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Modern Measurement Tools

And the algorithms changing everything...
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 Seems to be something going on in Al
« Examples
* Positioning for the greatest leaps forward

 Why its essential for spin-1



ARTIFICIAL INTELLIBENCE TEEMS

ARTIFICIAL
INTELLIGENCE

® Al is an umbrella term for machines
capable of perception, logic, and learning.

MACHINE
LEARNING -

- ® Machine learning employs algorithms
that learn from data to make predictions
or decisions, and whose performance

improves when exposed to more data
over time.

DEEP
LEARNING -

® Deep learning uses many-layered neural
networks to build algorithms that find the
best way to perform tasks on their own,
based on vast sets of data.



the way for Al
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Frank Rosenblatt in July 1938, the U.S. Office of Naval Research



Birth of Modern Algorithm

In the mid 80s Geoff Hinton discovered how to make deep ANNs
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 Dean Pomerleau of Carnegie
| Mellon (1988 first Al self
driving car)

i o Pebns?  Yann LeCun (1989 handwritten
" digit classification)
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Mores Law Caught up in 2006

Algorithm Adapted to modern computing

A fast learning algorithm for deep belief nets *

Geoffrey E. Hinton and Simon Osindero Yee-Whye Teh
Department of Computer Science University of Toronto Department of Computer Science
10 Kings College Road National University of Singapore
Toronto, Canada MS5S 3G4 3 Science Drive 3, Singapore, 117543
{hinton, osindero }(@cs.toronto.edu tehyw(@comp.nus.edu.sg

 Advancement in Processors, Memory, Storage
* Essential high speed systems become available (parallelism)

» |Large scale datasets (the world becomes teaming with data)



Training compute (FLOPs) of milestone Machine Learning systems over time
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Evolution Timeline

Petaflop/s-days
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Basic DNN Concepts

That are changing the way we do physics...

* Extract more information with more inputs (neurons, layers, variables, data)
* Lightning fast inference (specialized hardware to parallelize)

» Ultimately adaptive and accurate (Universal Approximation Theorem)



Machine Learning

In Nuclear and Particle Physics

* Event-level Classification » Simulation acceleration
* Irigger and Pattern Recognition e Instrumentation Automation

* Tracking/Event Reconstruction » Detector/cryostat Design

* Cluster Reconstruction in » Online Monitoring/Optimization

Calorimeters

| | * Detector Readout Optimization
 Regression of detector drifts

 Modeling *
 Phenomenological Extraction



Configure Experiments for DNN optimization

One project at a time

* Detector characterization and performance tuning with DNNs

» calibration, efficiencies, acceptance

 Raw data (ACD/TDC) straight to Physics

T

 Suggests the concept of Intelligent Detectors 0-0—]
p-O-0

* Optimization of beam time
Al Inference Workloads

¢ Inference US| ng G PU |S faSt Researchers are continuing to evolve and

expand the size, complexity, and diversity

 Keep up with data rates il mocels

» Specialize /0O pipeline



Rethinking the Way We do Research

Getting the most from computing means Redesigning Everything

 Raw information is more advantageous for DNN analysis
* Need to start at the DAQ and tracking level
* \ery fast online monitoring can now perform full chain analysis
 Anomaly detection on incoming data

* Real time systematic quantification



Irradiation Performed at NIST (MIRF Accelerator)

Some Examples

In Polarized Targets

* [raveling-wave electron linac

e Irradiated to 10!7 ¢~ /cm2

* 14 GeV 10 A under Liquid Argon (~87 K)
* Proton knocked out to from free radicals
 Also form color centers

e Material color i1s correlated to the dose

* Optimized for field and temperature Material Photo 8




Al in Online Monitoring

Fast Reconstruction

N, — N
A — L R
NL+NR

* Detector element failure

e Jarget-beam miss alignment
* Cell twisting

* Faulty position

* Jarget cell damage
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Al in Online Reconstruction

Fast Reconstru ction Background and Signal Just DY Signal

Q
Event Reducer Kalman Fast Tracking Vertex Finding g
>
Remove W—HBuild triplets in stations 2 & 3 Swim single muon tracks =
- out-of-time hits = ’ © —| through m::’gnetic fields and
- Clusters Connect triplets from 2383 | & LOR DO CUMe
: = ‘ .
Use sagitta to project track FMag | | S b 5 10 15 20 25 30
from station 2 & 3 to station 1 [,\_A ...................
* w2
1k myEriE Dase on l Single PT Kick through KMag e Detector ID
multiplicity in : o :
chambers, prop Build triplet in station 1 and =
tubes, trigger roads. connect with projection
' »
Remov: DAL Nty Bk | Kalman fit vertex for the Filtering
Swp 1: X vew ol bl dimuon pair from tracks Track Finding
Triplets from B e SRy Track Fitting
Finetune fit with Kalman Filter
and drop low quality tracks

