A New NMR System for JLab Solid Polarized Targets

J. Maxwell

for the Jefferson Lab Target Group

Tensor Spin Observables Workshop Trento, Italy July 14th, 2023

Outline

- 1 NMR and JLab Solid Targets Introduction
- 2 Cold Board NMR
- A New JLab Q-Meter System
 Qmeter Design
 DAQ Design
 - Software Design

Results

Future Effort

Outline

1 NMR and JLab Solid Targets Introduction

- 2 Cold Board NMF
- 3 A New JLab Q-Meter System Ometer Design
 - DAQ Design Software Design
 - 4 Results 5 Future Ff

Measuring Polarization in Polarized Solids

- NMR in field B_0 at ω_0 , apply RF field to material
- Coil of L_0 applies field perpendicular to B_0 to induce spin flip
- Material polarization modifies the effective inductance of a coupled coil, with filling factor η :

 $L(\omega) = L_0(1 + 4\pi\eta\chi(\omega))$

• Polarized nuclei give the target material a complex susceptibility, a function of applied frequency (ω):

$$\chi(\omega) = \chi'(\omega) + i \chi''(\omega) \quad \text{and} \quad P = K \int_0^\infty \chi''(\omega) d\omega$$

• $\chi(\omega)$ is non-zero only close to the Larmor frequency ω_0

Measuring Polarization in Polarized Solids

- NMR in field B_0 at ω_0 , apply RF field to material
- Coil of L_0 applies field perpendicular to B_0 to induce spin flip
- Material polarization modifies the effective inductance of a coupled coil, with filling factor η :

 $L(\omega) = L_0(1 + 4\pi\eta\chi(\omega))$

 Polarized nuclei give the target material a complex susceptibility, a function of applied frequency (ω):

$$\chi(\omega) = \chi'(\omega) + i \chi''(\omega) \quad \text{and} \quad P = K \int_0^\infty \chi''(\omega) d\omega$$

+ $\chi(\omega)$ is non-zero only close to the Larmor frequency ω_0

Continuous-wave NMR Electronics: Q-meter

- Choose *L*, *C*: $\omega_0 = 1/\sqrt{LC}$
- Complex impedance of circuit $\sim i\omega L_0 \Delta L(\omega)$
- Compare signal to reference with mixer for real portion, must match phase
- Away from ω₀, coil impedance has reactive components, makes Q-curve
- Sweep frequency around ω_0 to integrate in ω

Continuous-wave NMR Electronics: Q-meter

- Choose *L*, *C*: $\omega_0 = 1/\sqrt{LC}$
- Complex impedance of circuit $\sim i\omega L_0 \Delta L(\omega)$
- Compare signal to reference with mixer for real portion, must match phase
- Away from ω₀, coil impedance has reactive components, makes Q-curve
- Sweep frequency around ω_0 to integrate in ω

Thermal Equilibrium Proton NMR Signal, 5T, 1K

Liverpool Q-meter

- Liverpool Q-meter used for decades. G.R. Court, NIM A324 (1993)
- Designed for excellent RF performance for DNP applications.
- Five 2-sided boards:

- 1 Tank and splitter Mixer
- 3 Phase amplification
- **Diode amplification** 4
- **5** Final amplification

NMR and JLab Solid Targets

Traditional Tuning for Continuous-wave NMR

- Determine length cable $(n\lambda/2)$ to run from Q-meter to coil within cryostat
- Set C (trimmers) to center power response (diode) minimum at ω_0
- Choose phase cable to center real portion maximum at ω_0

JLab NMR Wishlist

- Remote capacitor tuning
 - Convenience, Accommodate 2 opposing cells, Synchronous Tuning
- Electronic phase tuning
- Cold circuit NMR
 - Noise reduction, Non-resonant cable circuit
- Address aging of Liverpool Q-meter
 - New Q-meters using off-the-shelf components
- Software Overhaul
- Bespoke Data Acquisition?

