JLab's Polarized NH₃ and ND₃ Targets Performance for Run Group C

J. Maxwell

With slides contributed by J.Brock, C.Keith

Tensor Spin Observables Workshop Trento, Italy July 12th, 2023

Outline

- Polarized Solid Targets
 Dynamic Nuclear Polarization
 Performance in Beam

 Run Group C Target
 - Requirements Design
- 3 Target Performance
 - Operation Challenges Preliminary Results

Outline

- Polarized Solid Targets

 Dynamic Nuclear Polarization
 Performance in Beam

 Run Group C Target
 Requirements
 Design
 Target Performance
 - Operation Challenges Preliminary Results

Polarized Solid Targets

A Starting Point for a Polarized Target

- At equilibrium, populations follow Boltzmann distribution: $N_{\downarrow}/N_{\uparrow} = e^{-2\mu B/kT}$
- "Brute force," spin 1/2:

$$P_{\text{TE}} = \frac{e^{\frac{\mu B}{kT}} - e^{\frac{-\mu B}{kT}}}{e^{\frac{\mu B}{kT}} + e^{\frac{-\mu B}{kT}}} = \tanh\left(\frac{\mu B}{kT}\right)$$
$$P(t) = P_{\text{TE}}(1 - e^{-t/t_1})$$

- Spin-lattice relaxation t_1 related to T!
- At 1 K, 5 T, *P_e* ~100%
- Can we use high *e* polarization to polarize *p*?

Thermal Equilibrium Polarization for B = 5T

Polarized Solid Targets

A Starting Point for a Polarized Target

- At equilibrium, populations follow Boltzmann distribution: $N_{\downarrow}/N_{\uparrow} = e^{-2\mu B/kT}$
- "Brute force," spin 1/2:

$$P_{\mathsf{TE}} = \frac{e^{\frac{\mu B}{kT}} - e^{\frac{-\mu B}{kT}}}{e^{\frac{\mu B}{kT}} + e^{\frac{-\mu B}{kT}}} = \tanh\left(\frac{\mu B}{kT}\right)$$
$$P(t) = P_{\mathsf{TE}}(1 - e^{-t/t_1})$$

- Spin-lattice relaxation t_1 related to T!
- At 1 K, 5 T, P_e ~100%
- Can we use high *e* polarization to polarize *p*?

- Use hyperfine e^-p spin coupling
- Induce flip-flop transitions: μ -waves
 - $\nu_{\mu+} = \nu_{\text{EPR}} \nu_{\text{NMR}}$
- Relaxation times are the key
 - $e \approx$ milliseconds
 - $p \approx 10$ s of minutes
- Continue until new equilibrium
- At 5 T & 1 K: $P_p \sim$ 95%, $P_d \sim$ 50%
- Choose polarity without changing magnetic field

• $\nu_{\mu-} = \nu_{\text{EPR}} + \nu_{\text{NMR}}$

- Use hyperfine e^-p spin coupling
- Induce flip-flop transitions: μ -waves
 - $\nu_{\mu+} = \nu_{\text{EPR}} \nu_{\text{NMR}}$
- Relaxation times are the key
 - $e \approx$ milliseconds
 - $p \approx 10$ s of minutes
- Continue until new equilibrium
- At 5 T & 1 K: $P_p \sim$ 95%, $P_d \sim$ 50%
- Choose polarity without changing magnetic field

• $\nu_{\mu-} = \nu_{\text{EPR}} + \nu_{\text{NMR}}$

- Use hyperfine e-p spin coupling
- Induce flip-flop transitions: μ -waves
 - $\nu_{\mu+} = \nu_{\text{EPR}} \nu_{\text{NMR}}$
- Relaxation times are the key
 - $e \approx$ milliseconds
 - $p \approx 10$ s of minutes
- Continue until new equilibrium
- At 5 T & 1 K: $P_p \sim$ 95%, $P_d \sim$ 50%
- Choose polarity without changing magnetic field

[•] $\nu_{\mu-} = \nu_{\text{EPR}} + \nu_{\text{NMR}}$

- Use hyperfine e-p spin coupling
- Induce flip-flop transitions: μ -waves
 - $\nu_{\mu+} = \nu_{\text{EPR}} \nu_{\text{NMR}}$
- Relaxation times are the key
 - $e \approx$ milliseconds
 - $p \approx 10$ s of minutes
- Continue until new equilibrium
- At 5 T & 1 K: $P_p \sim$ 95%, $P_d \sim$ 50%
- Choose polarity without changing magnetic field