Noah Wurfel, University of Michigan

1 CPU: 110 minutes for 40K

1 CPU: 48 seconds for 40K



Parton Distribution Functions

HERA and LHC programs
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Some Issues in Spin

In Phenomenology (Understanding Femtoscale Dynamics)

* |nverse Problem: Determine definitive measures of proton structures using
experimental information, Lattice Calculations, and Phenomenology

o Extraction of GPDs while eliminating the reliance of model fits
e Extraction of TMDs without assuming a Gaussian factorized form

e Curse of Dimensionality: Understanding the Mother Function (Wigner?) in terms of
processes and physical observables (interpretation yields inherent sparsity)

« How can we Impose constraints at the higher-level to interpret dynamics ana
geometry

 How do we best obtain information from experiments that gets us the farthest



Candidate Mother Distributio

( Liu and Ma, PRD 91, 034019 (2015))
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ki =0.4 GeV puuki, b1)

Nucleon Tomography

Or Femtography ;
W (x r ' 0 M
Density in the Transverse-momentum plane ( by J-) 5D . S
) L b
x fy(x, kt, Sy) " - : (Gf'lf“-/ _0%5
d quark 1\ d / 1 d.?k 1 )
k polarizati
TMDs . ) quark polarization
S| GPD |U | L T
0.5 y éaw 0.5 0.5 kx(éeV) 0.5 Oz I g 1/Q -c_% U H 5T
o
X o . -
Deep red (blue) are large negative (positive) 3 D P - L H Er
2 " -
quark polarization é d & E | E | Hp, Hyp

X .
s | TMD | U I T FT with respect. to t.ran.sve.rse components leads
= To spatial distribution of pardons
'% U fl h/f_ S\
S - averages over guark helicities
3 L giL hiLL /f H B E D "unpolarized" y
= ., %
o) - ~ ~ differences of quark helicities
o | -
'§ T fir | o17 | ha, Ay dky [ H S "polarized" )
c \ 4 A\ conserve nucleon ﬂc of the nucleon
b o B i helici helici
Parton Distribution Functions Form Factors \—_helicty ./ L

Transverse Momentum Distributions Generalized Parton Distributions

* Transverse momentum structure * Spatial Imaging of internal structure

 Confined Motion of Partons * Form factors and generalized longitudinal structure



TMD Gilobal Fitting

Pseudodata Extraction before Real Data
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CFF Extraction Assuming BKM

Pains taking Pseudodata Studies

Q?=3.0GeV?, t=-0.7 GeV?

e Still Assume formalism S A RO

ReH

» Very good local fits - L e

* |Improved global extraction

020 025 030 035 040 045 050 0.55 0.60
XB

But doing local fitting in this traditional way doesn’t really make sense!!

oy (nb/Gev?)

| Fit

Q% = 1.9 GeV?, xg = 0.36

ReH

Pseudo-data 2




Basic ANN Extraction fix,y,z,a,b,c)
Local Fit

* The experimental data is use to generate MC replica data

» Have collection of data with know f with unknown set of parameters

 Pass data and dependent variables through the network according to weights
and activation function (first iteration weights are random values)

 The output is the first approximation of the desired parameters

» Use these output parameters to calculated f. The results are used in the loss
function which is use to modify the network and adjusts weights so the error
IS decreasing



* Once experiment analysis is performed

Long Standing Problems

Data should be globally accessible

Stuck with kinematic bins

Little to no covariance information

Systematic errors inadequately

Raw data is lost

No storage for future use/analysis/fitting

Q?%=3.67 GeV? t=-0.33 GeV?

= Total fit

—— DVCS?

——— Interference
. BH

= = KM15

50 100 150 200 250 300 350
@ (deq)

Georges, F. et al, Phys Rev Lett 128 252002

Same Issue with Polarized Target Data too!!



Storage Candidates

Needed to make data available to the world for training Al for everyone!!