Focus on Enabling, Ease of Use Improvements

Outline

- NMR and JLab Solid Targets Introduction
- 2 Cold Board NMR
- 3 A New JLab Q-Meter System Qmeter Design DAO Design
 - Software Design
- 4 Results5 Future Fi

Put Tank Circuit inside Cryostat?

- Traditionally, *R* and *C* inside Q-meter, *L* in the cryostat
- Moving R and C into the cryostat, $\lambda/2$ no longer separates L. (Court, NIM A 2004.)
 - Q-curve shallower
 - Thermal noise reduction
 - Requires components that can handle cold, microwaves, radiation
- Varactor diodes vary C vs. voltage
- Electronic phase shifters replace phase cable
- GaAs Varactors for cryogenic applications

Put Tank Circuit inside Cryostat?

- Traditionally, *R* and *C* inside Q-meter, *L* in the cryostat
- Moving R and C into the cryostat, $\lambda/2$ no longer separates L. (Court, NIM A 2004.)
 - Q-curve shallower
 - Thermal noise reduction
 - Requires components that can handle cold, microwaves, radiation
- Varactor diodes vary C vs. voltage
- Electronic phase shifters replace phase cable
- GaAs Varactors for cryogenic applications

Put Tank Circuit inside Cryostat?

- Traditionally, *R* and *C* inside Q-meter, *L* in the cryostat
- Moving R and C into the cryostat, $\lambda/2$ no longer separates L. (Court, NIM A 2004.)
 - Q-curve shallower
 - Thermal noise reduction
 - Requires components that can handle cold, microwaves, radiation
- Varactor diodes vary C vs. voltage
- Electronic phase shifters replace phase cable
- GaAs Varactors for cryogenic applications

1.25 Gamma Abrupt

- Cold NMR method most recently used at JLab for EG1-DVCS deuteron
 - Trim cap and high C for 5 T D: 32.7 MHz
 - Tune performed warm, anticipating the change with temperature
- Introducing GaAs varactor diodes
 - Tested at 213 MHz to 3.2 K
 - Minimal changes seen at high B, low T
- Final Board: Tuning Range Expanded
 - 2 parallel varactors in series with a large capacitor
 - Thermometry and heater
 - Temp held around 15 K to avoid film creep

- Cold NMR method most recently used at JLab for EG1-DVCS deuteron
 - Trim cap and high C for 5 T D: 32.7 MHz
 - Tune performed warm, anticipating the change with temperature
- Introducing GaAs varactor diodes
 - Tested at 213 MHz to 3.2 K
 - Minimal changes seen at high B, low T
- Final Board: Tuning Range Expanded
 - 2 parallel varactors in series with a large capacitor
 - Thermometry and heater
 - Temp held around 15 K to avoid film creep

- Cold NMR method most recently used at JLab for EG1-DVCS deuteron
 - Trim cap and high C for 5 T D: 32.7 MHz
 - Tune performed warm, anticipating the change with temperature
- Introducing GaAs varactor diodes
 - Tested at 213 MHz to 3.2 K
 - Minimal changes seen at high B, low T
- Final Board: Tuning Range Expanded
 - 2 parallel varactors in series with a large capacitor
 - Thermometry and heater
 - Temp held around 15 K to avoid film creep

- Cold NMR method most recently used at JLab for EG1-DVCS deuteron
 - Trim cap and high C for 5 T D: 32.7 MHz
 - Tune performed warm, anticipating the change with temperature
- Introducing GaAs varactor diodes
 - Tested at 213 MHz to 3.2 K
 - Minimal changes seen at high B, low T
- Final Board: Tuning Range Expanded
 - 2 parallel varactors in series with a large capacitor
 - Thermometry and heater
 - Temp held around 15 K to avoid film creep

- Cold NMR method most recently used at JLab for EG1-DVCS deuteron
 - Trim cap and high C for 5 T D: 32.7 MHz
 - Tune performed warm, anticipating the change with temperature
- Introducing GaAs varactor diodes
 - Tested at 213 MHz to 3.2 K
 - Minimal changes seen at high B, low T
- Final Board: Tuning Range Expanded
 - 2 parallel varactors in series with a large capacitor
 - Thermometry and heater
 - Temp held around 15 K to avoid film creep

