8 provides
some information about how to automate the hardware for the best
experiment figure-of-merit. We then provide some concluding remarks.

2. Description of Spin-1 target

2.1. Spin-1 polarizations

For the polarizing environment, one can assume that the magnetic
field íB is parallel to the target’s central axis, which sits in the most ho-
mogeneous region of the field, and that the orientation of the polarized
material crystals domain is arbitrary. In this regard, the static magnetic
susceptibility tensor is isotropic and approximated by the unit tensor.

Under the influence of the magnetic field, the spin-1 target has both
Zeeman splitting and a quadrupole contribution which depends on field
strength. At 5 T a small correction can be made to the Zeeman energy
levels. The spin-1 target undergoes separation into three energy levels,
denoted Em, with m = ±1, 0 [11]. In the case of a polarized target
apparatus including a magnet producing a cylindrically symmetric field
oriented in the z-direction (and a similar symmetry for the electric field
gradient), the energy levels of a deuteron can be written as [11,14]
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with `!d as the deuteron Zeeman energy, and `!q as the quadrupole
energy. The polar angle between the magnetic field and the deuteron
electric field gradient is ✓. The azimuthal angles � and ⌘ are parameters
that describe the deuterons’ bonds’ orientation in the target molecule,
where the electric field gradient is not symmetric about the bond
axis. These parameters are very material-specific. Neglecting these
characteristics, the transitions between these energy levels occur at
frequencies !+ and !*, defined by [11,14,15]

`!+ = `!d + 3`!q(3 cos2 ✓ * 1) (2)
`!* = `!d * 3`!q(3 cos2 ✓ * 1)

The total vector (nuclear) and tensor (quadrupolar) polarizations of a
deuteron NMR system can be written in terms of the populations of
each energy level respectively as,
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where ni is the population of the mi magnetic substate, and n is the total
population n = n+1 + n0 + n*1, when normalized, n = 1.

In practice, Pn and Qn are the observable quantities in NMR, and so
the population densities can be understood in terms of Pn and Qn:

n+1 = 1
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6Qn (5)

n0 =
1 *Qn
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The populations nm are the values of the corresponding population
densities integrated over ✓. These densities are generally written ⇢m
(with m = +1, 0,*1) and are contained within the range (0 < ✓ < ⇡_2).

By definition, the vector polarization must be in a range (*1 f Pn f
1) where the tensor polarization must be in the range (*2 f Qn f 1).
Fig. 1 shows the full range (in blue) for the potential polarization values
of Pn and Qn. However, when the system is in Boltzmann equilibrium,
the range in Qn is limited to (0 f Qn f 1) and the relationship between
Pn and Qn follows a strict relation. Under normal DNP-enhancement
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In this paper, we introduce a concise and simple formalism needed
to manipulate and measure the dynamic polarization of these special-
ized targets. Though the examples used are for spin-1, such technol-
ogy can be extended and applied to higher spin nuclei with multiple
polarization axes.

The piece-wise absorption functions we describe in this paper do not
assume that the spin temperature of the system is uniform throughout
the frequency domain. There are two keys to accurately measuring RF-
manipulated signals: the change in the area of the enhanced portion of
the NMR line and the determination of the area of the depleted portion
of the NMR line where the absorption lines overlap. In both cases, it
is necessary to know how the area of each absorption line changes
at any point in time. Such information provides a simple set of tools
allowing accurate measurement and the capacity to simulate and pre-
dict optimization of bulk polarization states of RF-manipulated targets.
These tools are essential for configuring the automation process of spin
manipulation and online polarization measurement during scattering
experiments.

For optimized enhancement and measurement, the NMR sweep rate
must be faster than changes in the spectrum from RF-driven transi-
tions and relaxation pathways. For the standard Q-meter NMR system
widely used [13], this is usually 200 full-range sweeps with a triangle
waveform over about 13 s, which passes across the voltage domain
containing 500 bins. This leads to a bin scan frequency of about 15 kHz.
The RF modulation and enhancement are optimally controlled with
high-speed automation and data acquisition that are timed in sequen-
tial phases of measurement and manipulation at a rate greater than
15 kHz. Continuous DNP target observables require near-continuous
maintenance of microwaves to ensure the best figure-of-merit during
the scattering experiment. This would be even more true for ss-RF with
continuous DNP targets. Along with microwave frequency adjustment
to offset polarization loss from radiation damage, there would need
to be ss-RF applied with a different power profile to maximize tensor
enhancement with every sweep. This would offset changes from the
spin–lattice relaxation, spin diffusion, and the DNP process. This ss-
RF manipulation must be done fast enough to be in between the NMR
measurement sweeps so that continuous online monitoring can be used
to measure and configure the power profile for the next ss-RF sweep.
This paper is intended to address all of these needs using elementary
tools.

There are three essential concepts that allow simple and accurate
measurement of ss-RF manipulated NMR signals in the spin-1 Pake
doublet lineshape. The first of these is the fact that arbitrary-sized
binning in the frequency domain of the signal with equal partitions in
the domain of each absorption line preserves a Boltzmann equilibrium
of a subset of the total population of the sample. We refer to this as
Differential Binning. Differential binning is required for the second
concept: in any bin in the frequency domain where ss-RF irradiation has
been applied, there will be a reduction of area in the absorption lines
while an increase in the area that is 1/2 the size of the area that was lost
in the opposing absorption lines. This is a direct result of the equations
of motion for ss-RF so we refer to this as the Rates Response. The final
concept requires differential binning as well: for any frequency domain
under ss-RF irradiation, the polarization and depolarization pathways
lead to a ratio of overlapping absorption line heights that pertain
to a unique spin temperature for that frequency that is calculable
and consistent. We refer to this as Spin Temperature Consistency.
Each of these conditions is universally true, requiring no model of the
polarization mechanism or any material-specific parameterization.

The remainder of this article is as follows. In the next section, we
provide the standard description of the spin-1 system with uniform
spin temperature and non-degenerate energy levels. We then describe
the three critical concepts in the sections that follow: Differential
Binning (Section 3), the Rates Response (IV), and Spin Temperature
Consistency (V). This section breaks down how non-uniform spin tem-
perature imposed by selective semi-saturating RF can still be accurately

understood on a bin-by-bin level. In Section 6, concerning Precision of
Application, we explain the limitations of the ss-RF in the spectrum
and how to account for it. Section 7, Simulations, describes how to
use the provided as to build real-time simulations. Section 8 provides
some information about how to automate the hardware for the best
experiment figure-of-merit. We then provide some concluding remarks.

2. Description of Spin-1 target

2.1. Spin-1 polarizations

For the polarizing environment, one can assume that the magnetic
field íB is parallel to the target’s central axis, which sits in the most ho-
mogeneous region of the field, and that the orientation of the polarized
material crystals domain is arbitrary. In this regard, the static magnetic
susceptibility tensor is isotropic and approximated by the unit tensor.

Under the influence of the magnetic field, the spin-1 target has both
Zeeman splitting and a quadrupole contribution which depends on field
strength. At 5 T a small correction can be made to the Zeeman energy
levels. The spin-1 target undergoes separation into three energy levels,
denoted Em, with m = ±1, 0 [11]. In the case of a polarized target
apparatus including a magnet producing a cylindrically symmetric field
oriented in the z-direction (and a similar symmetry for the electric field
gradient), the energy levels of a deuteron can be written as [11,14]
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with `!d as the deuteron Zeeman energy, and `!q as the quadrupole
energy. The polar angle between the magnetic field and the deuteron
electric field gradient is ✓. The azimuthal angles � and ⌘ are parameters
that describe the deuterons’ bonds’ orientation in the target molecule,
where the electric field gradient is not symmetric about the bond
axis. These parameters are very material-specific. Neglecting these
characteristics, the transitions between these energy levels occur at
frequencies !+ and !*, defined by [11,14,15]

`!+ = `!d + 3`!q(3 cos2 ✓ * 1) (2)
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The total vector (nuclear) and tensor (quadrupolar) polarizations of a
deuteron NMR system can be written in terms of the populations of
each energy level respectively as,
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where ni is the population of the mi magnetic substate, and n is the total
population n = n+1 + n0 + n*1, when normalized, n = 1.

In practice, Pn and Qn are the observable quantities in NMR, and so
the population densities can be understood in terms of Pn and Qn:
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The populations nm are the values of the corresponding population
densities integrated over ✓. These densities are generally written ⇢m
(with m = +1, 0,*1) and are contained within the range (0 < ✓ < ⇡_2).

By definition, the vector polarization must be in a range (*1 f Pn f
1) where the tensor polarization must be in the range (*2 f Qn f 1).
Fig. 1 shows the full range (in blue) for the potential polarization values
of Pn and Qn. However, when the system is in Boltzmann equilibrium,
the range in Qn is limited to (0 f Qn f 1) and the relationship between
Pn and Qn follows a strict relation. Under normal DNP-enhancement
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Fig. 1. The potential values of tensor polarization Qn as a function of vector
polarization Pn. The red line corresponds to the Boltzmann condition, while the blue
triangular area corresponds to all allowed polarizations for the spin-1 system.

conditions, the system is in Boltzmann equilibrium and Qn can be
calculated directly from Pn as,

Qn = 2 *
t

4 * 3P 2
n . (6)

This relationship is indicated in Fig. 1 by the red line. It is clear from the
figure that vector polarization should be as high as possible to achieve
high tensor polarization when the Boltzmann condition applies across
the frequency domain.

Typically, the scale of polarization enhancement from DNP depends
greatly on the material in use. High-vector polarizations are often
at odds with high beam intensity and radiation resistance. Beam-
heating effects reduce the polarization of the target. Some materials
can achieve high polarization but are only applicable as low-intensity,
low-temperature targets due to their poor radiation resistance.

Selective semi-saturating RF radiation (ss-RF) [1] can be used to
manipulate the energy levels by driving transitions at select positions
in the NMR line at predetermined degrees of saturation. This technique
can increase, decrease, or modulate the target’s tensor polarization.
It can also connect spin reservoirs to transfer polarization. Finally, it
can drive the polarization of one spin system to zero to eliminate the
contamination in a spin asymmetry measurement. An example of the
latter is NH3, where the nitrogen polarization can contribute to the
asymmetry of polarized proton measurement. Eliminating the nitrogen
polarization without depleting the proton polarization reduces the error
in the proton asymmetry and improves the overall figure of merit of the
experiment.

2.2. Deuteron lineshape

The deuteron (or any other spin-1 particle without cubic symmetry)
has an NMR lineshape described by two peaks which form a doublet
function, where both peaks have an independent intensity but where
the shape of the peak is symmetric about zero in the frequency domain.
A single peak is described below with a dimensionless position in the
domain, R = !*!D

3!Q
, with ! being the probed frequency, `!D being the

deuteron Zeeman energy, and `!Q being the quadrupole energy [11].

The intensity in the NMR line as a function of R can be expressed as,
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with

X2 =
˘

� 2 + (1 * ✏R * ⌘ cos 2�)2 (8)

Y =
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3 * ⌘ cos 2�

cos ↵ = (1 * ✏R * ⌘ cos 2�)
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where ✏ = ±1 determines whether the tip of the peak is to be right
or left of R = 0, respectively. � and ⌘ cos 2� are parameters that are
material dependent and are approximately 0.05 and 0.04 respectively.
These parameters are determined for ND3 from experimental data [16].

The absorption line intensities, written as I+(R) and I*(R), can be
used to describe the polarizations at any frequency position in the
line R, which represents the polarizations of the target sample at a
particular frequency. In this regard, the vector polarization can be
written as the sum of the intensities, P (R) = C(I+(R) + I*(R)), and the
difference describes the tensor polarization Q(R) = C(I+(R) * I*(R)).
Integrating over R gives the total polarizations which can be written
as,

P = C(I+ + I*) (9)

Q = C(I+ * I*), (10)

where C is a calibration constant and I± is the integrated value,
total area, of I±(R) over the two absorption lines in Boltzmann equi-
librium. The Boltzmann equilibrium connection between vector and
tensor polarization, approximated in Eq. (6), dictates both the ratio
of the intensities and the corresponding relations, Eq. (9) and (10).
In this equilibrium state, the two absorption lines in the signal result
from the distribution over the polar angle between the direction of the
electric field gradient and the local magnet field vectors [11,14,16],
preserving the general shape of the NMR line with only the scale of the
intensities I+ and I* changing with respect to one another for different
polarization values.