 Compressed root file (Struct format)
 Compressed numpy arrays
* Hierarchical Data Format (HDF5)
* Reduce types: float16, int8, uint8
* Reduce structure root/npy: few dimensions and elements
e Saved raw but not too raw...
* Level of information
* |/O speed
» Compressibility

* Able to read publicly with standardized data dictionary



New Measurement Approach

How to Measure and What is the Error

 Measure
 Assume TE and Boltzmann signal studies done well during calibration
 Use the 3-principles ss-RF extraction
e Continue to sweep-measure/sweep-manipulate

* Uncertainty

* Additional Error from modulating but have tools to improve



The Three Principles

For Enhanced Tensor Polarization that can be measured

A. Differential Binning

B. Spin Temperature Consistency

C. Rates Response

https://doi.org/10.1016/j.nima.2020.164504
https://doi.org/10.1016/j.nima.2023.168177
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Differential Binning
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Spin Temperature Consistency

or strategic depolarization
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Spin Temperature Consistency

or strategic depolarization

Applying saturating or semi-saturating RF

depolarize across the selected domain\
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Spin Temperature Consistency

or strategic depolarization
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Spin Temperature Consistency

or strategic depolarization
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Spin Temperature Consistency

or strategic depolarization
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Rate Response

Or why you can get rid of models

[ (—R)=—2Cép, I,(-%)=-2Cép,
1,(R) = Cépy I (#) = Cep,
. 1. . 1.
[ (-R)=— 51+(@) [ (-R) = — 51_(9?)
|
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https://doi.org/10.1016/j.nima.2023.168177



Putting These Conditions Together

Simple Measuring Tools

* The difference (Q) in intensities can by easily calculated using area dependent
Boltzmann

1

. Apply Agained — EAlmt

* Configure for any vector polarization and the particular RF region
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Caveats

What is exact and what is approximation

* Everything just laid out is exact for any polarization mechanism, any line
shape, and any material and so not model dependent

* Everything just laid out is in reference to longitudinal (spin-lattice) relaxation
pathways and not transverse (spin-spin, like spin diffusion)

* Jo take into account the transverse relaxation pathways one needs to fit the
hole using a Voigt (convolution of Gaussian and Lorentzian)

* These fits are sensitive to Q-factor of coil, degree of tuning and matching of
RF circuit, amplification parameters, and transverse relaxation of material
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Practical Aspects of Doing This with NMR

ss-RF Q-meter based prototype

* Set the single sweep
* RF switch to turn off Q-meter and run ss-RF
 Then run and change ss-RF power/duration

 But measurements and response must be fast or errors will overwhelm

Possible without a new style of NMR

Yes!!
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Status of New ss-RF based NMR

As of now

* |nitial prototype used in cooldowns (large errors and no Al)
» Generic first round LabView based software/simulation
 New Al-GPU based extraction (Devin Seay)

* High-level design complete

* Applied for NSF funds to build

e Acquired funding

 Acquired hardware

» Constructed

e Commissioned



Measurements of Tensor Enhancement

Experimental results (all with irradiated d-Butanol)

1{C_mV)

2400
2200
2000
1800
1600
1400
1200
1000

ss-RIF Enhanced Measurements
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Peak (MHz2z) Amp Pedestal (MHz) | Amp P,; (%) | Error
(mV) (mV) (%)
32.62(0.000) 20 32.85(0.015) 70 26.7 54
32.63(0.015) 30 32.85(0.020) 40 28.8 5.7
32.64(0.015) 30 32.84(0.025) 40 29.4 7.2
32.64(0.015) 25 32.83(0.035) 20 26.5 6.8
32.64(0.015) 20 32.85(0.035) 70 30.3 7.8
32.64(0.020) 20 32.85(0.025) 40 219 4.7
32.64(0.015) 40 32.88(0.055) 50 31.1 8.5
NIM A 981, (2020), 164504
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Rotating Targets (work still in progress)

And results (slow rotation)

 Rotate to TRY to burn one entire absorption line

» Spin Diffusion fights repopulates with rotation but changes for every angle
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Kel-F (C,CIF,), cup and driving gear
Motor outside cryostat
NMR coil around cup

Already used with several designs at UVA
1 Hz achieved with no problem

Fixed beam spot




* Motor outside cryostat

NMR coil around cup

Already used with several designs at UVA 7™\

1 Hz achieved with no problem
* Fixed beam spot




I (C, mV)

Rotation Results

10% relative uncertainty is the best we can do with rotation (no Al)