Q-meter Simulation

- Using remote tank circuits, varactors and phase shifters introduces unfamiliar effects
- Python simulation expanded from MathCAD code by Houlden, Court
- Understand how cable lengths and mistune can affect signal
- Allow fits to baseline (Imfit)

Q-meter Simulation

- Using remote tank circuits, varactors and phase shifters introduces unfamiliar effects
- Python simulation expanded from MathCAD code by Houlden, Court
- Understand how cable lengths and mistune can affect signal
- Allow fits to baseline (Imfit)

Signal cable: $1.2 \cdot \lambda/2$, retuned

Outline

- NMR and JLab Solid Targets Introduction
- 2 Cold Board NMF
- A New JLab Q-Meter System
 Qmeter Design
 DAQ Design
 Software Design
- 4 Results5 Future E

A New Liverpool Q-meter?

- Q-meters now limited commodity, replacements scarce
- Target group at Bochum already building new Q-meters in the Liverpool style with new components J. Herick Thesis, Bochum, 2016.

Aims for JLab Q-meter

- Follow Liverpool meter's successful design as closely as possible
- Replace components when modern parts superior (amplifiers)
- As modular as possible and all off-the-shelf components
- Simplify power supply to just $\pm 5 \text{ V}$

- JLab Q-meter consists of 2 boards in Al enclosure
- Single layer boards with ground plane shielding
- "Stitching" for ground planes
- Mixer enclosed in board shield
- Biggest change: Analog Devices RF and Diff amplifiers
- Layout: JM, H. Dong
- 1 Amplifier Board
- 2 Mixer/Diode Board

- JLab Q-meter consists of 2 boards in Al enclosure
- Single layer boards with ground plane shielding
- "Stitching" for ground planes
- Mixer enclosed in board shield
- Biggest change: Analog Devices RF and Diff amplifiers
- Layout: JM, H. Dong
- Amplifier Board
- 2 Mixer/Diode Board

- JLab Q-meter consists of 2 boards in Al enclosure
- Single layer boards with ground plane shielding
- "Stitching" for ground planes
- Mixer enclosed in board shield
- Biggest change: Analog Devices RF and Diff amplifiers
- Layout: JM, H. Dong
- Amplifier Board
- 2 Mixer/Diode Board

- JLab Q-meter consists of 2 boards in Al enclosure
- Single layer boards with ground plane shielding
- "Stitching" for ground planes
- Mixer enclosed in board shield
- Biggest change: Analog Devices RF and Diff amplifiers
- Layout: JM, H. Dong
- Amplifier Board
- 2 Mixer/Diode Board

- JLab Q-meter consists of 2 boards in Al enclosure
- Single layer boards with ground plane shielding
- "Stitching" for ground planes
- Mixer enclosed in board shield
- Biggest change: Analog Devices RF and Diff amplifiers
- Layout: JM, H. Dong
- Amplifier Board
- 2 Mixer/Diode Board

- JLab Q-meter consists of 2 boards in Al enclosure
- Single layer boards with ground plane shielding
- "Stitching" for ground planes
- Mixer enclosed in board shield
- Biggest change: Analog Devices RF and Diff amplifiers
- Layout: JM, H. Dong
- Amplifier Board
- 2 Mixer/Diode Board

- JLab Q-meter consists of 2 boards in Al enclosure
- Single layer boards with ground plane shielding
- "Stitching" for ground planes
- Mixer enclosed in board shield
- Biggest change: Analog Devices RF and Diff amplifiers
- Layout: JM, H. Dong
- Amplifier Board
- 2 Mixer/Diode Board

- JLab Q-meter consists of 2 boards in Al enclosure
- Single layer boards with ground plane shielding
- "Stitching" for ground planes
- Mixer enclosed in board shield
- Biggest change: Analog Devices RF and Diff amplifiers
- Layout: JM, H. Dong
- Amplifier Board
- 2 Mixer/Diode Board

Auxiliary Box Design

- Split RF-in to send to tank board and phase shifter
- Amplify RF to send as REF to Q-meter
- Accommodate either electronic phase shifter or phase cable
- Turn off RF power to Q-meter through relay when not in use

Q-meter DAQ Improvements

The biggest weakness of previous system is not the venerable Liverpool Q-meter!