2.3. Polar angle dependence

It is critical to be able to describe certain parts of the absorption
lines in terms of specific frequencies or frequency bins. This is necessary
for the positions and bins in the polar angle between the electric field
gradient and the holding field ✓ as well. The intensities I+ and I*
can be more naturally described in terms of ✓, shown in Fig. 2. The
intensity as a function of frequency position R of the deuteron Pake
doublet, with ✓ = ⇡_2 corresponding to the spin orientation, where
the principal axis of the coupling interaction is perpendicular to the
magnetic holding field. This is in contrast to ✓ = 0, which corresponds
to the spin orientation in which the principal axis of the coupling
interaction is parallel to the magnetic holding field. The position R = 0
is the common angle to both intensities and corresponds to the angle
✓ = cos*1

˘

1_3. The total vector polarization is shown as the red line,
the sum of the blue and green lines. The total tensor polarization is the
difference between these two.

The two absorption lines for each intensity represent the orientation
of different spins, the common ✓ seen at R and *R in the signal
is indicative of a shared energy level by the spin population. The
population of these energy levels, shown in Fig. 3, or population density
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Fig. 1. The potential values of tensor polarization Qn as a function of vector
polarization Pn. The red line corresponds to the Boltzmann condition, while the blue
triangular area corresponds to all allowed polarizations for the spin-1 system.

conditions, the system is in Boltzmann equilibrium and Qn can be
calculated directly from Pn as,

Qn = 2 *
t

4 * 3P 2
n . (6)

This relationship is indicated in Fig. 1 by the red line. It is clear from the
figure that vector polarization should be as high as possible to achieve
high tensor polarization when the Boltzmann condition applies across
the frequency domain.

Typically, the scale of polarization enhancement from DNP depends
greatly on the material in use. High-vector polarizations are often
at odds with high beam intensity and radiation resistance. Beam-
heating effects reduce the polarization of the target. Some materials
can achieve high polarization but are only applicable as low-intensity,
low-temperature targets due to their poor radiation resistance.

Selective semi-saturating RF radiation (ss-RF) [1] can be used to
manipulate the energy levels by driving transitions at select positions
in the NMR line at predetermined degrees of saturation. This technique
can increase, decrease, or modulate the target’s tensor polarization.
It can also connect spin reservoirs to transfer polarization. Finally, it
can drive the polarization of one spin system to zero to eliminate the
contamination in a spin asymmetry measurement. An example of the
latter is NH3, where the nitrogen polarization can contribute to the
asymmetry of polarized proton measurement. Eliminating the nitrogen
polarization without depleting the proton polarization reduces the error
in the proton asymmetry and improves the overall figure of merit of the
experiment.

2.2. Deuteron lineshape

The deuteron (or any other spin-1 particle without cubic symmetry)
has an NMR lineshape described by two peaks which form a doublet
function, where both peaks have an independent intensity but where
the shape of the peak is symmetric about zero in the frequency domain.
A single peak is described below with a dimensionless position in the
domain, R = !*!D

3!Q
, with ! being the probed frequency, `!D being the

deuteron Zeeman energy, and `!Q being the quadrupole energy [11].
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where ✏ = ±1 determines whether the tip of the peak is to be right
or left of R = 0, respectively. � and ⌘ cos 2� are parameters that are
material dependent and are approximately 0.05 and 0.04 respectively.
These parameters are determined for ND3 from experimental data [16].

The absorption line intensities, written as I+(R) and I*(R), can be
used to describe the polarizations at any frequency position in the
line R, which represents the polarizations of the target sample at a
particular frequency. In this regard, the vector polarization can be
written as the sum of the intensities, P (R) = C(I+(R) + I*(R)), and the
difference describes the tensor polarization Q(R) = C(I+(R) * I*(R)).
Integrating over R gives the total polarizations which can be written
as,

P = C(I+ + I*) (9)

Q = C(I+ * I*), (10)

where C is a calibration constant and I± is the integrated value,
total area, of I±(R) over the two absorption lines in Boltzmann equi-
librium. The Boltzmann equilibrium connection between vector and
tensor polarization, approximated in Eq. (6), dictates both the ratio
of the intensities and the corresponding relations, Eq. (9) and (10).
In this equilibrium state, the two absorption lines in the signal result
from the distribution over the polar angle between the direction of the
electric field gradient and the local magnet field vectors [11,14,16],
preserving the general shape of the NMR line with only the scale of the
intensities I+ and I* changing with respect to one another for different
polarization values.

2.3. Polar angle dependence

It is critical to be able to describe certain parts of the absorption
lines in terms of specific frequencies or frequency bins. This is necessary
for the positions and bins in the polar angle between the electric field
gradient and the holding field ✓ as well. The intensities I+ and I*
can be more naturally described in terms of ✓, shown in Fig. 2. The
intensity as a function of frequency position R of the deuteron Pake
doublet, with ✓ = ⇡_2 corresponding to the spin orientation, where
the principal axis of the coupling interaction is perpendicular to the
magnetic holding field. This is in contrast to ✓ = 0, which corresponds
to the spin orientation in which the principal axis of the coupling
interaction is parallel to the magnetic holding field. The position R = 0
is the common angle to both intensities and corresponds to the angle
✓ = cos*1
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1_3. The total vector polarization is shown as the red line,
the sum of the blue and green lines. The total tensor polarization is the
difference between these two.

The two absorption lines for each intensity represent the orientation
of different spins, the common ✓ seen at R and *R in the signal
is indicative of a shared energy level by the spin population. The
population of these energy levels, shown in Fig. 3, or population density

3

Under normal DNP-enhancement, conditions, the system is in 
Boltzmann equilibrium and 𝑄𝑛 can be calculated directly from 𝑃𝑛 
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Fig. 11. The ss-RF is applied at the frequency position *R which depletes vector
polarization in the affected bins while also increasing the vector polarization at R.

We rewrite the above equation expressing the known transitions driving
from the m = 0 energy level to the m = *1. This is driven at a rate
proportional to the energy-level population and strength of the field
⇠. The parameter ⇠ is linearly dependent on the amplitude of the ss-RF
controllable through the RF generator. Here we leave out the redundant
argument *R for simplicity. The final intensity is then,
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A similar expression can be written for the I+ = C(⇢+ * ⇢0) intensity,
which again only drives the two energy levels to equalize. For a higher
population in the m = +1 energy level than in the m = 0 energy level,
the population is driven from +1 ô 0 with the resulting intensity If at
*R being,

If+ (*R) = Ii+(*R) + ÜI i+(*R) (32)

As the population ⇢+ decreases due to RF-driven transitions, the pop-
ulation ⇢0 increases at the same exact rate. Leaving out the redundant
argument *R for simplicity, the final intensity is,
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These results are for the frequency position *R where the RF is applied,
but as previously outlined there are two frequency positions in R the
NMR line for a single ✓ bin. The corresponding R position for the
selected ✓ bin is opposite in sign to *R which we can write as just R.
The change in intensity at R also has two components I+ and I*. The
changes in these intensities are a direct result of the RF manipulation
at *R, such that at I*(*R) the RF-driven transitions result in a loss of
population in the m = 0 energy level which is seen as an increase in
intensity at I+(R) such that,

If+ (R) = Ii+(R) + ÜI i+(R). (34)

As the population, ⇢0 decreases due to RF-driven transitions, the inten-
sity in the opposing absorption line I+ = C(⇢+ * ⇢0) increases because

the population in ⇢0 is being reduced. Again leaving out the redundant
argument *R for simplicity, the final intensity is,
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The other component to the change in intensity at R comes from I*.
The change in this intensity is a direct result of the RF manipulation at
*R, such that at I*(*R) the RF driven transitions from +1 ô 0 so the
loss of population in the m = +1 energy level is seen as an increase in
intensity at I*(R) such that,

If* (R) = Ii*(R) + ÜI i*(R). (36)

As the population, ⇢+ decreases due to RF-driven transitions the inten-
sity in the opposing absorption line I* = C(⇢0 * ⇢*) increases because
the population in ⇢0 has increased. The final intensity is then,

If* = C
⌅�

⇢0 + ⇠⇢+
�

*
�

⇢*
�⇧

(37)
If* = C

⌅�

⇢0 * ⇢*
�

+
�

⇠⇢+
�⇧

⌃ ÜI i*(R) = +C⇠⇢+.

The change in intensity at the RF-frequency position can be written
in terms of the change in intensity at the frequency position in the
opposing absorption lines provided by the above equations of motion
at *R and R such that,

ÜI+(R) = * 1
2
ÜI*(*R)

ÜI*(R) = * 1
2
ÜI+(*R).

This resulting set of equations tells us that the hole in the NMR
line at the frequency position where the RF is applied (*R) depletes
twice as fast as the intensity growth in the opposing absorption line
at (R). Integrating over the frequency positions R provides a direct
relationship between the area lost (Alost) at the RF location and the
area gained (Agained) in the opposing absorption lines.

Agained = 1
2Alost. (38)

Eq. (38) is an exact and simple expression that can be used to quickly
calculate the amount of enhancement expected from ss-RF given any
particular loss in an absorption line. This can be done for each ab-
sorption line separately or as a sum. These equations of motion could
then be used directly to calculate the exact relative loss and gain for
each absorption line for any ss-RF application. In the next section, we
introduce a method that, when combined with Eq. (38), eliminates the
need for the rate equations altogether.

5. Spin temperature consistence

All of the dashed relaxation pathways shown in Fig. 10 depolarize
the target to a bulk polarization that is in spin temperature equilib-
rium (TE) across the frequency domain. Similarly, microwaves produce
bulk polarization in spin temperature equilibrium across the frequency
domain. The target material is in conditions of low temperature and
high magnetic field, with some free radical scattered through its glassy
matrix structure. The low temperature and high magnetic field produce
high TE polarization of the unpaired electron in the radical. Thermal
equilibrium between two states of different energies allows the use of
microwaves at a frequency difference between the electron ESR fre-
quency and the nucleons’ (or nuclei) NMR frequency. The microwaves
drive transitions from the lower hyperfine state to the higher one.
The radical then rapidly de-excites to one of the lower states. If it
de-excites to the original lower level, another microwave photon can
excite it again. The nucleons (or nuclei) in the original state are
pumped into the other low hyperfine state, resulting in high nuclear
polarization. Without continuous microwaves or other RF pumping,
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29

FIG. 19. Drawing of the ss-RF cup and coil used for the set of experiments discussed. The microwaves come from the gold
plated horn shown on the target insert. The coils are designed to produce a homogeneous RF-field pointing orthogonal to the
holding field. These specialized coils can perform AFP and ss-RF and still allow the DNP microwave to penetrate the target
cell. Figure from Carlos Ramirez of UVA polarized target group.
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FIG. 20. The tensor polarization shown from the di↵erence of the intensities I+(R) and I�(R). Figure from [122].

Vector polarization is the sum of I+(R) and I�(R) over the frequency domain in R. Similarly, a tensor polarization plot is
shown in Figure 20 represents the di↵erence of I+(R) and I�(R) over the frequency domain in R. By selectively applying the
ss-RF, it is possible to reduce the regions in the Pzz line that drop below the x-axis. When this is done simultaneously over all
negative regions in the domain, the tensor polarization is enhanced.

5. Semi-Saturating RF Enhancement

To optimize the enhancement, the ss-RF excitation must minimize the negative tensor polarization for all R while minimizing
the reduction to the overall area of the NMR signal from the process. The two critical regions lie around R⇠⌥1 (✓ ⇡ ⇡/2) and
±1 < R < ±2 (✓ ⇡ 0). For positive vector polarization, the greatest integrated tensor polarization enhancement is achieved
through selective excitation to reduce the size of the smaller transition area with intensity I�. This can be thought of as
minimizing the negative parts of the tensor polarization, shown in Fig. 20. In both figures, the y-axis would normally be
millivolts scaled by a multiplicative factor CE , which is sensitive to the characteristics of the NMR coil, such as inductance,
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The gluon transversity cannot exist in the nucleon where the spin flip ∆s = 2 is not possible.  