At <40° with respects to B

Rotation rate

rss-RF Enhanced Measurements

Relative
error

Q-1 Peak (MHz) Amp Pedestal (MHz) | Amp P,, (%) | Error
(mV) (mV) (%)
50 32.65(0.010) 15 32.85(0.015) 45 35.7 8.4
44 32.66(0.000) 10 32.88(0.015) 40 36.5 9.7
40 32.65(0.000) 15 32.88(0.015) 40 36.3 9.3

NIM A 981, (2020), 164504




Basic Prototype

Standard single rotating cup
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Wireless NMR coll for improved signal

Critical for Target Calibrations

* Poor signal to noise during
TE diminishes FOM

* |nner coil inductively
coupled to the static coll

Wireless inner coill |"
e Matched i
s, / \\\ 2

e Tuned

 Balanced geometry




General Outlook

* First Generation
* b1 structure function (Hall C)
* Azz + T20 (Hall C)
DY Transversity (FNAL)

* Second Generation (beyond 3 years)

+ fi;, in SIDIS (Hall A)

* Tensor polarized DVCS (Hall C)
« SIDIS Transversity (Hall A)

* Photon Tensor polarized observables (Hall D)
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Backup stuff
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Al In Polarization Measurements
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Building a ANN Vo o\ V
Simplified e oz N\

 Determine type of problem

W |
w f \ W

* Prepare (engineer training) data " we

* Configure ANN (architecture, activation, loss, optimizer, learning rate, batch size)
* Train ANN

* Improve performance (tune hyperparameters)

» [est, study, probe limitations,...
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Rate Response Auained =5 Mo
Or why you can get rid of models
I(-R) = C(po/—\m [(-%R) = C(p(—\‘p@
I.(-R)—I_(-R) [ (-R) — (- R)
= Cl(py — Spy) — (p— +Spy)] = Cl(py — Sp) — (po + sp)]
= Cl(py — p-) — 2¢p,] = Cl(ps — po) — 28p,]

I_(-R) = - 2CSpy j+(_=%) = —2Cép,.




Rate Response

Or why you can get rid of models

I (-R) = C(/)o/—\fo_) [(-R) = C(P{_\Po)
1(R)+1.(R) L(R)+ 1 (R)

= Cl(py) — (po— Epy)] = Cl(pg+ cpy) — (p)]

= Cl(p; = po) + Spo = Cl(pp = p-) +cp,]

I(R) = Cép, (R = Cep,




Some Important ANNs

With applications to our field

e Feedforward Neural Networks
» 0".‘,.0 < B

e Radial basis function Neural Networks

o Self Organizing Neural Networks

e Recurrent Neural Networks Caffe S Caffe2 €O Chainer

* Convolution Neural Networks wooen (@XNIEL

MATLAB Toolkit
° MOdUIar Neural Networks NVIDIA Tensor Cores ‘(.—‘( Padd|ePadd|e O PYTOrCh
® | TF-TRT | ’ ! ¢ ®, olfram
Graph Neural Networks 2=y L ¥ T Yo

GPGPU Computing

Bogdan Oancea, Tudorel Andrei, Raluca Mariana Dragoescu
arXiv:1408.6923v1



https://arxiv.org/search/cs?searchtype=author&query=Oancea%2C+B
https://arxiv.org/search/cs?searchtype=author&query=Andrei%2C+T
https://arxiv.org/search/cs?searchtype=author&query=Dragoescu%2C+R+M
https://arxiv.org/abs/1408.6923v1

Processing Units (Al Chips)

Acceleration in Training and Inference (driving the rate of progress)

« CPU: Central Processing Unit also called a central processor, main processor or just processor, is the
electronic circuitry that executes instructions in a clock cycle. Need a farm to do serious Al.

 GPU: Graphics Processing Unit is a specialized processor with dedicated memory that conventionally
perform floating point operations required for rendering graphics. Its a single-chip processor used for
extensive graphical and mathematical computations for major parallelization.

 TPU: Tensor Processing Unit is an Al accelerator application-specific integrated circuit (ASIC) developed by
Google specifically for neural network machine learning, particularly using Google's own TensorFlow software.

 NPU: Neural Processing Unit is a microprocessor that specializes in the acceleration of machine learning
algorithms, typically by operating on predictive models such as artificial neural networks (ANNs) or random
forests (RFs).

 QPU: Quantum processing Unit, also referred to as a quantum chip, is a physical (fabricated) chip that
contains a number of interconnected qubits. It is the foundational component of a full guantum computer,
which includes the housing environment for the QPU, the control electronics, and many other components.