NI PC-MIO-16XE-10

- 16-bit
- 100 kSps
- \pm 36 μ V
- 30 μ s frequency switching
- Triangle freq sweep
- PCI board, GPIB to R&S
- LabView

New System

- 24-bit
- 625 kSps
- $\bullet ~\pm 1\,\mu \mathrm{V}$
- 10 μ s switching
- Arbitrary freq sweep
- Ethernet
- Python

A New JLab Q-Meter System

FPGA Sweeping Algorithm in VHDL

- Initialize via UDP
 - Set center frequency, modulation, number of steps, number of sweeps to take, dwell time per step, points per step, ADC settings
 - Also change DAC voltage out for tuning (synchronous tuning one day)
- Takes sweeps
 - Change frequency, take ADC value, sum for that bin, repeat
 - Repeat for multiple sweeps through the range, continuing sums
 - After last sweep, return summed bins and number of sweeps to average
 - PC listens for FPGA response on TCP, divides to form averaged sweep
- Communicates with signal generator directly with 16-bit word on 16 pin cable
 - Allows 10 μ sec setting time for generator
 - Limits this device to Rohde & Schwarz SMA110A
- Written by H. Dong

FPGA Sweeping Algorithm in VHDL

- Initialize via UDP
 - Set center frequency, modulation, number of steps, number of sweeps to take, dwell time per step, points per step, ADC settings
 - Also change DAC voltage out for tuning (synchronous tuning one day)
- Takes sweeps
 - Change frequency, take ADC value, sum for that bin, repeat
 - Repeat for multiple sweeps through the range, continuing sums
 - After last sweep, return summed bins and number of sweeps to average
 - PC listens for FPGA response on TCP, divides to form averaged sweep
- Communicates with signal generator directly with 16-bit word on 16 pin cable
 - Allows 10 μ sec setting time for generator
 - Limits this device to Rohde & Schwarz SMA110A
- Written by H. Dong

FPGA Sweeping Algorithm in VHDL

- Initialize via UDP
 - Set center frequency, modulation, number of steps, number of sweeps to take, dwell time per step, points per step, ADC settings
 - Also change DAC voltage out for tuning (synchronous tuning one day)
- Takes sweeps
 - Change frequency, take ADC value, sum for that bin, repeat
 - Repeat for multiple sweeps through the range, continuing sums
 - After last sweep, return summed bins and number of sweeps to average
 - PC listens for FPGA response on TCP, divides to form averaged sweep
- Communicates with signal generator directly with 16-bit word on 16 pin cable
 - Allows 10 μ sec setting time for generator
 - Limits this device to Rohde & Schwarz SMA110A
- Written by H. Dong

Leaving LabView Behind...

Software Revamp Goals

- Modernize, improve ease of use
 - Lightweight and cross-platform compatibility
- Incorporate Python circuit simulation for fits
- Flexibility to use new FPGA or old NI DAQ
- Include traditionally off-line tools: TE, fits, event viewer
- Allow arbitrary sweep frequency lists
- Interface with numerous instruments, EPICS

JLab PyNMR

- New software based on Python, PyQt5
 - Uses Numpy, Scipy, pyqtgraph to be fast
 - Sockets for TCP, UDP communication
 - EPICS slow controls archiving over ethernet
 - Config file in YAML, JSON data files, Log files
 - Controls for microwave frequency and modulation
- Modular online signal analysis
- Documentation here, Github here.