The spin flip of                                                                   is necessary for gluon transversity.
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not possible. The quark transversity distributions evolve without the corresponding gluon distribution in the nucleon
[32] which di↵ers from the longitudinally-polarized PDFs, where the quarks and gluon distributions couple with each
other in the Q

2 evolution. This is a subtle yet critical point because it provide a crucial test of the perturbative QCD
in Spin Physics.
Similarly to the quark transversity, Eq. 33, the gluon transversity is written as,

h
g

1TT
(x) ⇠ ImA++,��, (37)

where the spin flip of �s = 2(|�f ��i| = |⇤f �⇤i| = 2) is necessary for gluon transversity, see Fig 9. The most simple
and stable spin-1 hadron or nucleus is the deuteron, which is our choice for the future experiment to study gluon
transversity. By angular momentum conservation, the linear polarization of a gluon is zero for the spin-1/2 hadron.
Naturally, linear polarization is measured by an operator that flips helicity by two units. Since no helicity is absorbed
by the space-time part of the definition of the parton densities (the integrals are azimuthally symmetric), the helicity
flip in the operator must correspond to a helicity flip term in the density. The gluon correlation function is defined as,
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where f
g

1,B is the unpolarized gluon distribution function, gg1,B is the longitudinally-polarized distribution function,
f
g

1LL,B
is the longitudinally tensor polarized distribution function, and h

g

1TT,B
is the transversely tensor polarized

distribution function, or the gluon transversity. It is clear that the matrix elements S
↵�

TT
must be finite in order to

measure this observable.
The matrix element form of the gluon transversity is,
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where ✏↵�
TT

= +1 for ↵ = � = 1, ✏↵�
TT

= �1 for ↵ = � = 2, and all else is zero. The linear polarization of the gluons
requires a tensor polarized target oriented along the x-axis or the vertical direction transverse to the beam direction.
This is indicated by the Ex in the above equation.

FIG. 9. Gluon-deuteron forward scattering amplitude A++,�� with the spin flip of 2 (�s = 2) for gluon transversity.

The cross-section can be written in terms of parton correlation functions by considering the subprocess assuming a
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not possible. The quark transversity distributions evolve without the corresponding gluon distribution in the nucleon
[32] which di↵ers from the longitudinally-polarized PDFs, where the quarks and gluon distributions couple with each
other in the Q

2 evolution. This is a subtle yet critical point because it provide a crucial test of the perturbative QCD
in Spin Physics.
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where the spin summations are over the muons, quark, antiquark, and gluon. The parton-interaction part is �qq̄ !
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⇤↵(pd,�b)�µ↵ by extraction of the quark charge eq, and the gluon-polarization vector ✏
⇤↵(pd,�d) from

�qq̄!�⇤g,µ. By changing from three to two-body phase space and recalculating the cross-section using the lepton and
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Here, the hadron tensor can be expressed in terms of the correlation functions. The quark-gluon process contribution to the
cross-section diagram is shown in Fig. 10, indicating the quark in the proton beam A and the gluon in the deuteron target
B. The � function �

4(pH � ph � pHx) (H = A or B, h = a or b) is expressed by the integrals of exponential function:
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)⇠̇h . The quark field is given at ⇠h in the matrix elements, with the exponential

factor e�i(pH )⇠̇h (0)e�i(pH )⇠̇h =  (⇠h).

III. THE MEASUREMENT

To measure transversity of both the sea-quarks and gluons in a polarized deuteron, a set of unique target spin asymmetries
must be measured. For the sea-quark transversity, ideally what is needed is a transversely vector polarized target system which
mitigates any tensor polarized contributions.

The gluon transversity is ideally measured with a vector and tensor polarized target as to isolate linearly polarized gluons in
the deuteron. To understand this configuration, we start again with the spin vector (S) and tensor (T ) which are parameterized
in the rest frame of the deuteron,
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FIG. 11. (a) The proton-deuteron Drell-Yan process p + d ! µ
+
µ
� +X showing the notation for each momentum index. (b)

The parton reaction with corresponding index for process a+ b ! c+ d in the center-of-momentum frame.

where ~E+, ~E0, and ~E� indicate the three possible spin states of the deuteron. Here, the polarizations ~Ex and ~Ey are spin-1
alignment dependent states and can be used to orient the gluons in a linearly polarized configuration in the target based on the
gluon transversity distributions defined by the matrix elements between linearly-polarized states. The spin vector and tensor
are written in terms of the polarization vector ~E of the deuteron as,
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For optimal gluon transversity extraction, the key is in the target configuration utilized to selectively reduce all unneeded terms
in the spin tensor to zero, preserving only the terms that relate to the observable of interest. In this case, having a finite
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TT gives the desired access to the gluon transversity. Making the other terms zero or negligible is advantageous to a clean
measurement. In this case, the polarization vectors Ex and Ey can be used to provide linear polarization, and both consist of a
deuteron tensor polarized in the transverse plane to the beam-line. The di↵erence in the cross-section from these polarization
states can be used in an asymmetry to build an observable to extract gluon transversity.

The polarization vectors ~Ex, ~E0, and ~Ey are all indicative of a purely tensor polarized target with spin quantization axis
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To exploit the observables, we rely on the correlation functions in the collinear formalism. For the di↵erence in the ~Ex and
~Ey polarized cross-section, the hadron tensor is given by,
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Here, the summation is taken over the quark spin �d, and all spin tensor matrix elements are zero, except for the gluon
transversity in the target. There is no equivalent polarization term in the quark and antiquark distributions of the spin-1
target, so the transversity of the sea-quarks and the gluons can be separated through the strategic use of vector and tensor
polarizations. This is because the virtual photon in the intermediate stage interacts with a charge parton, so only quark and
antiquark correlation functions contribute as the leading process from the spin-1/2 nucleons inside the spin-1 deuteron. This
implies that the geometric shape the deuteron in the di↵erent MJ spin states are highly correlated to the transverse gluon and
sea-quark observables.

To build an asymmetry, the cross-section di↵erence is written as,
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The cross-section sum of these polarization states can also be calculated where q̄q ! �
⇤
g and q/q̄ ! �

⇤
q/q̄. This leads to the

The spin vector and tensor are written in terms of the 
polarization vector of the deuteron 
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The gluon transversity cannot exist in the nucleon where the spin flip ∆s = 2 is not possible.  

The spin flip of                                                                   is necessary for gluon transversity.
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not possible. The quark transversity distributions evolve without the corresponding gluon distribution in the nucleon
[32] which di↵ers from the longitudinally-polarized PDFs, where the quarks and gluon distributions couple with each
other in the Q

2 evolution. This is a subtle yet critical point because it provide a crucial test of the perturbative QCD
in Spin Physics.
Similarly to the quark transversity, Eq. 33, the gluon transversity is written as,

h
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(x) ⇠ ImA++,��, (37)

where the spin flip of �s = 2(|�f ��i| = |⇤f �⇤i| = 2) is necessary for gluon transversity, see Fig 9. The most simple
and stable spin-1 hadron or nucleus is the deuteron, which is our choice for the future experiment to study gluon
transversity. By angular momentum conservation, the linear polarization of a gluon is zero for the spin-1/2 hadron.
Naturally, linear polarization is measured by an operator that flips helicity by two units. Since no helicity is absorbed
by the space-time part of the definition of the parton densities (the integrals are azimuthally symmetric), the helicity
flip in the operator must correspond to a helicity flip term in the density. The gluon correlation function is defined as,
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where f
g

1,B is the unpolarized gluon distribution function, gg1,B is the longitudinally-polarized distribution function,
f
g

1LL,B
is the longitudinally tensor polarized distribution function, and h

g

1TT,B
is the transversely tensor polarized

distribution function, or the gluon transversity. It is clear that the matrix elements S
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must be finite in order to

measure this observable.
The matrix element form of the gluon transversity is,
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where ✏↵�
TT

= +1 for ↵ = � = 1, ✏↵�
TT

= �1 for ↵ = � = 2, and all else is zero. The linear polarization of the gluons
requires a tensor polarized target oriented along the x-axis or the vertical direction transverse to the beam direction.
This is indicated by the Ex in the above equation.

FIG. 9. Gluon-deuteron forward scattering amplitude A++,�� with the spin flip of 2 (�s = 2) for gluon transversity.

The cross-section can be written in terms of parton correlation functions by considering the subprocess assuming a
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requires a tensor polarized target oriented along the x-axis or the vertical direction transverse to the beam direction.
This is indicated by the Ex in the above equation.
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not possible. The quark transversity distributions evolve without the corresponding gluon distribution in the nucleon
[32] which di↵ers from the longitudinally-polarized PDFs, where the quarks and gluon distributions couple with each
other in the Q

2 evolution. This is a subtle yet critical point because it provide a crucial test of the perturbative QCD
in Spin Physics.
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FIG. 11. (a) The proton-deuteron Drell-Yan process p + d ! µ
+
µ
� +X showing the notation for each momentum index. (b)

The parton reaction with corresponding index for process a+ b ! c+ d in the center-of-momentum frame.

where ~E+, ~E0, and ~E� indicate the three possible spin states of the deuteron. Here, the polarizations ~Ex and ~Ey are spin-1
alignment dependent states and can be used to orient the gluons in a linearly polarized configuration in the target based on the
gluon transversity distributions defined by the matrix elements between linearly-polarized states. The spin vector and tensor
are written in terms of the polarization vector ~E of the deuteron as,

~S = Im
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~E
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⇥ ~E
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1
3
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i Ej) . (47)

For optimal gluon transversity extraction, the key is in the target configuration utilized to selectively reduce all unneeded terms
in the spin tensor to zero, preserving only the terms that relate to the observable of interest. In this case, having a finite
S

xx

TT gives the desired access to the gluon transversity. Making the other terms zero or negligible is advantageous to a clean
measurement. In this case, the polarization vectors Ex and Ey can be used to provide linear polarization, and both consist of a
deuteron tensor polarized in the transverse plane to the beam-line. The di↵erence in the cross-section from these polarization
states can be used in an asymmetry to build an observable to extract gluon transversity.

The polarization vectors ~Ex, ~E0, and ~Ey are all indicative of a purely tensor polarized target with spin quantization axis
along the x, z, and y axis respectively. From Eq. 47, we get for ~Ex a vector polarization of Sx
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To exploit the observables, we rely on the correlation functions in the collinear formalism. For the di↵erence in the ~Ex and
~Ey polarized cross-section, the hadron tensor is given by,
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Here, the summation is taken over the quark spin �d, and all spin tensor matrix elements are zero, except for the gluon
transversity in the target. There is no equivalent polarization term in the quark and antiquark distributions of the spin-1
target, so the transversity of the sea-quarks and the gluons can be separated through the strategic use of vector and tensor
polarizations. This is because the virtual photon in the intermediate stage interacts with a charge parton, so only quark and
antiquark correlation functions contribute as the leading process from the spin-1/2 nucleons inside the spin-1 deuteron. This
implies that the geometric shape the deuteron in the di↵erent MJ spin states are highly correlated to the transverse gluon and
sea-quark observables.