- Use hyperfine e-p spin coupling
- Induce flip-flop transitions: μ -waves
 - $\nu_{\mu+} = \nu_{\text{EPR}} \nu_{\text{NMR}}$
- Relaxation times are the key
 - $e \approx$ milliseconds
 - $p \approx 10$ s of minutes
- Continue until new equilibrium
- At 5 T & 1 K: $P_p \sim$ 95%, $P_d \sim$ 50%
- Choose polarity without changing magnetic field

[•] $\nu_{\mu-} = \nu_{\text{EPR}} + \nu_{\text{NMR}}$

- Use hyperfine e-p spin coupling
- Induce flip-flop transitions: μ -waves
 - $\nu_{\mu+} = \nu_{\text{EPR}} \nu_{\text{NMR}}$
- Relaxation times are the key
 - $e \approx$ milliseconds
 - $p \approx 10$ s of minutes
- Continue until new equilibrium
- At 5 T & 1 K: $P_p \sim$ 95%, $P_d \sim$ 50%
- Choose polarity without changing magnetic field

- Use hyperfine e-p spin coupling
- Induce flip-flop transitions: μ -waves
 - $\nu_{\mu+} = \nu_{\text{EPR}} \nu_{\text{NMR}}$
- Relaxation times are the key
 - $e \approx$ milliseconds
 - $p \approx 10$ s of minutes
- Continue until new equilibrium
- At 5 T & 1 K: $P_p \sim$ 95%, $P_d \sim$ 50%
- Choose polarity without changing magnetic field
 - $\nu_{\mu-} = \nu_{\text{EPR}} + \nu_{\text{NMR}}$

A Dynamic Nuclear Polarization System

DNP System Components

• 5 T superconducting magnet

- Field uniformity can limit polarization
- Liquid ⁴He evaporation refrigerator to give sufficient of cooling power at 1 K
 - Superfluid conducts heat out of material beads very well at these temperatures
- Extended Interaction Oscillator tube makes 20 W microwaves at 140 GHz for 5 T
- Target material must be doped with free electrons for flip-flops!
 - Paramagnetic centers from free radicals: chemical doping or ionization from irradiation

DNP System Components

- 5 T superconducting magnet
 - Field uniformity can limit polarization
- Liquid ⁴He evaporation refrigerator to give sufficient of cooling power at 1 K
 - Superfluid conducts heat out of material beads very well at these temperatures
- Extended Interaction Oscillator tube makes 20 W microwaves at 140 GHz for 5 T
- Target material must be doped with free electrons for flip-flops!
 - Paramagnetic centers from free radicals: chemical doping or ionization from irradiation

Polarization vs. Field for ND3 and NH3 at 136 GHz

DNP System Components

- 5 T superconducting magnet
 - Field uniformity can limit polarization
- Liquid ⁴He evaporation refrigerator to give sufficient of cooling power at 1 K
 - Superfluid conducts heat out of material beads very well at these temperatures
- Extended Interaction Oscillator tube makes 20 W microwaves at 140 GHz for 5 T
- Target material must be doped with free electrons for flip-flops!
 - Paramagnetic centers from free radicals: chemical doping or ionization from irradiation

DNP System Components

- 5 T superconducting magnet
 - Field uniformity can limit polarization
- Liquid ⁴He evaporation refrigerator to give sufficient of cooling power at 1 K
 - Superfluid conducts heat out of material beads very well at these temperatures
- Extended Interaction Oscillator tube makes 20 W microwaves at 140 GHz for 5 T
- Target material must be doped with free electrons for flip-flops!
 - Paramagnetic centers from free radicals: chemical doping or ionization from irradiation

DNP System Components

- 5 T superconducting magnet
 - Field uniformity can limit polarization
- Liquid ⁴He evaporation refrigerator to give sufficient of cooling power at 1 K
 - Superfluid conducts heat out of material beads very well at these temperatures
- Extended Interaction Oscillator tube makes 20 W microwaves at 140 GHz for 5 T
- Target material must be doped with free electrons for flip-flops!
 - Paramagnetic centers from free radicals: chemical doping or ionization from irradiation