A New JLab Q-Meter System

A New NMR System

Bar Tune Bendier TE Aubyis Same FM Section Test Section Test Cerently selected baseline Section Test Section Tes								JLab Polari	ration Display	lay ×
Selected Baseline Corrently selected Baseline Turnettary Select On Dulog Select of Dulog Selec	Run Tune Ba	seline TE	Analysis !	Shims FM						
Bit Institution State Courses Free free free free free free free free	Baseline Controls									Selected Baseline
Eventtle Selection Datog Select Current Eventfle Snow Recent Baselines 105/11172 00/073 15/65 4000 212.882 4000 Proteinort Baseline 105/11174 00/073 15/55 4000 212.882 4000 Proteinort Baseline 105/11180 00/073 15/57.142 4000 Proteinort Baseline 5/53 105/11180 010/073 15/57.142 4000 Proteinort Baseline 105/11182 010/073 15/57.142 4000 Proteinort Baseline 5/53 5/53 5/53	Currently selecte	d baseline: N							-5.52	32
Instatuy Date Tm Sveep Court Catcler (PH12) Dot (ph12)	Eventfile Selection Dialon Select Current Eventfile Show Recent Baselines								-5.522	22
10121172.0.000423 1554.650 440 21282 400.0 ProteoT5 Baseline 101711172.0.000423 1553.04 4000 212.82 400.0 ProteoT5 Baseline 101711172.000423 1553.04 4000 212.82 400.0 ProteoT5 Baseline 101711172.000423 1553.04 4000 212.82 400.0 ProteoT5 Baseline 101711172.000423 1554.04 4000 212.82 400.0 ProteoT5 Baseline 101711172.000423 1554.04 4000 212.82 400.0 ProteoT5 Baseline 101711172.000423 1554.01 4000 212.82 400.0 ProteoT5 Baseline 101711172.000423 1554.01 4000 212.82 400.0 ProteoT5 Baseline 101711172.000423 1554.01 400.0 ProteoT5 Baseline 530 531 531 532 534 534 534 534 534 532 534 536 536 536 536 536 533 212.8 212.8 <td>Timestamp</td> <td>Date</td> <td>Time</td> <td>Sweep Cou</td> <td>nt Center (MHz)</td> <td>Mod (kHz)</td> <td>Channel</td> <td>Label</td> <td>-5.524</td> <td>24</td>	Timestamp	Date	Time	Sweep Cou	nt Center (MHz)	Mod (kHz)	Channel	Label	-5.524	24
1019811746. 0.004073 155.106 4000 212.892 400.0 Productif Bandine 1019811746. 0.004073 155.228 4000 212.882 400.0 Productif Bandine 1019811746. 0.004073 155.90.4 4000 212.882 400.0 Productif Bandine 1019811806. 0.004073 155.91.4 4000 212.882 400.0 Productif Bandine 5538 5534 5546 5546 5546 5546 5546 5546 5538 5546 5546 5546 5546 5546 5546 5546 5538 212.6 212.8 213.2 213.2 213.2 213.2 213.2 5546 5546	1 167811773	03/06/23	15:48:50	640	212.882	400.0	Proton5T	Baseline	-5.524	
1 57811802. 0006/23 155-273 000 212.892 400.0 7040057 Baseline 1 57811802. 0006/23 155-344 4000 212.882 400.0 Protector Baseline 1 57811802. 0006/23 155-344 4000 212.882 400.0 Protector Baseline 1 57811802. 0006/23 155-823 4000 212.882 400.0 Protector Baseline 7 15781818. 0006/23 155-924 400.0 Protector Baseline 5534 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538 - 538	2 167811786	03/06/23	15:51:06	4000	212.882	400.0	Proton5T	Baseline	-5.526	16
1 5731180. 0006/23 155.54.4 000 212.82 400.0 Predox57 Baseline 1 56781180. 0006/23 155.54.4 4000 212.82 400.0 Predox57 Baseline 7 107811870. 0106/23 155.74.2 4000 212.82 400.0 Predox57 Baseline 7 107811870. 0106/23 155.74.2 4000 212.82 400.0 Predox57 Baseline 5.534	3 167811794	03/06/23	15:52:25	4000	212.882	400.0	Proton5T	Baseline	-5.528	28
1 \$721313.0. 0006/23 1556:43 4000 212.82 400.0 Protect?T Baseline 7 1/781313.0. 0006/23 1556:43 4000 212.82 400.0 Protect?T Baseline 7 1/781313.0. 0006/23 1557:42 4000 212.82 400.0 Protect?T Baseline 5513 552 552 552 552 553 553 553 553 553 553 553 553 553 553 522 523 533 553 553 553 553 522 523 533 553 553 553 553 522 523 533 553 553 553 553 522 523 533 534 553 553 553 553 522 534 534 534 534 534 534 553 522 534 534 534 534 534 534 553 536 536 536 536 534 536	4 167811802							Baseline		
10 155-021 1000 122.822 400.0 Proteors T Basedine 7 10781181826. 0200/023 15.57.42 400.0 Proteors T Basedine 5.514	5 167811810							Baseline	-5.53	13
7 157.42 400.0 Pressort Barrelier -5.534 -5.534 -5.534 -5.534 -5.536 -212.6 -212.8 -213 -212.6 212.8 213 213.2 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044 -0.0044	6 167811818							Baseline	-5.532	32
-538 -538 212.6 212.6 212.8 212.8 212.8 212.8 212.8 212.8 212.8 212.8 212.8 212.8 212.8 212.8 212.8 213.2 Current Sweep minus Baseline 0004 0004 0004 0004 0004 0004 0004 00	7 167811826						ProtonST	Baseline	-5.534	24
2126 2128 213 213.2				Set	Baseline				-5.538 0.0044 0.0042 0.0038 0.0038 0.0034 0.0034 0.0032	0 212.6 213.8 213.2 14 Current Sovep minus Baseline 213.2 14 Current Sovep minus Baseline 213.2 14 Current Sovep minus Baseline 213.2 15 Current Sovep minus Baseline 213.2 16 Current Sovep minus Baseline 213.2 17 Current Sovep minus Baseline 213.2 18 Current Sovep minus Baseline 213.2
8,8,8,10° 8,8,8,10° 8,8,0° 8,0°				Set	Baseline					212.6 212.8 213 213.2