To build an asymmetry, the cross-section di↵erence is written as,
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The cross-section sum of these polarization states can also be calculated where q̄q ! �
⇤
g and q/q̄ ! �

⇤
q/q̄. This leads to the
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Here, the summation is taken over the quark spin �d, and all spin tensor matrix elements are zero, except for the gluon
transversity in the target. There is no equivalent polarization term in the quark and antiquark distributions of the spin-1
target, so the transversity of the sea-quarks and the gluons can be separated through the strategic use of vector and tensor
polarizations. This is because the virtual photon in the intermediate stage interacts with a charge parton, so only quark and
antiquark correlation functions contribute as the leading process from the spin-1/2 nucleons inside the spin-1 deuteron. This
implies that the geometric shape the deuteron in the di↵erent MJ spin states are highly correlated to the transverse gluon and
sea-quark observables.
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transversity in the target. There is no equivalent polarization term in the quark and antiquark distributions of the spin-1
target, so the transversity of the sea-quarks and the gluons can be separated through the strategic use of vector and tensor
polarizations. This is because the virtual photon in the intermediate stage interacts with a charge parton, so only quark and
antiquark correlation functions contribute as the leading process from the spin-1/2 nucleons inside the spin-1 deuteron. This
implies that the geometric shape the deuteron in the di↵erent MJ spin states are highly correlated to the transverse gluon and
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The cross-section sum of these polarization states can also be calculated where q̄q ! �
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g and q/q̄ ! �

⇤
q/q̄. This leads to the
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Here, the summation is taken over the quark spin �d, and all spin tensor matrix elements are zero, except for the gluon
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target, so the transversity of the sea-quarks and the gluons can be separated through the strategic use of vector and tensor
polarizations. This is because the virtual photon in the intermediate stage interacts with a charge parton, so only quark and
antiquark correlation functions contribute as the leading process from the spin-1/2 nucleons inside the spin-1 deuteron. This
implies that the geometric shape the deuteron in the di↵erent MJ spin states are highly correlated to the transverse gluon and
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where ~E+, ~E0, and ~E� indicate the three possible spin states of the deuteron. Here, the polarizations ~Ex and ~Ey are spin-1
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measurement. In this case, the polarization vectors Ex and Ey can be used to provide linear polarization, and both consist of a
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Here, the summation is taken over the quark spin �d, and all spin tensor matrix elements are zero, except for the gluon
transversity in the target. There is no equivalent polarization term in the quark and antiquark distributions of the spin-1
target, so the transversity of the sea-quarks and the gluons can be separated through the strategic use of vector and tensor
polarizations. This is because the virtual photon in the intermediate stage interacts with a charge parton, so only quark and
antiquark correlation functions contribute as the leading process from the spin-1/2 nucleons inside the spin-1 deuteron. This
implies that the geometric shape the deuteron in the di↵erent MJ spin states are highly correlated to the transverse gluon and
sea-quark observables.
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where ~E+, ~E0, and ~E� indicate the three possible spin states of the deuteron. Here, the polarizations ~Ex and ~Ey are spin-1
alignment dependent states and can be used to orient the gluons in a linearly polarized configuration in the target based on the
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measurement. In this case, the polarization vectors Ex and Ey can be used to provide linear polarization, and both consist of a
deuteron tensor polarized in the transverse plane to the beam-line. The di↵erence in the cross-section from these polarization
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Here, the summation is taken over the quark spin �d, and all spin tensor matrix elements are zero, except for the gluon
transversity in the target. There is no equivalent polarization term in the quark and antiquark distributions of the spin-1
target, so the transversity of the sea-quarks and the gluons can be separated through the strategic use of vector and tensor
polarizations. This is because the virtual photon in the intermediate stage interacts with a charge parton, so only quark and
antiquark correlation functions contribute as the leading process from the spin-1/2 nucleons inside the spin-1 deuteron. This
implies that the geometric shape the deuteron in the di↵erent MJ spin states are highly correlated to the transverse gluon and
sea-quark observables.

To build an asymmetry, the cross-section di↵erence is written as,
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The cross-section sum of these polarization states can also be calculated where q̄q ! �
⇤
g and q/q̄ ! �

⇤
q/q̄. This leads to the
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measurement. In this case, the polarization vectors Ex and Ey can be used to provide linear polarization, and both consist of a
deuteron tensor polarized in the transverse plane to the beam-line. The di↵erence in the cross-section from these polarization
states can be used in an asymmetry to build an observable to extract gluon transversity.
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transversity in the target. There is no equivalent polarization term in the quark and antiquark distributions of the spin-1
target, so the transversity of the sea-quarks and the gluons can be separated through the strategic use of vector and tensor
polarizations. This is because the virtual photon in the intermediate stage interacts with a charge parton, so only quark and
antiquark correlation functions contribute as the leading process from the spin-1/2 nucleons inside the spin-1 deuteron. This
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Here, the hadron tensor can be expressed in terms of the correlation functions. The quark-gluon process contribution to
the cross-section diagram is shown in Fig. 10, indicating the quark in the proton beam A and the gluon in the deuteron
target B. The � function �4(pH � ph � pHx

) (H = A or B, h = a or b) is expressed by the integrals of exponential function:

(2⇡)4�4(pH � ph � pHx
) =

R
d
4
⇠he

�i(pH�ph�pHx
)⇠̇h . The quark field is given at ⇠h in the matrix elements, with the exponential

factor e�i(pH )⇠̇h (0)e�i(pH )⇠̇h =  (⇠h).

III. THE MEASUREMENT

To measure transversity of both the sea-quarks and gluons in a polarized deuteron, a set of unique target spin asymmetries
must be measured. For the sea-quark transversity, ideally what is needed is a transversely vector polarized target system which
mitigates any tensor polarized contributions.

The gluon transversity is ideally measured with a vector and tensor polarized target as to isolate linearly polarized gluons in
the deuteron. To understand this configuration, we start again with the spin vector (S) and tensor (T ) which are parameterized
in the rest frame of the deuteron,
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are the parameters to indicate the deuteron’s vector and tensor polarizations. The deuteron

polarization vector ~E is,
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where ~E+, ~E0, and ~E� indicate the three possible spin states of the deuteron. Here, the polarizations ~Ex and ~Ey are spin-1
alignment dependent states and can be used to orient the gluons in a linearly polarized configuration in the target based on the
gluon transversity distributions defined by the matrix elements between linearly-polarized states. The spin vector and tensor
are written in terms of the polarization vector ~E of the deuteron as,
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For optimal gluon transversity extraction, the key is in the target configuration utilized to selectively reduce all unneeded terms
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Here, the summation is taken over the quark spin �d, and all spin tensor matrix elements are zero, except for the gluon
transversity in the target. There is no equivalent polarization term in the quark and antiquark distributions of the spin-1
target, so the transversity of the sea-quarks and the gluons can be separated through the strategic use of vector and tensor
polarizations. This is because the virtual photon in the intermediate stage interacts with a charge parton, so only quark and
antiquark correlation functions contribute as the leading process from the spin-1/2 nucleons inside the spin-1 deuteron. This



If the differential cross-section from the longitudinal tensor polarized part is small compared to the transverse 
tensor polarized part

 

43

20

cross-section,

d�pd!µ+µ�X

d⌧dq
2
T
d�dy

(Ex + Ey) =
↵
2
↵sCF

2⇡⌧s2

Z 1

min(xa)

dxa

1
(xa � x1)x2

ax
2
b

⇥

X

q

e
2
q


4
9
{qA (xa) q̄B (xb) + q̄A (xa) qB (xb)}

⇥
2⌧ {⌧ � (�2xaxb + x1xb + x2xa)}+ x

2
b (xa � x1)

2 + x
2
a (xb � x2)

2

(xa � x1) (xb � x2)

+
1
6
{qA (xa) + q̄A (xa)} gB (xb)

2⌧ (⌧ � x1xb) + x
2
b

�
(xa � x1)

2 + x
2
a

 

xb (xa � x1)

+
1
6
gA (xa) {qB (xb) + q̄B (xb)}

2⌧ (⌧ � x2xa) + x
2
a

�
(xb � x2)

2 + x
2
b

 

xa (xb � x2)

#

(50)

This provides the necessary numerator to construct a gluon transversity asymmetry, which can be written as,
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. (51)

Based on the polarization vector di↵erence, an equivalency can be derived using the unpolarized combination vector ~Ex + ~Ey +
~Ez := U , resulting is zeros for all terms in the spin polarization vector and tensor. We can then write ~Ex � ~Ey ⌘ 2 ~Ex + ~E0 �U

and ~Ex + ~Ey ⌘ U � ~E0. If we use f
g

1LL
⇡ 0 for gluons [61] such that the di↵erential cross-section from the longitudinal tensor

polarized part is small compared to the transverse tensor polarized part, we can write,
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The generalized experimental gluon transversity asymmetry can then be written as,
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where Pzz is the target ensemble tensor polarization pertaining to the tensor polarized cross-section events N
Ex , f is the

correction for the presence of unpolarized nuclei the beam interacts with, and N is the number of counts in that spin state. There
are several ways to build a gluon transversity asymmetry using di↵erent quantization axes and polarized target configurations,
but this equivalence provides a way to compare directly with predictions and requires the same polarized target magnet and
orientation already in place in the SpinQuest experimental hall. We point out here that �

Ex can be measured with either a
purely tensor polarized target or as the di↵erence between a enhanced tensor polarized target with high tensor polarization
and some vector polarization subtracted from a purely vector polarized target. A purely vector polarized target is significantly
easier to make compared to a purely tensor polarized target, so this is our preferred method. This term in the asymmetry then
becomes,

1
Pzz

N
Ex =

1
P 0N

E±,Ex
�

1
P
N

E± . (53)

Here, P 0 represents the vector polarization when the target is tensor enhanced using the ss-RF method (see Section IVC). This
is a di↵erent vector polarization value than when the tensor polarization is mitigated in the subtracted term. In that case, we
label the vector polarization P . Both P

0 and P should be as high as possible to optimize statistical significance.
Also, due to the cos2� term in Eq. 49, it is possible to extract a tensor polarization contribution in the azimuthal angle

produced by gluon transversity. This would show up even from the ~Ex polarized state alone, and the di↵erence between a target
with some tensor polarization and with no-tensor polarization can be use to measure the whole coe�cient while exploring any
azimuthal dependence.

As mentioned previously, the quark transversity is easiest to measure in the neutron/deuteron by mitigating any contribution
from the tensor polarization. The best possible target system would then alternate between vector polarized, tensor polarized,
and unpolarized. With the UVA RF technology, it is possible to start with a target that is in Boltzmann equilibrium, which has
both tensor and vector polarization, and then, on the scale of milliseconds, use the selective RF in the NMR frequency domain
to remove tensor polarization in the target ensemble, as well as to create an unpolarized target and then flip back to the original
spin state. These alterations to the target spin configurations can be done between beam spills, allowing data collection in the
di↵erent spin states while minimizing time dependant false asymmetries.

As pointed out earlier, the SpinQuest polarized target system can already accommodate most of the needs of this proposal.
Only slight modification must be made to the target cell to add a selective RF manipulation coil and adapt the polarization
measuring NMR system to be optimized to function with the two competing RF sources. For the purpose of the proposed
measurements, one needs to separately measure di↵erent target spin configurations but with the field always pointing transverse
vertical as it is now for SpinQuest. The experimental setup and data taking approach we will follow is similar to that used
previously by experiments E866, E906, and E1039.
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Based on the polarization vector di↵erence, an equivalency can be derived using the unpolarized combination vector ~Ex + ~Ey +
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where Pzz is the target ensemble tensor polarization pertaining to the tensor polarized cross-section events N
Ex , f is the

correction for the presence of unpolarized nuclei the beam interacts with, and N is the number of counts in that spin state. There
are several ways to build a gluon transversity asymmetry using di↵erent quantization axes and polarized target configurations,
but this equivalence provides a way to compare directly with predictions and requires the same polarized target magnet and
orientation already in place in the SpinQuest experimental hall. We point out here that �

Ex can be measured with either a
purely tensor polarized target or as the di↵erence between a enhanced tensor polarized target with high tensor polarization
and some vector polarization subtracted from a purely vector polarized target. A purely vector polarized target is significantly
easier to make compared to a purely tensor polarized target, so this is our preferred method. This term in the asymmetry then
becomes,
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Here, P 0 represents the vector polarization when the target is tensor enhanced using the ss-RF method (see Section IVC). This
is a di↵erent vector polarization value than when the tensor polarization is mitigated in the subtracted term. In that case, we
label the vector polarization P . Both P

0 and P should be as high as possible to optimize statistical significance.
Also, due to the cos2� term in Eq. 49, it is possible to extract a tensor polarization contribution in the azimuthal angle

produced by gluon transversity. This would show up even from the ~Ex polarized state alone, and the di↵erence between a target
with some tensor polarization and with no-tensor polarization can be use to measure the whole coe�cient while exploring any
azimuthal dependence.

As mentioned previously, the quark transversity is easiest to measure in the neutron/deuteron by mitigating any contribution
from the tensor polarization. The best possible target system would then alternate between vector polarized, tensor polarized,
and unpolarized. With the UVA RF technology, it is possible to start with a target that is in Boltzmann equilibrium, which has
both tensor and vector polarization, and then, on the scale of milliseconds, use the selective RF in the NMR frequency domain
to remove tensor polarization in the target ensemble, as well as to create an unpolarized target and then flip back to the original
spin state. These alterations to the target spin configurations can be done between beam spills, allowing data collection in the
di↵erent spin states while minimizing time dependant false asymmetries.