Material	Туре	Dopant	Dilution	Polarization	Rad. Res.
Butanol	C_4H_9OH	TEMPO	13.5%	90-95%	Moderate
D-Butanol	C_4D_9OD	TEMPO	23.8%	40%	Moderate
Ammonia	¹⁴⁽¹⁵⁾ NH ₃	Irrad.	17.6%	90-95%	High
D-Ammonia	ND ₃	Irrad.	30.0%	50%	High
Lithium-H	⁷ LiH	Irrad.	25.0%	90%	Very High
Lithium-D	⁶ LiD	Irrad.	50.0%	55%	Very High

NMR Measurements

- In field B_0 apply RF field to material at Larmor frequency ω_0
- Coil of L_0 perpendicular to B_0 to induce spin flip
- LCR circuit so that $\omega_0 = 1/\sqrt{LC}$, observe change in impedance with frequency
- As frequency changes: circuit response Q-curve and polarization signal
- Sweep frequency around ω_0 to integrate in ω
- Must calibrate signal area against known polarization:

$$P_{\mathsf{TE}} = \tanh\left(\frac{\mu B}{kT}\right), \quad P = A\left(\frac{P_{\mathsf{TE}}}{A_{\mathsf{TE}}}\right)$$

NMR Measurements

- In field B_0 apply RF field to material at Larmor frequency ω_0
- Coil of L_0 perpendicular to B_0 to induce spin flip
- LCR circuit so that $\omega_0 = 1/\sqrt{LC}$, observe change in impedance with frequency
- As frequency changes: circuit response Q-curve and polarization signal
- Sweep frequency around ω_0 to integrate in ω
- Must calibrate signal area against known polarization:

$$P_{\text{TE}} = \tanh\left(\frac{\mu B}{kT}\right), \quad P = A\left(\frac{P_{\text{TE}}}{A_{\text{TE}}}\right)$$

Deuteron Polarization and NMR Lineshape

- If *d* were a dipole, levels would be degenerate: single line NMR peak
- Quadrupole moment of *d* interacts with electric field gradients in the lattice
- Energy level changes with angle between field and molecule θ
- Observed NMR signal is sum of $-1 \rightarrow 0$ and $0 \rightarrow 1$ transitions
- Separation allows manipulation with RF
- Measuring relative size of peaks gives polarization, allowing calibration!

Deuteron Polarization and NMR Lineshape

- If *d* were a dipole, levels would be degenerate: single line NMR peak
- Quadrupole moment of *d* interacts with electric field gradients in the lattice
- Energy level changes with angle between field and molecule *θ*
- Observed NMR signal is sum of $-1 \rightarrow 0$ and $0 \rightarrow 1$ transitions
- Separation allows manipulation with RF
- Measuring relative size of peaks gives polarization, allowing calibration!

NH₃ Performance in Experimental Beam

- Initial dose $\sim 10^{17} e^{-}/\mathrm{cm}^{2} (\mathrm{NH}_{2}^{\bullet})$ in liquid argon before experiment
- Polarize above 90% after this irradiation
- "Cold" dose at 1 K will produce more radicals (H[•]). Too many hurt polarization!
- Regain polarization via anneals: heating recombines radicals (~90 K for ~30 mins)
- With more beam, stable radicals are produced which can't be removed (N₂H[•]₄)
- Polarization decay rate increases until running untenable, material replaced.

 ${\sim}2$ months of running in Hall B EG1-DVCS @ 7 nA

NH₃ Performance in Experimental Beam

- Initial dose $\sim 10^{17} e^{-}/\mathrm{cm}^{2} (\mathrm{NH}_{2}^{\bullet})$ in liquid argon before experiment
- Polarize above 90% after this irradiation
- "Cold" dose at 1 K will produce more radicals (H[•]). Too many hurt polarization!
- Regain polarization via anneals: heating recombines radicals (~90 K for ~30 mins)
- With more beam, stable radicals are produced which can't be removed (N₂H[•]₄)
- Polarization decay rate increases until running untenable, material replaced.

