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Outline

 relevance of D(e,e’p) reactions, basic observables
 a model calculation: results for unpolarized targets 

SJ & Van Orden, PRC 78, 014007 (2008) ; 

results for polarized targets SJ & Van Orden, PRC 80 054001 (2009); 

results for polarized ejectile protons SJ & Van Orden, PRC 81 014008 (2010)

 Theoretical error bands for calculations: SJ & Van Orden, PRC 95, 044001 (2017)
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Beware: while many things (e.g. importance of FSIs) apply in general, the only way to 
know for sure is to calculate an observable for the specific kinematics



What may cause trouble?
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 Model building itself
 E.g. no meson exchange current, no isobar states
 Treatment of off-shell FSIs
 Treatment of relativity
 Off-shell effects in the current operator

 Input parameters
 Nucleon form factors
 Wave functions
 NN interaction parametrizations



Differential Cross Section:
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Details of the Calculation

 Relativistic deuteron w. f.: solution of Gross eqn.
 one-body e.m. current
 SAID parameterization of the NN scattering amplitude 

used
 All parts of the NN amplitude included

 Central
 Spin-orbit
 Double spin-flip 

SAID analysis for pn scattering up 
to 1.3GeV, see Arndt, Briscoe, 
Strakovsky, Workman, 
Phys.Rev.C76:025209,2007
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Nucleon-Nucleon Scattering Amplitude
6

 SAID analysis for pn scattering up to 1.3GeV, see Arndt, Briscoe, 
Strakovsky, Workman, Phys.Rev.C76:025209,2007

 Saclay amplitudes:

 Invariant amplitudes (McNeil, Ray, Wallace)
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on-shell off-shell

off-shell FSI, positive energy contribution:
requires a  dynamical model of the amplitude; 
we estimate it with a simple prescription
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Positive Energy off-shell FSI prescription:

-retain the five on-shell invariants 

- use a form factor
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Diff. Cross Section Data from Hall A

data: Ulmer et al, 
PRL 89 (2002)

theory: SJ & JW Van Orden, 
Phys.Rev.C78:014007, 2008
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Influence of the NN amplitude
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Y-axis doesn’t 
include zero, 
sorry!



Off-shell FSI Influence, Uncertainties
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Summary: Unpolarized Targets

 Calculation with full NN scattering amplitude employed
 Spin-dependent terms are important
 Uncertainty introduced due to cut-off for off-shell FSI and prescription for

positive energy off-shell FSI
 NN amplitudes not available for all Jefferson Lab (Jlab)  kinematics
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Polarized Deuteron Targets
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 deuteron has spin 1, MJ = -1, 0, +1
 deuteron can be vector polarized:  

or tensor polarized: 
 polarization axis

 theorist’s choice: along the three-momentum transfer
 experimentalist’s choice: along the beam, along …

SJ & Van Orden, PRC 80 054001 (2009)
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Strategy:

1) define reduced responses in the hadron plane, this makes any 
Φp dependence explicit

2) use a density matrix to handle any type of deuteron polarization, 
e.g. T10 and T20

3) rotate the density matrix to accommodate a polarization axis 
along the beam (or any other direction)
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1) Define reduced responses in 
the hadron plane, this makes 
any Φp dependence explicit:

The interference reduced responses are 
either real or imaginary parts of the 
hadronic tensor.
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2) Use a density matrix to handle any type of deuteron 
polarization, e.g. T10 and T20

Tij: tensor polarization coefficients, experimental input

hadronic tensor, with the density matrix

3) rotate the density matrix



Target Polarization Observables (exclusive!)
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denominator, unpolarized:

vector asym.:

tensor asym.:

beam vector asym.:

beam tensor asym.:
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Momentum Distributions  x = 1, Q2 = 2 GeV2
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Momentum Distributions  x = 1.3, Q2 = 2 GeV2
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Role of Spin-Dependent FSIs: Single Spin Flip and Double Spin Flip



Summary: Polarized Target
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 four asymmetries have been considered, two each are similar
 For our model, FSIs are hugely important, just central FSIs are not 

enough – even in the quasi-elastic (x = 1) region

 FSIs and ground state information are entangled
 Wishlist: measurement of Av

d or AT
ed at larger x 



Role of Inputs into the Model
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 NN scattering amplitude paramterizations
 Nucleon form factor parametrizations
 Deuteron wave functions
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Factorization – why AT
d is so cool I
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If we neglect p waves and only consider PWIA (graph (a)), 
then PRC 90, 064006 (2014) and PRC 95, 044001 (2017):



Factorization – why AT
d is so cool II
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If we neglect p waves and only consider PWIA (graph (a)), 
then (PRC 95, 044001 (2017):

Define a reduced tensor asymmetry aT
d



Wave Functions
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D-wave probabilities and aT
d reduced
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Calculations with FSI and in BA
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Error bands include

- Nucleon Form 
Factor params (3)

- Wave functions (8)
- FSI with SAID NN 

and with Regge
model 
parametrization (2)



Calculations with FSI and in BA
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Summary
34

 In PWIA, neglecting p-waves, AT
d factorizes, looks 

as if d-wave information is accessible 
 Factorized aT

d is NOT proportional to d wave 
content of the wave function

 theory calculations (should) come with a theory error 
bar/envelope – apart from actual model issues

 Calculations with FSI in Born approximation clearly 
break the factorization
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