As pointed out earlier, the SpinQuest polarized target system can already accommodate most of the needs of this proposal.
Only slight modification must be made to the target cell to add a selective RF manipulation coil and adapt the polarization
measuring NMR system to be optimized to function with the two competing RF sources. For the purpose of the proposed
measurements, one needs to separately measure di↵erent target spin configurations but with the field always pointing transverse
vertical as it is now for SpinQuest. The experimental setup and data taking approach we will follow is similar to that used
previously by experiments E866, E906, and E1039.
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Based on the polarization vector di↵erence, an equivalency can be derived using the unpolarized combination vector ~Ex + ~Ey +
~Ez := U , resulting is zeros for all terms in the spin polarization vector and tensor. We can then write ~Ex � ~Ey ⌘ 2 ~Ex + ~E0 �U

and ~Ex + ~Ey ⌘ U � ~E0. If we use f
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where Pzz is the target ensemble tensor polarization pertaining to the tensor polarized cross-section events N
Ex , f is the

correction for the presence of unpolarized nuclei the beam interacts with, and N is the number of counts in that spin state. There
are several ways to build a gluon transversity asymmetry using di↵erent quantization axes and polarized target configurations,
but this equivalence provides a way to compare directly with predictions and requires the same polarized target magnet and
orientation already in place in the SpinQuest experimental hall. We point out here that �

Ex can be measured with either a
purely tensor polarized target or as the di↵erence between a enhanced tensor polarized target with high tensor polarization
and some vector polarization subtracted from a purely vector polarized target. A purely vector polarized target is significantly
easier to make compared to a purely tensor polarized target, so this is our preferred method. This term in the asymmetry then
becomes,
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Here, P 0 represents the vector polarization when the target is tensor enhanced using the ss-RF method (see Section IVC). This
is a di↵erent vector polarization value than when the tensor polarization is mitigated in the subtracted term. In that case, we
label the vector polarization P . Both P

0 and P should be as high as possible to optimize statistical significance.
Also, due to the cos2� term in Eq. 49, it is possible to extract a tensor polarization contribution in the azimuthal angle

produced by gluon transversity. This would show up even from the ~Ex polarized state alone, and the di↵erence between a target
with some tensor polarization and with no-tensor polarization can be use to measure the whole coe�cient while exploring any
azimuthal dependence.

As mentioned previously, the quark transversity is easiest to measure in the neutron/deuteron by mitigating any contribution
from the tensor polarization. The best possible target system would then alternate between vector polarized, tensor polarized,
and unpolarized. With the UVA RF technology, it is possible to start with a target that is in Boltzmann equilibrium, which has
both tensor and vector polarization, and then, on the scale of milliseconds, use the selective RF in the NMR frequency domain
to remove tensor polarization in the target ensemble, as well as to create an unpolarized target and then flip back to the original
spin state. These alterations to the target spin configurations can be done between beam spills, allowing data collection in the
di↵erent spin states while minimizing time dependant false asymmetries.

As pointed out earlier, the SpinQuest polarized target system can already accommodate most of the needs of this proposal.
Only slight modification must be made to the target cell to add a selective RF manipulation coil and adapt the polarization
measuring NMR system to be optimized to function with the two competing RF sources. For the purpose of the proposed
measurements, one needs to separately measure di↵erent target spin configurations but with the field always pointing transverse
vertical as it is now for SpinQuest. The experimental setup and data taking approach we will follow is similar to that used
previously by experiments E866, E906, and E1039.
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Based on the polarization vector di↵erence, an equivalency can be derived using the unpolarized combination vector ~Ex + ~Ey +
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where Pzz is the target ensemble tensor polarization pertaining to the tensor polarized cross-section events N
Ex , f is the

correction for the presence of unpolarized nuclei the beam interacts with, and N is the number of counts in that spin state. There
are several ways to build a gluon transversity asymmetry using di↵erent quantization axes and polarized target configurations,
but this equivalence provides a way to compare directly with predictions and requires the same polarized target magnet and
orientation already in place in the SpinQuest experimental hall. We point out here that �

Ex can be measured with either a
purely tensor polarized target or as the di↵erence between a enhanced tensor polarized target with high tensor polarization
and some vector polarization subtracted from a purely vector polarized target. A purely vector polarized target is significantly
easier to make compared to a purely tensor polarized target, so this is our preferred method. This term in the asymmetry then
becomes,
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Here, P 0 represents the vector polarization when the target is tensor enhanced using the ss-RF method (see Section IVC). This
is a di↵erent vector polarization value than when the tensor polarization is mitigated in the subtracted term. In that case, we
label the vector polarization P . Both P

0 and P should be as high as possible to optimize statistical significance.
Also, due to the cos2� term in Eq. 49, it is possible to extract a tensor polarization contribution in the azimuthal angle

produced by gluon transversity. This would show up even from the ~Ex polarized state alone, and the di↵erence between a target
with some tensor polarization and with no-tensor polarization can be use to measure the whole coe�cient while exploring any
azimuthal dependence.

As mentioned previously, the quark transversity is easiest to measure in the neutron/deuteron by mitigating any contribution
from the tensor polarization. The best possible target system would then alternate between vector polarized, tensor polarized,
and unpolarized. With the UVA RF technology, it is possible to start with a target that is in Boltzmann equilibrium, which has
both tensor and vector polarization, and then, on the scale of milliseconds, use the selective RF in the NMR frequency domain
to remove tensor polarization in the target ensemble, as well as to create an unpolarized target and then flip back to the original
spin state. These alterations to the target spin configurations can be done between beam spills, allowing data collection in the
di↵erent spin states while minimizing time dependant false asymmetries.

As pointed out earlier, the SpinQuest polarized target system can already accommodate most of the needs of this proposal.
Only slight modification must be made to the target cell to add a selective RF manipulation coil and adapt the polarization
measuring NMR system to be optimized to function with the two competing RF sources. For the purpose of the proposed
measurements, one needs to separately measure di↵erent target spin configurations but with the field always pointing transverse
vertical as it is now for SpinQuest. The experimental setup and data taking approach we will follow is similar to that used
previously by experiments E866, E906, and E1039.
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not possible. The quark transversity distributions evolve without the corresponding gluon distribution in the nucleon
[32] which di↵ers from the longitudinally-polarized PDFs, where the quarks and gluon distributions couple with each
other in the Q

2 evolution. This is a subtle yet critical point because it provide a crucial test of the perturbative QCD
in Spin Physics.
Similarly to the quark transversity, Eq. 33, the gluon transversity is written as,

h
g

1TT
(x) ⇠ ImA++,��, (37)

where the spin flip of �s = 2(|�f ��i| = |⇤f �⇤i| = 2) is necessary for gluon transversity, see Fig 9. The most simple
and stable spin-1 hadron or nucleus is the deuteron, which is our choice for the future experiment to study gluon
transversity. By angular momentum conservation, the linear polarization of a gluon is zero for the spin-1/2 hadron.
Naturally, linear polarization is measured by an operator that flips helicity by two units. Since no helicity is absorbed
by the space-time part of the definition of the parton densities (the integrals are azimuthally symmetric), the helicity
flip in the operator must correspond to a helicity flip term in the density. The gluon correlation function is defined as,
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where A
↵ is given by A

↵ = A
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↵, and Nh/H is the normalization constant. The gluon correlation function in the
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where f
g

1,B is the unpolarized gluon distribution function, gg1,B is the longitudinally-polarized distribution function,
f
g

1LL,B
is the longitudinally tensor polarized distribution function, and h

g

1TT,B
is the transversely tensor polarized

distribution function, or the gluon transversity. It is clear that the matrix elements S
↵�

TT
must be finite in order to

measure this observable.
The matrix element form of the gluon transversity is,
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where ✏↵�
TT

= +1 for ↵ = � = 1, ✏↵�
TT

= �1 for ↵ = � = 2, and all else is zero. The linear polarization of the gluons
requires a tensor polarized target oriented along the x-axis or the vertical direction transverse to the beam direction.
This is indicated by the Ex in the above equation.

FIG. 9. Gluon-deuteron forward scattering amplitude A++,�� with the spin flip of 2 (�s = 2) for gluon transversity.

The cross-section can be written in terms of parton correlation functions by considering the subprocess assuming a
quark from the proton beam and an antiquark from the deuteron target (q(p) + q̄(d) ! � + g),
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This provides the necessary numerator to construct a gluon transversity asymmetry, which can be written as,
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. (51)

Based on the polarization vector di↵erence, an equivalency can be derived using the unpolarized combination vector ~Ex + ~Ey +
~Ez := U , resulting is zeros for all terms in the spin polarization vector and tensor. We can then write ~Ex � ~Ey ⌘ 2 ~Ex + ~E0 �U

and ~Ex + ~Ey ⌘ U � ~E0. If we use f
g

1LL
⇡ 0 for gluons [61] such that the di↵erential cross-section from the longitudinal tensor

polarized part is small compared to the transverse tensor polarized part, we can write,
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The generalized experimental gluon transversity asymmetry can then be written as,
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where Pzz is the target ensemble tensor polarization pertaining to the tensor polarized cross-section events N
Ex , f is the

correction for the presence of unpolarized nuclei the beam interacts with, and N is the number of counts in that spin state. There
are several ways to build a gluon transversity asymmetry using di↵erent quantization axes and polarized target configurations,
but this equivalence provides a way to compare directly with predictions and requires the same polarized target magnet and
orientation already in place in the SpinQuest experimental hall. We point out here that �

Ex can be measured with either a
purely tensor polarized target or as the di↵erence between a enhanced tensor polarized target with high tensor polarization
and some vector polarization subtracted from a purely vector polarized target. A purely vector polarized target is significantly
easier to make compared to a purely tensor polarized target, so this is our preferred method. This term in the asymmetry then
becomes,

1
Pzz

N
Ex =

1
P 0N

E±,Ex
�

1
P
N

E± . (53)

Here, P 0 represents the vector polarization when the target is tensor enhanced using the ss-RF method (see Section IVC). This
is a di↵erent vector polarization value than when the tensor polarization is mitigated in the subtracted term. In that case, we
label the vector polarization P . Both P

0 and P should be as high as possible to optimize statistical significance.
Also, due to the cos2� term in Eq. 49, it is possible to extract a tensor polarization contribution in the azimuthal angle

produced by gluon transversity. This would show up even from the ~Ex polarized state alone, and the di↵erence between a target
with some tensor polarization and with no-tensor polarization can be use to measure the whole coe�cient while exploring any
azimuthal dependence.

As mentioned previously, the quark transversity is easiest to measure in the neutron/deuteron by mitigating any contribution
from the tensor polarization. The best possible target system would then alternate between vector polarized, tensor polarized,
and unpolarized. With the UVA RF technology, it is possible to start with a target that is in Boltzmann equilibrium, which has
both tensor and vector polarization, and then, on the scale of milliseconds, use the selective RF in the NMR frequency domain
to remove tensor polarization in the target ensemble, as well as to create an unpolarized target and then flip back to the original
spin state. These alterations to the target spin configurations can be done between beam spills, allowing data collection in the
di↵erent spin states while minimizing time dependant false asymmetries.

As pointed out earlier, the SpinQuest polarized target system can already accommodate most of the needs of this proposal.
Only slight modification must be made to the target cell to add a selective RF manipulation coil and adapt the polarization
measuring NMR system to be optimized to function with the two competing RF sources. For the purpose of the proposed
measurements, one needs to separately measure di↵erent target spin configurations but with the field always pointing transverse
vertical as it is now for SpinQuest. The experimental setup and data taking approach we will follow is similar to that used
previously by experiments E866, E906, and E1039.
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This provides the necessary numerator to construct a gluon transversity asymmetry, which can be written as,

AExy
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Based on the polarization vector di↵erence, an equivalency can be derived using the unpolarized combination vector ~Ex + ~Ey +
~Ez := U , resulting is zeros for all terms in the spin polarization vector and tensor. We can then write ~Ex � ~Ey ⌘ 2 ~Ex + ~E0 �U

and ~Ex + ~Ey ⌘ U � ~E0. If we use f
g

1LL
⇡ 0 for gluons [61] such that the di↵erential cross-section from the longitudinal tensor

polarized part is small compared to the transverse tensor polarized part, we can write,
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where Pzz is the target ensemble tensor polarization pertaining to the tensor polarized cross-section events N
Ex , f is the

correction for the presence of unpolarized nuclei the beam interacts with, and N is the number of counts in that spin state. There
are several ways to build a gluon transversity asymmetry using di↵erent quantization axes and polarized target configurations,
but this equivalence provides a way to compare directly with predictions and requires the same polarized target magnet and
orientation already in place in the SpinQuest experimental hall. We point out here that �

Ex can be measured with either a
purely tensor polarized target or as the di↵erence between a enhanced tensor polarized target with high tensor polarization
and some vector polarization subtracted from a purely vector polarized target. A purely vector polarized target is significantly
easier to make compared to a purely tensor polarized target, so this is our preferred method. This term in the asymmetry then
becomes,
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Here, P 0 represents the vector polarization when the target is tensor enhanced using the ss-RF method (see Section IVC). This
is a di↵erent vector polarization value than when the tensor polarization is mitigated in the subtracted term. In that case, we
label the vector polarization P . Both P

0 and P should be as high as possible to optimize statistical significance.
Also, due to the cos2� term in Eq. 49, it is possible to extract a tensor polarization contribution in the azimuthal angle

produced by gluon transversity. This would show up even from the ~Ex polarized state alone, and the di↵erence between a target
with some tensor polarization and with no-tensor polarization can be use to measure the whole coe�cient while exploring any
azimuthal dependence.