listory to Show	(min): 360		-0.001						
it relaxation tim	e 1e+04 secs ± inf, asymptote -0.00 ± in		-0.001	www.					
Calculator									
pecies: Proton	* B Field (T): 5.00		-0.002						
ouble click to re	emove point. Fit slope 3.99e-09 ± 7.68e-	39.							
Date/Time 18:06:21	Area Temp (K) -0.0010039 1		*						
18:09:39	-0.0009028 1		-0.003						
18:12:57	-0.0009630 1								
10 18:16:15	-0.0008986 1								
11 18:19:33	-0.0008506 1								
12 18:22:51	-0.0009388 1		-0.004						
13 18:26:09	-0.0009109 1								
4 18:29:27	-0.0010337 1								
15 18:32:45	-0.0009542 1		-0.005	11:00 12:00 13:00 14:00					
16 18:36:03	-0.0008472 1			Ealest for TE					
17 18:39:21	-0.0009074 1			Jenes for the					
18:42:39	-0.0009495 1								
19 18:45:57	-0.0009370 1								
18:49:15	-0.0008858 1								
18:52:33	-0.0008498 1		+0.0008						
22 18:55:51	-0.0008696 1								
23 19:02:27	-0.0009745 1								
24 19:05:45	-0.0009422 1								
25 19:09:03	-0.0009355 1		+0.0009						
26 19:12:21	-0.0008811 1								
27 19:15:39	-0.0009559 1		- /						
	Calculate TE from Points	Save Results & Use CC							
E Results			-0.0010						
Material type: I Average Area: Average Polariz	Proton Number of Po -0.0009197 ± 0.0000528 Aver- zation: 0.00343 ± 0.00000 Average O	ints: 27 ige Temperature: 1.4908 ± 0.0019 alibration Constant: -3.7382742 ± 0.2175881	V						

