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Emergence of light cone dominance at high energies 

Deuteron - LC - nonrelativistic  correspondence

Outline

Polarized deuteron

❖

❖

❖

✷ disentangling S- and D-wave in

✷

e ~D ! epn, ~D(e, e0)

~e ~D ! epn,Further tests of D spin structure:

✷ Collider eD:  Tagging & tensor EMC effect  →
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To resolve short-range structure of nuclei on the level of 
nucleon/hadronic constituents one needs processes which 
transfer to the nucleon constituents both energy and 
momentum larger than the scale of the NN short range 
correlations q0 ≥ 1GeV, !q ≥ 1 GeV

⇒ Need to treat the processes in the relativistic 
domain.  The  price to pay is a need to treat the 
nucleus wave function using light-cone 
quantization - - One cannot use (at least in a 
simple way) nonrelativistic description of nuclei.  

3



Relativistic 
projectile

t1, z1 t2, z2

t1 − z1 = t2 − z2

⇒ High energy process develops along the 
light cone. 

Similar to the perturbative QCD the amplitudes of 
the processes are expressed through the wave 
functions on the light cone. Note: in general no benefit 
for using LC for low energy processes.
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LC quantization is uniquely  selected in high energy processes if one tries to 
express cross section through elementary amplitudes near energy shell. 

Consider the break up of the deuteron in the impulse approximation:
 h+D→X+N, for Eh→∞

D N

h

{ sf = (ph + pD − pN )2}
N’

sin = (ph + pN ′)2

In quantum mechanical treatment energy in the D→NN vertex is 
not conserved.  As a result 

is infinite at high energies.  Amplitude is far off energy shell. 

� ⌘ (sin � sf ) ! 2Eh(2
q

m2
N + p2N �mD) |Eh!1
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In di⇥erence from deep inelastic processes it is impossible here to choose a ref. frame, where hadron h cannot
produce particles. As a result there are energy dependent corrections as the life-time of any configuration in the
hadron h depends on the ref. frame. There is not such a problem at high energies, where due Feynman scaling
inclusive cross sections become energy independent. To suppress corrections due to the structure of hadron h we
choose a ref. frame, where the nucleus is fast and the hadron at rest. In this case account of finite energy e⇥ects only
du to structure of energy denominators leads to the following equation:

Eb
d3⌅h+A⇤b+···

d3pb

=
⇤

⇤N
A(�, k⌅)

d�d2k⌅
�

Eb
d3⌅h+N⇤b+X

d3pb

(⇥̃, pb) (2.19)

where

⇥̃ = (⇥ + M2
A �M2

n) · �/A. (2.19a)

In the sections 2 2.5, 7 7.3 we will explain that eq. (2.19) is applicable for the description of a wide range of
phenomena.

In conclusion, we have demonstrated that the space-time evolution of the scattering process and vacuum fluctuations
are adequately accounted for if one uses IMF (non-covariant light cone) WF of nuclei [1–3, 61–63]. On the contrary
a more traditional approach to high energy nuclear reactions - so called fixed nucleon approximation - which uses
the rest frame Schrödinger WF of nuclei does not take into account the increase of essential - longitudinal distances
with energy. The simplest way to reveal this problem is to consider the process h + D ⇧ X and to check that the
non-conservation of invariant energy in the amplitude of the elementary subprocess h + N ⇧ X tends to infinity
with increase of Eh. Really in the deuteron rest frame at Eh ⇧ ⌥ the non-conservation of invariant energy in the
intermediate state is as follows (all notations correspond to fig. 2.5)

� = (pNN + ph)2 � (pD + ph)2 = M2
NN �M2

D + 2 · Eh

�
2
⇧

m2
N + k2 �MD

⇥
⇧⌥.