As mentioned previously, the quark transversity is easiest to measure in the neutron/deuteron by mitigating any contribution
from the tensor polarization. The best possible target system would then alternate between vector polarized, tensor polarized,
and unpolarized. With the UVA RF technology, it is possible to start with a target that is in Boltzmann equilibrium, which has
both tensor and vector polarization, and then, on the scale of milliseconds, use the selective RF in the NMR frequency domain
to remove tensor polarization in the target ensemble, as well as to create an unpolarized target and then flip back to the original
spin state. These alterations to the target spin configurations can be done between beam spills, allowing data collection in the
di↵erent spin states while minimizing time dependant false asymmetries.

As pointed out earlier, the SpinQuest polarized target system can already accommodate most of the needs of this proposal.
Only slight modification must be made to the target cell to add a selective RF manipulation coil and adapt the polarization
measuring NMR system to be optimized to function with the two competing RF sources. For the purpose of the proposed
measurements, one needs to separately measure di↵erent target spin configurations but with the field always pointing transverse
vertical as it is now for SpinQuest. The experimental setup and data taking approach we will follow is similar to that used
previously by experiments E866, E906, and E1039.

The generalized experimental gluon transversity asymmetry can then be written as 



• There are several ways to build a gluon transversity asymmetry using different quantization axes 
and polarized target configurations
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polarized target, so this is our preferred method. This term in the asymmetry then becomes 
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This provides the necessary numerator to construct a gluon transversity asymmetry, which can be written as,
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Based on the polarization vector di↵erence, an equivalency can be derived using the unpolarized combination vector ~Ex + ~Ey +
~Ez := U , resulting is zeros for all terms in the spin polarization vector and tensor. We can then write ~Ex � ~Ey ⌘ 2 ~Ex + ~E0 �U

and ~Ex + ~Ey ⌘ U � ~E0. If we use f
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⇡ 0 for gluons [61] such that the di↵erential cross-section from the longitudinal tensor

polarized part is small compared to the transverse tensor polarized part, we can write,
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where Pzz is the target ensemble tensor polarization pertaining to the tensor polarized cross-section events N
Ex , f is the

correction for the presence of unpolarized nuclei the beam interacts with, and N is the number of counts in that spin state. There
are several ways to build a gluon transversity asymmetry using di↵erent quantization axes and polarized target configurations,
but this equivalence provides a way to compare directly with predictions and requires the same polarized target magnet and
orientation already in place in the SpinQuest experimental hall. We point out here that �

Ex can be measured with either a
purely tensor polarized target or as the di↵erence between a enhanced tensor polarized target with high tensor polarization
and some vector polarization subtracted from a purely vector polarized target. A purely vector polarized target is significantly
easier to make compared to a purely tensor polarized target, so this is our preferred method. This term in the asymmetry then
becomes,
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Here, P 0 represents the vector polarization when the target is tensor enhanced using the ss-RF method (see Section IVC). This
is a di↵erent vector polarization value than when the tensor polarization is mitigated in the subtracted term. In that case, we
label the vector polarization P . Both P

0 and P should be as high as possible to optimize statistical significance.
Also, due to the cos2� term in Eq. 49, it is possible to extract a tensor polarization contribution in the azimuthal angle

produced by gluon transversity. This would show up even from the ~Ex polarized state alone, and the di↵erence between a target
with some tensor polarization and with no-tensor polarization can be use to measure the whole coe�cient while exploring any
azimuthal dependence.

As mentioned previously, the quark transversity is easiest to measure in the neutron/deuteron by mitigating any contribution
from the tensor polarization. The best possible target system would then alternate between vector polarized, tensor polarized,
and unpolarized. With the UVA RF technology, it is possible to start with a target that is in Boltzmann equilibrium, which has
both tensor and vector polarization, and then, on the scale of milliseconds, use the selective RF in the NMR frequency domain
to remove tensor polarization in the target ensemble, as well as to create an unpolarized target and then flip back to the original
spin state. These alterations to the target spin configurations can be done between beam spills, allowing data collection in the
di↵erent spin states while minimizing time dependant false asymmetries.

As pointed out earlier, the SpinQuest polarized target system can already accommodate most of the needs of this proposal.
Only slight modification must be made to the target cell to add a selective RF manipulation coil and adapt the polarization
measuring NMR system to be optimized to function with the two competing RF sources. For the purpose of the proposed
measurements, one needs to separately measure di↵erent target spin configurations but with the field always pointing transverse
vertical as it is now for SpinQuest. The experimental setup and data taking approach we will follow is similar to that used
previously by experiments E866, E906, and E1039.
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This provides the necessary numerator to construct a gluon transversity asymmetry, which can be written as,
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Based on the polarization vector di↵erence, an equivalency can be derived using the unpolarized combination vector ~Ex + ~Ey +
~Ez := U , resulting is zeros for all terms in the spin polarization vector and tensor. We can then write ~Ex � ~Ey ⌘ 2 ~Ex + ~E0 �U

and ~Ex + ~Ey ⌘ U � ~E0. If we use f
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where Pzz is the target ensemble tensor polarization pertaining to the tensor polarized cross-section events N
Ex , f is the

correction for the presence of unpolarized nuclei the beam interacts with, and N is the number of counts in that spin state. There
are several ways to build a gluon transversity asymmetry using di↵erent quantization axes and polarized target configurations,
but this equivalence provides a way to compare directly with predictions and requires the same polarized target magnet and
orientation already in place in the SpinQuest experimental hall. We point out here that �

Ex can be measured with either a
purely tensor polarized target or as the di↵erence between a enhanced tensor polarized target with high tensor polarization
and some vector polarization subtracted from a purely vector polarized target. A purely vector polarized target is significantly
easier to make compared to a purely tensor polarized target, so this is our preferred method. This term in the asymmetry then
becomes,
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Here, P 0 represents the vector polarization when the target is tensor enhanced using the ss-RF method (see Section IVC). This
is a di↵erent vector polarization value than when the tensor polarization is mitigated in the subtracted term. In that case, we
label the vector polarization P . Both P

0 and P should be as high as possible to optimize statistical significance.
Also, due to the cos2� term in Eq. 49, it is possible to extract a tensor polarization contribution in the azimuthal angle

produced by gluon transversity. This would show up even from the ~Ex polarized state alone, and the di↵erence between a target
with some tensor polarization and with no-tensor polarization can be use to measure the whole coe�cient while exploring any
azimuthal dependence.

As mentioned previously, the quark transversity is easiest to measure in the neutron/deuteron by mitigating any contribution
from the tensor polarization. The best possible target system would then alternate between vector polarized, tensor polarized,
and unpolarized. With the UVA RF technology, it is possible to start with a target that is in Boltzmann equilibrium, which has
both tensor and vector polarization, and then, on the scale of milliseconds, use the selective RF in the NMR frequency domain
to remove tensor polarization in the target ensemble, as well as to create an unpolarized target and then flip back to the original
spin state. These alterations to the target spin configurations can be done between beam spills, allowing data collection in the
di↵erent spin states while minimizing time dependant false asymmetries.

As pointed out earlier, the SpinQuest polarized target system can already accommodate most of the needs of this proposal.
Only slight modification must be made to the target cell to add a selective RF manipulation coil and adapt the polarization
measuring NMR system to be optimized to function with the two competing RF sources. For the purpose of the proposed
measurements, one needs to separately measure di↵erent target spin configurations but with the field always pointing transverse
vertical as it is now for SpinQuest. The experimental setup and data taking approach we will follow is similar to that used
previously by experiments E866, E906, and E1039.
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This provides the necessary numerator to construct a gluon transversity asymmetry, which can be written as,

AExy
=

d�pd!µ+µ�X (Ex � Ey) /
�
d⌧dq

2
T d�dy

�

d�pd!µ+µ�X (Ex + Ey) / (d⌧dq2T d�dy)
. (51)

Based on the polarization vector di↵erence, an equivalency can be derived using the unpolarized combination vector ~Ex + ~Ey +
~Ez := U , resulting is zeros for all terms in the spin polarization vector and tensor. We can then write ~Ex � ~Ey ⌘ 2 ~Ex + ~E0 �U

and ~Ex + ~Ey ⌘ U � ~E0. If we use f
g

1LL
⇡ 0 for gluons [61] such that the di↵erential cross-section from the longitudinal tensor

polarized part is small compared to the transverse tensor polarized part, we can write,

AExy
=

d�pd!µ+µ�X (Ex � Ey) /
�
d⌧dq

2
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�
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The generalized experimental gluon transversity asymmetry can then be written as,

AExy
=
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� �

U

pd!µ+µ�X

�
U

pd!µ+µ�X

=
1

fPzz

2NEx

pd!µ+µ�X
�N

U

pd!µ+µ�X

N
U

pd!µ+µ�X

, (52)

where Pzz is the target ensemble tensor polarization pertaining to the tensor polarized cross-section events N
Ex , f is the

correction for the presence of unpolarized nuclei the beam interacts with, and N is the number of counts in that spin state. There
are several ways to build a gluon transversity asymmetry using di↵erent quantization axes and polarized target configurations,
but this equivalence provides a way to compare directly with predictions and requires the same polarized target magnet and
orientation already in place in the SpinQuest experimental hall. We point out here that �

Ex can be measured with either a
purely tensor polarized target or as the di↵erence between a enhanced tensor polarized target with high tensor polarization
and some vector polarization subtracted from a purely vector polarized target. A purely vector polarized target is significantly
easier to make compared to a purely tensor polarized target, so this is our preferred method. This term in the asymmetry then
becomes,

1
Pzz

N
Ex =

1
P 0N

E±,Ex
�

1
P
N

E± . (53)

Here, P 0 represents the vector polarization when the target is tensor enhanced using the ss-RF method (see Section IVC). This
is a di↵erent vector polarization value than when the tensor polarization is mitigated in the subtracted term. In that case, we
label the vector polarization P . Both P

0 and P should be as high as possible to optimize statistical significance.
Also, due to the cos2� term in Eq. 49, it is possible to extract a tensor polarization contribution in the azimuthal angle

produced by gluon transversity. This would show up even from the ~Ex polarized state alone, and the di↵erence between a target
with some tensor polarization and with no-tensor polarization can be use to measure the whole coe�cient while exploring any
azimuthal dependence.

As mentioned previously, the quark transversity is easiest to measure in the neutron/deuteron by mitigating any contribution
from the tensor polarization. The best possible target system would then alternate between vector polarized, tensor polarized,
and unpolarized. With the UVA RF technology, it is possible to start with a target that is in Boltzmann equilibrium, which has
both tensor and vector polarization, and then, on the scale of milliseconds, use the selective RF in the NMR frequency domain
to remove tensor polarization in the target ensemble, as well as to create an unpolarized target and then flip back to the original
spin state. These alterations to the target spin configurations can be done between beam spills, allowing data collection in the
di↵erent spin states while minimizing time dependant false asymmetries.