	JLab Polariz	ation Display –						
Run Tune Baseline TE Analysis Shims FM								
Baseline Options		Baseline Subtraction						
Baseline Selected from Baseline Tab Baseline from 03/13/23 16:32:11 UTC	Ŧ	000						
it Options		- Ran Sight						
Polynomial Fit to Wings	*	-Subtracted						
Polynomial order: 3rd Order	*	212.6 212.8 213 213.2						
Fit bounds (0 to 1): 0.01 0 0.30 0 0 0.71 0 0.99	0	Fit Subtraction						
Fit coefficients: Resquared: 1.00 1.06+01 ± 1.28+01 1.06+04 ± 1.28+01 3.06+04 ± 0.40+04 2.06+06 ± 9.42+07 keults		-0.002						
Integrate within Range	*							
Integration bounds (0 to 1): 0.33 0.71	¢	+0.006 212.6 212.8 213 213.2						
Arez -0.1483261045695743		Pesuits 0 0 -0.001 -0.002 -0.003 -0.004 -0.004						
		212.6 212.8 213 213.2						

A New JLab Q-Meter System

A New NMR System

	JLab Polarization Display
Run Tune Baseline TE Analysis Shims FM Chassis Temp	
Baseline Options	Baseline Subtraction
Baseline Selected from Baseline Tab	
Baseline from 03/15/23 14:20:14 UTC	-001
Fit Options	-0.02 - Barkine
Polynomial Fit to Wings	32.3 32.4 32.5 32.6 32.7 32.8 32.9 33 33
Polynomial order: 3rd Order	* Fit Subtraction
Fit bounds (0 to 1): 0.01 0 0.23 0 0.72 0 0.99	
Fit conflictions: R-squared 1.00 3.62+00 2.437+01 -3.24+0.12.436+0.2 3.53+0.21 3.156+0.3 -3.42+0.5 1.159+0.5	-0.002 -0.004 -0.006 -0.008
Results	-0.0012 Fit
Integrate within Range	-0.0014 — Subtracted
Integration bounds (0 to 1): 0.24 0.71	32.3 32.4 32.5 32.6 32.7 32.8 32.9 33 33
	Results
	-0.0002
Area: -0.0764190912356939	-0.0004
	-0.0006
	-0.008 - Fit Subtracted
	-0.001 32.3 32.4 32.5 32.6 32.7 32.8 32.9 33 33

A New JLab Q-Meter System

				L	ILab Polari	n Display				×	
Run Tune Ba	aseline TE Analys	is Shims FM	Chassis Temp								
Baseline Options					Baseline Subtraction						
Baseline Selecte	ed from Baseline Tab				*	0					
Baseline from 0	03/15/23 14:20:14 UTC	c									
Fit Options						- Ran Signal					
Polynomial Fit t	o Wings				٠	Bareline					
Polynomial ord	er:		3rd Order		÷	02 Subtracted	25 326	327 33	8 32.9	33 331	
Fit bounds (0 to	o 1): 0.01	0.23	0.72	0.99	0	5215 5214 5	EIS SEIS	# Subtraction	52.10	55 5512	
Fit coefficients 7.20e+00 ± 4, -6.53e-01 ± 4, 1.96e+02 ± 1.2 -1.96e+04 ± 1. Results Deuteron Peak Deutron Linesh Polarization: 31	: N-5 35e-01 16e-02 :7e-03 29e-05 Fit Fit L72%, Area: -0.08, CC:	squared: 1.00			Ŧ	0 0 0 0 0 0 0 0 0 0 0 0 0 0	X	A			
A 2.707e-02+- wL 3.268e+01	1.058e-03 G -2.477e-4 +-7.868e-05 eta 1.109	05+-5.990e-07 r 1.64 9e-01+-1.088e-03 xi 2	le+00+-2.328e-02 wQ 2 2.511e-02+-8.191e-03	.738e-02+-2.400e-05		32.3 32.4	32.5 32.6	32.7 3 Results	2.8 32.9	33 33.1	
Initial Paramete	NS:					0	-				
A	0.03					0002		P			
G	-0.0003										
r	1.1					0004					
wQ	0.025					0006					
wL	32.7					0008	V				
eta	0.09					- Fit Subtracted		V			
xi	-0.1					0.001 Result		, T			
						32.3 32.4	32.5 32.6	32.7 3	2.8 32.9	33 33.1	