 ${\sim}2$ months of running in Hall B EG1-DVCS @ 7 nA

ND₃ Performance in Experimental Beam

T.D. Averett et al. | Nuclear Instruments and Methods in Physics Research A 427 (1999) 440-454

- 'Cold' dose is crucial to increasing polarization with successive anneals
- High-current irradiation runs at 1 K needed for Hall B

¹⁵ND₃ Performance in Experimental Beam

P.M. McKee | Nuclear Instruments and Methods in Physics Research A 526 (2004) 60-64

JLab's Polarized NH3 and ND3 Targets

Performance in Beam

Optimal Microwave Frequency

- Accumulation of paramagnetic centers also causes a shift in the optimal microwave frequency
- Operator must adjust the frequency
- Development of automation at UVa and a newly funded ML effort at JLab

Outline

- Polarized Solid Targets
 Dynamic Nuclear Polarization
 Performance in Beam
- Run Group C Target Requirements Design
 Target Derformance
 - Operation Challenges Preliminary Result

Run	Grou	ъC	Target

Run	Grou	n C	Target
T Carr	orou	ρΟ.	rurget

Run Grou	in C ⁻	Target
1.0100	vp o	aiget

Run Group C Target

Run Group C Target

JLab's Polarized NH_3 and ND_3 Targets

Run Group C Target

- Fit in CLAS12, which does not allow vertical access to interaction region
- Accommodate cells of 5 cm length, varied diameters
 - 15 mm for FT On (Moller shield)
 - 20 mm for FT Off
- NMR coils outside cell to avoid scattering background
- Include magnetic shims to improve field uniformity for deuteron polarization
- Accommodate anneals and material changes with minimal overhead

Target designed by J. Brock, C. Keith

- Very long, horizontal cryostat to fit in CLAS12, 10 cm bore. 5 mm clearance.
- New ⁴He evaporation fridge, provides 1 W at 1.07 K
- Beamline blocks removal, would require disassembly with every change
- "Trolley" retracts bath for quick material changes (J Brock)

- Very long, horizontal cryostat to fit in CLAS12, 10 cm bore. 5 mm clearance.
- New ⁴He evaporation fridge, provides 1 W at 1.07 K
- Beamline blocks removal, would require disassembly with every change
- "Trolley" retracts bath for quick material changes (J Brock)

- Very long, horizontal cryostat to fit in CLAS12, 10 cm bore. 5 mm clearance.
- New ⁴He evaporation fridge, provides 1 W at 1.07 K
- Beamline blocks removal, would require disassembly with every change
- "Trolley" retracts bath for quick material changes (J Brock)

- Very long, horizontal cryostat to fit in CLAS12, 10 cm bore. 5 mm clearance.
- New ⁴He evaporation fridge, provides 1 W at 1.07 K
- Beamline blocks removal, would require disassembly with every change
- "Trolley" retracts bath for quick material changes (J Brock)

Run	Groui	n C	Target	
1 (uni	orou	ρΟ.	ruiget	

Liquid Helium Bath

- Beam travels through evacuated center of trolley
- Liquid He fills bath and extends upstream in annular space that runs length of the trolley
- Cell is held securely in mounting bracket, and inserted from above with special tool
- Beam passes through AL windows on bath (2), cell (2), pump tube and OVC

Liquid Helium Bath

- Beam travels through evacuated center of trolley
- Liquid He fills bath and extends upstream in annular space that runs length of the trolley
- Cell is held securely in mounting bracket, and inserted from above with special tool
- Beam passes through AL windows on bath (2), cell (2), pump tube and OVC

Liquid Helium Bath

- Beam travels through evacuated center of trolley
- Liquid He fills bath and extends upstream in annular space that runs length of the trolley
- Cell is held securely in mounting bracket, and inserted from above with special tool
- Beam passes through AL windows on bath (2), cell (2), pump tube and OVC

Run Group C Target

- Bath is only 40 mm deep: only 10 mm from top of cell to top of bath
- Capacitance-based level probe developed with sensitivity of $\sim 20 \,\mu{\rm m}$
- Stripes aid level determination
- Maintained level within 130 μm

- Perforated PCTFE (Kel-F) cylider with $20 \,\mu\text{m}$ Al windows
- Supported upstream by Al frame
- 15 or 20 mm diameter for NH(D)₃
- Also C, CH_2 and optics cells
- Loading cells has been a painful, imprecise operation in the past
- Another C.Keith/J.Brock design, the gas-cooled "chimney"
- Material loaded before the experiment, staged in "ladder"