As pointed out earlier, the SpinQuest polarized target system can already accommodate most of the needs of this proposal.
Only slight modification must be made to the target cell to add a selective RF manipulation coil and adapt the polarization
measuring NMR system to be optimized to function with the two competing RF sources. For the purpose of the proposed
measurements, one needs to separately measure di↵erent target spin configurations but with the field always pointing transverse
vertical as it is now for SpinQuest. The experimental setup and data taking approach we will follow is similar to that used
previously by experiments E866, E906, and E1039.
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Only valence quark transversity of u and d were studied 
so far. Transversity distributions for sea-quark d-bar 
transversity for our range of kinematics is in progress (D. 
Keller & S. Kumano)

The (preliminary) projections are based on SIDIS data 
which is insensitive to sea-quark contributions by D. 
Keller using A. Martin et al framework. 

https://arxiv.org/abs/2205.01249 

A. Martin et al arXiv:1412.5946] 

https://arxiv.org/abs/2205.01249
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The model for hg1T T suggested by Kumano and Song (2020)
 for our range of kinematics is shown in purple. 

The Soffer positivity bound is also shown in the same x region. 
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FIG. 26. The model for h
g

1TT
, suggested by Kumano, for our range of kinematics is shown in violet. The So↵er-like positivity

bound is also shown in the same x region. (This figure maybe removed or added with projection points)

From the analytical scope of QCD, there is a certain ubiquity of gluons to consider in almost any relevant process. However,
probing the gluonic structure of hadrons and nuclei is considerably more di�cult than that of quarks. To some extent, this can
be accredited to the significant innate challenges in measurements of gluon observables, which are usually O(↵s)-suppressed
relative to the quark observables. Here, we suggest a measurement that can provide significant information. A finite value of
the gluon h1TT is likely to trigger a multitude of new experiments to probe the full kinematic range of this observable to help
map out and detail the relationship between the nuclear geometry and the gluonic structure. It has also been suggested [133]
that the magnitude of this observable should increase with atomic number (z). There is ongoing polarized target research [135]
to polarized higher z solid-state targets.
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FIG. 27. Projections of the linear polarized gluon asymmetry with expected errors from our proposed measurements. We
are assuming an additional 0.05% absolute error as a conservative estimate in addition to the expected statistical and relative
systematic contributions. An average over our range in qT and y is used, while � is set to zero. The So↵er-like positivity bound
is also shown in grey and used for the upper limit, which provides a scale for demonstrating the information gained from the
proposed measurement.

https://arxiv.org/abs/2205.01249 
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Quantity Error
Target Contributions 5.0%
Beam Contributions 2.5%
DAQ and Dead Time 1.5%
Background 2 %

TABLE V. Estimates for the systematic errors

VI. EXPECTED RESULTS

A. Gluon Transversity

For numerical estimates of gluon transversity it is useful to employ the positivity bounds on gluon TMDs [63]. The
gluon polarization depends on a 6 ⇥ 6 matrix in gluon⌦hadron spin space. This matrix is positive semidefinite, a
property which allows for setting constraints on the gluon distributions. Given the limited amount of information
there is currently on gluon functions, we use these So↵er like bounds providing a range with any realistic model lying
with in them. The resulting bound for gluon transversity is,

|h
g

1TT
| 

1

2

✓
f
g

1 +
f
g

1LL

2
� g

g

1

◆
. (64)

We neglect fg

1LL
assuming the value is quite small as no gluon contributions have been seen in previous measurements

[60].
We also evaluate the model suggested in [105] over the kinematic range accessible at SpinQuest. The model shown

takes an average over the SpinQuest qT range weighted by cross section and with the azimuthal angle at � = 0. In
Fig. 14 we show the model prediction of hg

1TT
in purple and the So↵er like bound in pink.

In Fig 15 we show the expected results after two years of running with the ND3 targets for the four selected
kinematic bins with the linearly polarized asymmetry AExy . The errors displayed is the statistical precision listed in
Table III, with the systematic error also taken into account. Here an additional 2% absolute error is included to be
conservative.
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FIG. 14. The model for hg
1TT suggested by Kumano for our range of kinematics is shown in violet. The So↵er like positivity

bound is also shown in the same x region.

With the proposed experiment we will be able to analysis the dependence of gluon transversity in �, qT , x2 and Q
2

providing substantial information on the dynamics and spatial gluon structure of the deuteron.
From the analytical scope of QCD there is a certain ubiquity of gluons to consider in almost any relevant process.

However probing the gluonic structure of hadrons and nuclei is considerably more di�cult than that of quarks. To
some extent that can be accredited to the significant innate challenges in measurements of gluon observables which
are usually O(↵s)-suppressed relative to the quark observables. Here we suggest a measurement that can provide
significant information. A finite value of the gluon h1TT is likely to trigger a multitude of new experiments to probe
the full kinematic range of this observable to help map out and detail the relationship between the nuclear geometry
and the gluonic structure. It has also been suggested [126] that the magnitude of this observable should increase with
atomic number (z). There is ongoing polarized target research [127] to polarized higher z solid-state targets.

https://arxiv.org/abs/2205.01249
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From the analytical scope of QCD, there is a certain ubiquity of gluons to consider in almost any relevant process. However,
probing the gluonic structure of hadrons and nuclei is considerably more di�cult than that of quarks. To some extent, this can
be accredited to the significant innate challenges in measurements of gluon observables, which are usually O(↵s)-suppressed
relative to the quark observables. Here, we suggest a measurement that can provide significant information. A finite value of
the gluon h1TT is likely to trigger a multitude of new experiments to probe the full kinematic range of this observable to help
map out and detail the relationship between the nuclear geometry and the gluonic structure. It has also been suggested [133]
that the magnitude of this observable should increase with atomic number (z). There is ongoing polarized target research [135]
to polarized higher z solid-state targets.
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FIG. 27. Projections of the linear polarized gluon asymmetry with expected errors from our proposed measurements. We
are assuming an additional 0.05% absolute error as a conservative estimate in addition to the expected statistical and relative
systematic contributions. An average over our range in qT and y is used, while � is set to zero. The So↵er-like positivity bound
is also shown in grey and used for the upper limit, which provides a scale for demonstrating the information gained from the
proposed measurement.
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Ø Projections of the linear polarized gluon asymmetry with 
expected errors from our proposed measurements. 

Ø We are assuming an additional 0.05% absolute error as a 
conservative estimate in addition to the expected statistical 
and relative systematic contributions. 

Ø  An average over our range in qT and y is used 
Ø  The Soffer-like positivity bound is also shown in grey and 

used for the upper limit, which provides a scale for 
demonstrating the information gained from the proposed 
measurement. 

https://arxiv.org/abs/2205.01249
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v Formal proposal was presented to the FNAL PAC in
   January 2023 and was well received.

v  But there will be no formal approval until the target
   material (NH3/ND3) can be approved to use at the lab.

v  We expect that at the next PAC meeting in January 2024, 
   all of this will be resolved.



    Quark/Gluon Transversity
 Spin-dependent flavor asymmetry
 Polarized EMC studies
 Nuclei TMDs and Spin

 Helicity
 Spin-dependent flavor asymmetry
 Tensor polarized structure functions
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any vector polarized contributions. This later configuration is much harder but there are methods around it which are
addressed in Section IIIA.
To understand the dependence on polarization configuration we start again with the spin vector (S) and tensor (T )

which are parameterized in the rest frame of the deuteron,

S = (Sx

T
, S

y

T
, SL) (39)
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where Sx

T
, Sy

T
, Sxx

TT
, Sxy

LT
, and S

y

LT
are the parameters to indicate the deuteron’s vector and tensor polarizations. The

deuteron polarization vector E is,

~E0 = (0, 0, 1)
~E± = 1p

2
(⌥1,�i, 0)

~Ex = 1p
2

⇣
~E� � ~E+

⌘
= (1, 0, 0)

~Ey = ip
2

⇣
~E� + ~E+

⌘
= (0, 1, 0)

(41)

where E+, E0 and E� indicate the three possible spin states of the deuteron. Here the polarizations Ex and Ey are
spin-1 alignment dependent states and can be used to orient the gluons in a linearly polarized configuration in the
target based on the gluon transversity distributions defined by the matrix elements between linearly-polarized states.
The spin vector and tensor are written in terms of the polarization vector E of the deuteron as,

~S = Im
⇣
~E
⇤
⇥ ~E

⌘
, Tij =

1

3
�ij � Re (E⇤

i
Ej) . (42)

For best gluon transversity extraction the key to an optimized target configuration is to selectively reduce all unneeded
terms in the spin tensor to zero preserving only the terms that relate to the observable of interest. In this case having a
finite Sxx

TT
gives the desired access to the gluon transversity. Making the other terms zero or negligible is advantageous

to a clean measurement. In this case the polarization vectors Ex and Ey can be used to provide linear polarization and
both consist of a deuteron tensor polarized in the transverse plane to the beam-line. The di↵erence in the cross section
from these polarization states can be used in an asymmetry to build an observable to extract gluon transversity.
The polarization vectors Ex, E0 Ey are all indicative of a purely tensor polarized target with spin quantization axis

along the x, z, and y axis respectively. As previously explain there is no di↵erence in changing target orientation or
collecting data to be orthogonal providing the two distinct configurations. For the purposes of SoLID Ex and Ey should
represent data collected orthogonal to each other (�S � �

0
S
= ⇡/2) with the target polarization fixed sideways vertical

to the beam. From Eq. 42 we get for Ex a vector polarization of Sx

T
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T
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= 0 is obtained. For E0 a vector polarization of Sx

T
= S

y

T
= SL = 0, with SLL = �1,

S
xx

T
= 0, and S

xy

TT
= S

x

LT
= S

y

LT
= 0 is obtained. We can then use combinations to optimize such that Ex �Ey yields
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= 0. With this combination the longitudinal

tensor polarized term is zero as well as any vector polarized contributions and the critical term S
xx

TT
is also maximized.

Also, 2 ~Ex � ~E0 yields Sx

T
= S

x

T
= S

x
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x

T
= 0, with SLL = 0, Sxx

T
= �2, and S

xy

TT
= S

x

LT
= S

y

LT
= 0. With either of

these configurations, the longitudinal tensor polarization is zero as well as any vector polarization contributions, and
the critical term S

xx

TT
is also maximized. It is worth pointing out that is long as the angle between the two polarization

state is ⇡/2 then the exact orientation of the the target is not important other than to maximized the contribution.
To exploit the observables we rely on the correlation functions in the collinear formalism. For the di↵erence in the

Ex and Ey polarized cross section. There is no equivalent polarization term in the quark and antiquark distributions
of the spin-1 target so the transversity of the quarks and the gluons can be separated through the strategic use of
vector and tensor polarizations. This is because the virtual photon in the intermediate stage interacts with a charge
parton so only quark and antiquark correlation functions contribute as the leading process from the spin-1/2 nucleons
inside the spin-1 deuteron. This implies that the geometric shape the deuteron in the di↵erent MJ spin states are
highly correlated to the transverse gluon and quark observables.
To build an asymmetry the cross section di↵erence is written as,

2⇡d�
�
lH

"
! l

0
hX

�

d�dxBdzhdy
(Ex � Ey) =

2↵2(1� y)

Q2y
cos(2�h)h

g

1TT
(xB , Q

2)H?
1 (zh) (43)

19

The cross section sum of these same two polarization directions provides the necessary numerator to construct a gluon
transversity asymmetry which can be written as,

AExy =
d� (Ex � Ey) / (d�dxBdzhdy)

d� (Ex + Ey) / (d�dxBdzhdy)
. (44)

The generalized experimental gluon transversity asymmetry can then be written as,

AExy =
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fPzz
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�
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ed!e0⇡X

, (45)

where Pzz is the target ensemble tensor polarization, f is the correction for the presence of unpolarized nuclei the
beam interacts with and N is the number of counts in that spin state. We point out here that �Ex can be measured
with either a purely tensor polarized target or as the di↵erence between a enhanced tensor polarized target with high
tensor polarization and some vector polarization polarization subtracted from a purely vector polarized target. A
purely vector polarized target is significantly easier to make as previously described as compare to a purely tensor
polarized target, so this is our preferred method. This term in the asymmetry then becomes,

1

Pzz

N
Ex =

1

P 0N
E±,Ex �

1

P
N

E± . (46)

Here P
0 represents the vector polarization when the target is tensor enhance using the ss-RF method (see Section

IIIA). This is a di↵erent vector polarization value than when the tensor polarization is mitigated in the subtracted
term. In that case we label the vector polarization P . Both P

0 and P should be as high as possible to optimize
statistical significance.
As mentioned previously the quark transversity is easiest to measure in the neutron/deuteron by mitigating any

contribution from the tensor polarization. The best possible target system would then alternate between vector
polarized, tensor polarized and unpolarized. With the UVA RF technology it is possible to start with a target that
is in Boltzmann equilibrium which has both tensor and vector polarization, then on the scale of milliseconds, use the
selective RF in the NMR frequency domain to remove tensor polarization in the target ensemble and the RF back
to the original tensor enhanced state. These alterations to the target spin configurations can be done continuously
allowing data collection in the di↵erent spin states while minimizing time dependant false asymmetries.
The polarized target system planned for SoLID can already accommodate most of the needs of this proposal. Only

slight modification must be made to the target cell to add the selective RF manipulation coil and adapt the polarization
measuring NMR system to be optimized to function with the two competing RF sources. Target material ND3 can be
used to provide the transversely polarized neutron target. Here the dilution factor is higher (0.3) than that of NH3,
with a maximum vector polarization of up to 50% with a tensor polarization of 20% under Boltzmann equilibrium.
This target can be RF manipulated to have a tensor polarization of over 35% or 0%. The ND3 target materiel
is highly radiation resistant and has been a go to target for decades yet there are still new target systems being
developed to leverages its full potential. The ND3 is our source for tensor observables as the spin-1 system but also
our source for neutron vector polarized observables. The neutron polarization is always 91% of the vector polarization
of the deuteron. This means the deuteron target is a very good source of neutron polarized TMDs when the tensor
polarization is negated.