Outline

- NMR and JLab Solid Targets Introduction
- 2 Cold Board NMR
- 3 A New JLab Q-Meter System
 - DAQ Design Software Design
- 4 Results5 Future E

"Upgrading from the Liverpool to JLAB q-meter greatly increased the sensitivity and stability of the NMR system, allowing us to measure signals from very small samples."

-J. Pierce, Oak Ridge National Lab

- Direct comparison to Liverpool useful
 - Liverpool is gold standard
 - Linearity is crucial
- Ethernet double RF switch, Python Software
- Same material, coil and tank circuit
- This is an unfair comparison!
 - Unavoidable noise introduced to both systems with switching
 - JLab gets benefit of new DAQ, shielding
 - JLab is faster, (1/3 switching time)
 - Liverpool set up with NI DAQ board

A New NMR System

- Test: Proton TE, tiny signal!
- Noise roughly 2-3 times worse in switching configuration
- 3000 sweeps through frequency
 - Takes JLab 60 sec
 - JLab takes 2 times as many points
 - Takes Liverpool 91 secs
- Noise comparison maybe not conclusive here
- Under polarization, performs well
- Linearity comparison

- Test: Proton TE, tiny signal!
- Noise roughly 2-3 times worse in switching configuration
- 3000 sweeps through frequency
 - Takes JLab 60 sec
 - JLab takes 2 times as many points
 - Takes Liverpool 91 secs
- Noise comparison maybe not conclusive here
- Under polarization, performs well
- Linearity comparison

- Test: Proton TE, tiny signal!
- Noise roughly 2-3 times worse in switching configuration
- 3000 sweeps through frequency
 - Takes JLab 60 sec
 - JLab takes 2 times as many points
 - Takes Liverpool 91 secs
- Noise comparison maybe not conclusive here
- Under polarization, performs well
- Linearity comparison

- Test: Proton TE, tiny signal!
- Noise roughly 2-3 times worse in switching configuration
- 3000 sweeps through frequency
 - Takes JLab 60 sec
 - JLab takes 2 times as many points
 - Takes Liverpool 91 secs
- Noise comparison maybe not conclusive here
- Under polarization, performs well
- Linearity comparison

Outline

- NMR and JLab Solid Targets Introduction
- 2 Cold Board NMR
- 3 A New JLab Q-Meter System
 - Qmeter Design DAQ Design Software Design
- 4 Res
- 5 Future Effort

Future Paths of Research

- Sine wave board: replace R&S signal generator
- All Digital Q-meter
 - Use fast ADCs to digitize before down-mixing
 - Perform algorithmic down-mix to get signal
 - Patent Awarded for Design (J. Maxwell, 2422U (JSA))
- Machine Learning DOE grant awarded for polarized target control
 - ML methods for polarization extraction from NMR also to be investigated
 - Focus first on baseline determination, signal isolation
- Quadrature measurements with existing system

Summarizing New JLab NMR System

- Significant ergonomic improvements:
 - Cheaper to build, more flexible, better supported by software, easier to use
- Direct improvement of measurement accuracy
 - Faster, less noisy
- Used with success for Run Group C
- Publication forthcoming
- Schematics and code available to all

Jefferson Lab Polarized Target Group:

- C. Keith, J. Maxwell, D. Meekins
- J. Brock, C. Carlin, D. Griffith, M. Hoegerl, P. Hood

Special thanks:

- H. Dong, J. Wilson (JLab Electronics Group)
- J. Pierce (ORNL)
- V. Lagerquist (ODU)

Thank you for your attention!

Q-curve and Signal Response, 400 kHz Range

Q-curve and Signal Response, 400 kHz Range

Q-curve and Signal Response, 400 kHz Range