- Perforated PCTFE (Kel-F) cylider with $20 \,\mu\text{m}$ Al windows
- Supported upstream by Al frame
- 15 or 20 mm diameter for NH(D)₃
- Also C, CH_2 and optics cells
- Loading cells has been a painful, imprecise operation in the past
- Another C.Keith/J.Brock design, the gas-cooled "chimney"
- Material loaded before the experiment, staged in "ladder"

- Perforated PCTFE (Kel-F) cylider with $20 \,\mu\text{m}$ Al windows
- Supported upstream by Al frame
- 15 or 20 mm diameter for NH(D)₃
- Also C, CH_2 and optics cells
- Loading cells has been a painful, imprecise operation in the past
- Another C.Keith/J.Brock design, the gas-cooled "chimney"
- Material loaded before the experiment, staged in "ladder"

- Perforated PCTFE (Kel-F) cylider with $20 \,\mu\text{m}$ Al windows
- Supported upstream by Al frame
- 15 or 20 mm diameter for NH(D)₃
- $\bullet\,$ Also C, ${\rm CH}_2$ and optics cells
- Loading cells has been a painful, imprecise operation in the past
- Another C.Keith/J.Brock design, the gas-cooled "chimney"
- Material loaded before the experiment, staged in "ladder"

- Perforated PCTFE (Kel-F) cylider with 20 μm Al windows
- Supported upstream by Al frame
- 15 or 20 mm diameter for NH(D)₃
- Also C, CH_2 and optics cells
- Loading cells has been a painful, imprecise operation in the past
- Another C.Keith/J.Brock design, the gas-cooled "chimney"
- Material loaded before the experiment, staged in "ladder"

- Perforated PCTFE (Kel-F) cylider with 20 μm Al windows
- Supported upstream by Al frame
- 15 or 20 mm diameter for NH(D)₃
- Also C, CH₂ and optics cells
- Loading cells has been a painful, imprecise operation in the past
- Another C.Keith/J.Brock design, the gas-cooled "chimney"
- Material loaded before the experiment, staged in "ladder"

- Perforated PCTFE (Kel-F) cylider with $20 \,\mu\text{m}$ Al windows
- Supported upstream by Al frame
- 15 or 20 mm diameter for NH(D)₃
- Also C, CH₂ and optics cells
- Loading cells has been a painful, imprecise operation in the past
- Another C.Keith/J.Brock design, the gas-cooled "chimney"
- Material loaded before the experiment, staged in "ladder"

New NMR System

• Venerable Liverpool system aging

- New system hews closely to Liverpool design, with all new components, significant ease-of-use improvements
- Electronic tuning of tank circuit capacitance and phase shift
- Tank circuit within cryostat for Deuteron
- Modular design with off-the-shelf components
- Fits in 3U chassis, only needs $\pm 5 \text{ V}$

- Venerable Liverpool system aging
- New system hews closely to Liverpool design, with all new components, significant ease-of-use improvements
- Electronic tuning of tank circuit capacitance and phase shift
- Tank circuit within cryostat for Deuteron
- Modular design with off-the-shelf components
- Fits in 3U chassis, only needs $\pm 5 \text{ V}$

- Venerable Liverpool system aging
- New system hews closely to Liverpool design, with all new components, significant ease-of-use improvements
- Electronic tuning of tank circuit capacitance and phase shift
- Tank circuit within cryostat for Deuteron
- Modular design with off-the-shelf components
- Fits in 3U chassis, only needs $\pm 5 \text{ V}$

- Venerable Liverpool system aging
- New system hews closely to Liverpool design, with all new components, significant ease-of-use improvements
- Electronic tuning of tank circuit capacitance and phase shift
- Tank circuit within cryostat for Deuteron
- Modular design with off-the-shelf components
- Fits in 3U chassis, only needs $\pm 5 \text{ V}$

- Venerable Liverpool system aging
- New system hews closely to Liverpool design, with all new components, significant ease-of-use improvements
- Electronic tuning of tank circuit capacitance and phase shift
- Tank circuit within cryostat for Deuteron
- Modular design with off-the-shelf components
- Fits in 3U chassis, only needs $\pm 5 \text{ V}$