A. The Polarized Target

While the magnetic moment of the deuteron is too small to lead to a sizable polarization in a 5 T field through the
Zeeman e↵ect, electrons in that field at 1 K are better than 99% polarized. By doping a suitable solid target material
with paramagnetic radicals to provide unpaired electron spins, one can make use of the highly polarized state of the
electrons. The dipole-dipole interaction between the nucleon and the electron leads to hyperfine splitting, providing
the coupling between the two spin species. By applying a suitable microwave signal, one can populate the desired
spin states. As mentioned, we will use frozen deuterated ammonia beads [113, 114] (ND3) as the target material and
create the paramagnetic radicals (roughly 1019 spins/ml) through irradiation with a high intensity electron beam at
NIST. The cryogenic refrigerator, which works on the principle of liquid 4He evaporation, can cool the bath to 1
K, by lowering the 4He vapor pressure down to less than 0.118 Torr. The polarization will be measured with NMR
techniques with three NMR coils per cell, placed inside each target cell. The maximum polarization achieved with
the deuteron target is around 50% vector polarization with a packing fraction of about 60%. In our estimate for the
statistical precision, we have assumed an average of 32% vector polarization. The polarization dilution factor, which is
the ratio of free polarized deuterons to the total number of nucleons, is 3/10 for ND3, due to the presence of nitrogen.
The target material will need to be replaced approximately every 8-10 days in all three target cells, due to the beam
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Here P
0 represents the vector polarization when the target is tensor enhance using the ss-RF method (see Section

IIIA). This is a di↵erent vector polarization value than when the tensor polarization is mitigated in the subtracted
term. In that case we label the vector polarization P . Both P

0 and P should be as high as possible to optimize
statistical significance.
As mentioned previously the quark transversity is easiest to measure in the neutron/deuteron by mitigating any

contribution from the tensor polarization. The best possible target system would then alternate between vector
polarized, tensor polarized and unpolarized. With the UVA RF technology it is possible to start with a target that
is in Boltzmann equilibrium which has both tensor and vector polarization, then on the scale of milliseconds, use the
selective RF in the NMR frequency domain to remove tensor polarization in the target ensemble and the RF back
to the original tensor enhanced state. These alterations to the target spin configurations can be done continuously
allowing data collection in the di↵erent spin states while minimizing time dependant false asymmetries.
The polarized target system planned for SoLID can already accommodate most of the needs of this proposal. Only

slight modification must be made to the target cell to add the selective RF manipulation coil and adapt the polarization
measuring NMR system to be optimized to function with the two competing RF sources. Target material ND3 can be
used to provide the transversely polarized neutron target. Here the dilution factor is higher (0.3) than that of NH3,
with a maximum vector polarization of up to 50% with a tensor polarization of 20% under Boltzmann equilibrium.
This target can be RF manipulated to have a tensor polarization of over 35% or 0%. The ND3 target materiel
is highly radiation resistant and has been a go to target for decades yet there are still new target systems being
developed to leverages its full potential. The ND3 is our source for tensor observables as the spin-1 system but also
our source for neutron vector polarized observables. The neutron polarization is always 91% of the vector polarization
of the deuteron. This means the deuteron target is a very good source of neutron polarized TMDs when the tensor
polarization is negated.

A. The Polarized Target

While the magnetic moment of the deuteron is too small to lead to a sizable polarization in a 5 T field through the
Zeeman e↵ect, electrons in that field at 1 K are better than 99% polarized. By doping a suitable solid target material
with paramagnetic radicals to provide unpaired electron spins, one can make use of the highly polarized state of the
electrons. The dipole-dipole interaction between the nucleon and the electron leads to hyperfine splitting, providing
the coupling between the two spin species. By applying a suitable microwave signal, one can populate the desired
spin states. As mentioned, we will use frozen deuterated ammonia beads [113, 114] (ND3) as the target material and
create the paramagnetic radicals (roughly 1019 spins/ml) through irradiation with a high intensity electron beam at
NIST. The cryogenic refrigerator, which works on the principle of liquid 4He evaporation, can cool the bath to 1
K, by lowering the 4He vapor pressure down to less than 0.118 Torr. The polarization will be measured with NMR
techniques with three NMR coils per cell, placed inside each target cell. The maximum polarization achieved with
the deuteron target is around 50% vector polarization with a packing fraction of about 60%. In our estimate for the
statistical precision, we have assumed an average of 32% vector polarization. The polarization dilution factor, which is
the ratio of free polarized deuterons to the total number of nucleons, is 3/10 for ND3, due to the presence of nitrogen.
The target material will need to be replaced approximately every 8-10 days in all three target cells, due to the beam

We are working on an effort to propose SIDIS Transversity at JLab Hall A with the SoLID detector.
I’m going to be working this and anyone who is interested in will be welcomed!
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Figure 15: Cross sectional drawing of the polar-
ized target system

Figure 16: The LANL-UVa target during its full
operations test in April 2016

estimate for the statistical precision, we have assumed an average polarization of 80%. In the
case of the deuteron target we have assumed 32% average polarization.The polarization dilution
factor, which is the ratio of free polarized protons to the total number of nucleons, is 3/17 for NH3

and 3/10 for ND3, due to the presence of nitrogen. The target material will need to be replaced
approximately every 8 -10 days in all three cells, due to the beam induced radiation damage.
This work will involve replacing the target stick with a new insert, cooling down the target and
performing a thermal equilibrium measurement. From previous experience, we estimate that this
will take about eight hours to accomplish. Careful planning of these changes will reduce the impact
on the beam time. Furthermore, we will be running with three active targets on one stick, thus
reducing any additional loss of beam time. The target cells are 79 mm long and elliptical with 21
mm ⇥ 19mm as vertical and horizontal axes. Each cell contains 3 NMR coils spaced evenly over
the target length.

Material Dens. Dilution Factor Packing Frac <Pol> Inter. Length
NH3 .867 g/cm3 .176 .60 80% 5.3 %
ND3 1.007 g/cm3 .3 .60 32% 5.7%

Table 1: Parameters for the polarized target

3.3 Beamline

The Neutrino-Muon (NM) beamline currently supporting the E906 Drell Yan experiment delivers a
high-intensity (up to 1013 protons/4-sec spill), 120-GeV proton beam. The experimental beam has
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s is the square of the center of mass energy and is given by s = 2mT ⇤ EBeam + m2
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B
, with

EBeam the beam energy and mB,T the rest masses of the beam and target nucleons. Measuring
the two decay leptons in the spectrometer allows one to determine the photon center of mass p�k
(longitudinal) and p�

T
(transverse) momenta as well as the mass M�. From these quantities one

can deduce the momentum fractions of the quarks through:
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If one chooses the kinematics of the experiment such that xF > 0 and x1 is large, the contributions
from the valence quarks in the beam dominate.

In this case, in Eq. 1 the second term becomes negligible and the cross section can be written
as
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For a proton beam on a proton target the process is dominated by the u(x1) distribution due to the
charge factor e2

i
. To extract the d̄(x) Sivers asymmetry one has to measure the p+d" asymmetry.

In the following discussion we will assume that the cross section on the deuteron is the sum of the
proton and neutron cross sections and use isospin symmetry to equate d̄p and ūn and ignore strange
and heavier antiquarks in the target, as well as antiquarks in the beam. Through a simultaneous
measurement of the pp" and pd" asymmetries one can independently extract the Sivers asymmetry
for both ū and d̄.

2.2 Theory

The fundamental importance of studying transverse momentum dependent parton distributions
(TMDs) and advancing the related theory of the nucleon spin is well summarized by the goals of
the nuclear theory TMD Topical Collaboration, where LANL is a key member [21]. The study
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fits to the available SIDIS data. The large discrepancy is a reflection of the fact that the current
SIDIS data are insensitive to the seaquark contribution, thus leading to large uncertainties in the
calculations. This is also reflected in the width of the uncertainty bands.
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Figure 22: Expected results after two years of combined running on NH3 and ND3 targets. The
red error bars are statistical only. Absolute systematic uncertainty is estimated to be <1.0% (see
Sec. 3.8), and the relative systematic uncertainty is 4.0%. The theory model predictions are for
the NH3 target only.

4 Comparison to Competition

There have been plans for about a decade to perform a variety of experiments around the globe
that aim to measure polarized Drell-Yan either with a polarized beam or a polarized target (see
Table 7). COMPASS at CERN, SeaQuest at FNAL and Panda at GSI plan to perform fixed
target experiments with either pion, proton or anti-proton beams, whereas PAX at GSI, NICA at
JINR and fsPHENIX at BNL plan collider experiments with polarized proton beams. The fixed
target experiments typically provide higher luminosity and the collider experiments tend to run at
higher center of mass energy, s. NICA, fsPHENIX and SeaQuest will be sensitive to the interaction
between valence quarks and sea antiquarks. PAX and COMPASS plan to measure the interaction
between valence quarks and valence antiquarks, and are not sensitive to sea antiquarks. Panda is
designed to study J/ formation rather than Drell-Yan physics due to the low antiproton beam
energy.
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Figure 14: The kinematic acceptance of the E1039 experiment.

The experiment will be using the Fermilab main injector beam with an energy of 120 GeV and
a 4 second spill every minute. The maximum beam intensity will be ' 1013 protons per spill.

3.2 The Polarized Target

We will use the LANL-UVa polarized target which has been rebuilt and tested over the last three
years. The target system consists of a 5T superconducting split coil magnet, a 4He evaporation
refrigerator, a 140 GHz microwave source and a large 15000 m3/hr pumping system. The target
is polarized using Dynamic Nuclear Polarization (DNP) [52] and is shown schematically in Fig.
15. The beam direction is from left to right, and the magnetic field is vertical along the symmetry
axis, so that the target polarization is transverse to the beam direction. The target cells are shown
in gold color, with the top cell in the center of the split coils. The full system is shown in Fig. 16.

While the magnetic moment of the proton is too small to lead to a sizable polarization in a
5 T field, electrons in that field at 1 K are better than 99% polarized. By doping a suitable solid
target material with paramagnetic radicals to provide unpaired electron spins, one can make use
of the highly polarized state of the electrons. The dipole-dipole interaction between the nucleon
and the electron leads to hyperfine splitting, providing the coupling between the two spin species.
By applying a suitable microwave signal, the desired spin state is populated. We will use frozen
ammonia beads of NH3 and ND3 as the target material and create the paramagnetic radicals
(roughly 1019 spins/ml) through irradiation with a high intensity electron beam at the National
Institute of Standards and Technology (NIST). The cryogenic refrigerator, which works on the
principle of liquid 4He evaporation, can cool the bath to 1K, by lowering the 4He vapor pressure
down to less than 0.118 Torr. The polarization will be measured with three NMR coils per cell,
placed inside each target cell. The maximum polarization achieved with the proton (deuteron)
target is better than 98% (48%) and the ammonia bead packing fraction is about 60%. In our
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