New NMR DAQ System, Software

- New FPGA-based data acquisition
 - Xilinx FPGA with frequency sweep algorithm, UDP/TCP communication
 - 2 ADC channels, 24-bit, 256 ksps
 - 2 DAC channels for tuning
- Interface directly to synthesizer of Rohde & Schwarz signal generator, reducing settle time by more than half
- New software package in Python
 - PyQt5, pyqtgraph, SciPy
 - 3-stage, modular curve analysis, including deuteron peak fits
 - Task-based tabs for tuning, baselines, thermal equilibrium measurements

Outline

Polarized Solid Targets

 Dynamic Nuclear Polarization
 Performance in Beam

 Run Group C Target

 Requirements
 Design
 Target Performance

Operation Challenges Preliminary Results

Fridge Performance: Design by Brock, Keith

Τ-	ro	ot	Dor	for	mar	200
10	лų		L CI	101	iiiai	ICC

Fridge Performance: Design by Brock, Keith

Material Changes

- 80 material swaps over the experiment
- Trolley system saved roughly 19 days of downtime overhead
- Accomplished by 2 people, one to load, one to work the fridge and pulley
- Anneals were swaps, with \sim 30 minutes in LAr before putting back in

Target Performance

Operation

Material Florescence Video

Challenges

Experimental Challenges

- Overall, RGC was the smoothest polarized target experiment in recent memory
- Remarkable uptime: 132 days of target operation, 3.7 days down due to target
- Few small issues caused minimal impact
 - Failure of NMR cable (tuning) after initial cool-down
 - Heater to maintain NMR cold tank fried
 - Icing of run valve
- Failure of NMR cable (tuning) after initial cool-down
- Heater to maintain NMR cold tank
- Largest experimental delay came from 5 T solenoid power supply failure (firmware issue), caused a down from November to late January
Exterior NMR Cells

- Requirement for external coils was clear:
 - P_bP_t for final analysis to be determined from scattering
- A simple coil should be considered more as near-field detectors
- Condensation near coil caused small but important signal
- For Deuteron line-shape polarization determination, this can be very misleading!
- NMR measurements are a crucial guide to maximizing polarization. External coils not recommended!

Exterior NMR Cells

- Requirement for external coils was clear:
 - P_bP_t for final analysis to be determined from scattering
- A simple coil should be considered more as near-field detectors
- Condensation near coil caused small but important signal
- For Deuteron line-shape polarization determination, this can be very misleading!
- NMR measurements are a crucial guide to maximizing polarization. External coils not recommended!

Exterior NMR Cells

- Requirement for external coils was clear:
 - P_bP_t for final analysis to be determined from scattering
- A simple coil should be considered more as near-field detectors
- Condensation near coil caused small but important signal
- For Deuteron line-shape polarization determination, this can be very misleading!
- NMR measurements are a crucial guide to maximizing polarization. External coils not recommended!

- Beam is rastered to spread evenly over cell
- 15 mm and 20 mm diameter cells needed for different detector configurations
- Raster must be limited to avoid beam collisions with cell walls
- For 15 mm, a 12 mm spot was used
- Exacerbated NMR inaccuracy due to external measurement coil
- Challenging to choose μ wave frequency
- More sensitive to the portion NOT in beam!
- Better alignment \rightarrow larger raster

- Beam is rastered to spread evenly over cell
- 15 mm and 20 mm diameter cells needed for different detector configurations
- Raster must be limited to avoid beam collisions with cell walls
- For 15 mm, a 12 mm spot was used
- Exacerbated NMR inaccuracy due to external measurement coil
- Challenging to choose μ wave frequency
- More sensitive to the portion NOT in beam!
- Better alignment → larger raster

- Beam is rastered to spread evenly over cell
- 15 mm and 20 mm diameter cells needed for different detector configurations
- Raster must be limited to avoid beam collisions with cell walls
- For 15 mm, a 12 mm spot was used
- Exacerbated NMR inaccuracy due to external measurement coil
- Challenging to choose μ wave frequency
- More sensitive to the portion NOT in beam!
- Better alignment \rightarrow larger raster

Raster Size and NMR Measurements

- Beam is rastered to spread evenly over cell
- 15 mm and 20 mm diameter cells needed for different detector configurations
- Raster must be limited to avoid beam collisions with cell walls
- For 15 mm, a 12 mm spot was used
- Exacerbated NMR inaccuracy due to external measurement coil
- Challenging to choose μ wave frequency
- More sensitive to the portion NOT in beam!
- Better alignment \rightarrow larger raster

Deuteron NMR (open) vs. Scattering (filled)

- Beam is rastered to spread evenly over cell
- 15 mm and 20 mm diameter cells needed for different detector configurations
- Raster must be limited to avoid beam collisions with cell walls
- For 15 mm, a 12 mm spot was used
- Exacerbated NMR inaccuracy due to external measurement coil
- Challenging to choose μ wave frequency
- More sensitive to the portion NOT in beam!
- Better alignment \rightarrow larger raster

Charge-averaged Online Polarization Performance by Run

Shaded region: poor NMR due to smaller cell size, misalignment, or cold board failure. Prelim points from N. Pilleux.

Deuteron Polarization Performance Vs. Dose

Target	Pert	formance
ranget		0111100

Currents during Irradiations (from IPM2C21A, BPM)

Record In-Beam Deuteron Polarization

- After running 1 ND₃ sample from June to November (20 mm cell), magnet power supply failed
- Roughly 22 Pe/cm² accumulated
- Sample was stored in LAr from November to January
- Moved to a 15 mm cell
- Started polarizing during a beam down, so no rush to start data taking
- 6 hours later, polarization $\sim 54\%$

Target Performance

Preliminary Results

CS Reads		NMR Controls								Polarization
iath Level:	68.2111	Finish Event Label: Polarize	0.6	- Polarization					140.5	52 610/
apor temp (K):	1.08264	Microwave Controls		- dWave Freq	ency (GHz)					53.61%
ath Top (K):	1.2731	Disable Duration (s): 0.1	0.5						140.4	
ath Bottom (K):	1.2601	Freq: 140.2329 GHz Power: 11.41 mW							12	Signal Area
ank Temp (K):	15.6206	Down Up	0.4 8						140.3 g	
ain Flow (slpm):	19.6475	NMR Settings	guizati						140.2 La	-0.159085
elenoid Current (A):	2420.02		8			0			ave F	
am Current (nA):	0.00397263	Frequency: 32.7 MHz ± 400.0 kHz RF Power: 400.0 mV	0.2						140.1 ≦	Timestamp
	17400	Sweeps per Event 3000	1							
in Number:	1/400	Calibration Constant -3.37	0.1						140	02/02/2023, 01:39:20
igger Asym:	0								120.0	06:39:20 UTC
ose (e/cm^2):	-8.814e+09	Baseline: 02/01 15:54, 20000	0	12:00		18:00		Thu 02	139.9	Plot Range (min): 980
		Raw Signal		11.00	Baseline Sub	tracted		ind of		Fit Subtracted
38		\frown						0		
04			-0.050					-0.0002	l	
42			0.030					-0.0004	~	1
46			-0.051					-0.0008		
48	/		-0.031					-0.001		Im
15	/		0.053					-0.0012		V
12			-0.052					-0.0014		
54						γ		-0.0016		
6			-0.053		- V	V		-0.0018		
×						*		-0.0022		V V
32.4	1	32.6 32.8 33	-0.054	32.4	32.6	32.8	33	3	2.4 3	2.6 32.8 33

Performance Summary

- Overall, a great deal of hard work paid off.
- Excellent deuteron, OK proton polarization. Lots of good data!

RGC was a huge effort by a large group. Thanks to all!

JLab Staff:

- Target Group: J. Brock, C. Carlin, C. Keith, J. Maxwell, D. Meekins, T. Kageya, P. Hood, M. Hoeger, D. Griffith
- Fast Electronics, Survey, Radcon, Hall B RGC Collaboration:
 - Spokepersons and Users
 - Especially Graduate Students: V. Lagerquist, P. Pandey, D. Holmberg

Thank you for your attention!

Solid Polarized Target Options for Experimentalists

- High B field \rightarrow large magnet; access can be occluded
- Very Low T \rightarrow large refrigerator; heat load is limited so beam current is limited