Here MNN is invariant mass of the two nucleon system M2
NN = 4(m2

N + k2) and k is nucleon momentum in the
deuteron. One should expect that due to this energy non-conservation the amplitude of elementary process tends to
zero at Eh ⇧⌥. The origin of this puzzle is rather transparent. The characteristic time for development of the high
energy process is Ph/m2 (cf. discussion in sections 2 2.1, 2 2.2). It is much larger than the characteristic life-time
of the studied fluctuation in the deuteron ⌅ 1/(2

⌅
m2

N + k2 �MD). As a result the fixed nucleon approximation is
inapplicable, one has to take into account fluctuations of this configuration in the deuteron!

On the contrary, if the deuteron WF is quantized at the hyperplane t + z = 010 - so called light cone WF of the
deuteron - there is no such di⇧culty provided the z-axis is chosen in the direction of the projectile momentum. Indeed,
in this approach

p+ = p0 + pz = (m2 + p2
⌅)/p�

is not conserved (m ⇤ p2), though p� = p0 � pz and p⌅ components of momentum p are conserved. As a result the
non-conservation of invariant energy is finite at Eh ⇧⌥. Really in the deuteron rest frame:

� = (pNN + ph)2 � (pD + ph)2 = M2
NN �M2

D + (ph)+(pNN � pD)� + (ph)�(pNN � pD)+

= M2
NN �M2

D +
1
2
(m2

h/Eh)(M2
NN/MD �MD) ⌃M2

NN �MD

Thus � is finite only if the z-axis coincides with the ph direction. We conclude that the necessity of using the light
cone WF of the bound state quantized in the direction of rapid projectile for description of high energy processes
unavoidably follows from the requirement of near on shellness of the amplitudes.

It is easy to demonstrate that light cone WFs are equivalent to the IMF WFs (see e.g. [138]). This equivalence
will be of much use for the understanding of relationship between IMF (light cone) WFs of nuclei and conventional
non-relativistic theory of nuclei. It helps also to generalize the fixed nucleon approximation to the relativistic case and
to understand the cause of the di⇥erence between the spectator momentum and the internal momentum of nucleon
produced in the p + D⇧ p + X reaction discussed in section 2 2.5.

10 The light cone quantization was introduced by P. Dirac in 1949 [137]

In case of LC quantization along reaction axis

Δ is fine and hence amplitude is close to the mass shell

Requirement of finite Δ uniquely fixes 
quantization axis for the high energy limit to be 

according to LC prescription

Here M2NN   is invariant mass squared of the two nucleon system

2
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Onset of LC dominance in (e,e’) 

Consider example of  high Q2 (e,e’) process at fixed large x >1 in 
the many nucleon approximation for the nucleus

The on-shell condition for the produced nucleon

γ* q
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LC variables:

m̃2 = (PA � prec)+(P
A � prec)� � (PA � prec)2t

γ* q
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Use the nucleus rest frame

⇒
0  for large Q,  fixed x,  ∝ 1/q+

In high energy limit the cross section depends only on  the 
spectral function integrated over all variables but α - light-cone 
dominance, in particular no depend on the mass of the recoil 
system. Relevant quantity light-cone nucleon density matrix.

⇒

⇒ �eA(x,Q2)

�eD(x,Q2)
=

⇢A(↵tn)

⇢D(↵tn) 10



For intermediate Q2 corrections can be treated by taking an average 
value of recoil mass. The two nucleon  approximation for p-rec is 

with Fermi motion of the pair leading to a spread of distribution 
over p-rec is but not to a significant change of <p-rec>.

⇒ “super”scaling of the (e,e’) ratios in 
αt.n. - α calculated using (*). 
Observed at Jlab.

(*)prec� = m(A�2)⇤ +
m2 + p2t
m(2� ↵)

For deuteron m(A-2)*=0
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High energy processes are dominated by  interactions near LC- 
➜ cross sections are simply expressed

 through LC wave functions

80

FIG. 6.1: Prediction of eq. (6.2) for F (N)
2C (x ≥ 1, Q2) for several nuclear wave functions.

arise from some kind of superdense configurations either consisting of few nearby nucleons with large momenta or a
more complicated multiquark configuration. Consequently, the dependence of F2A(x,Q2) for x > 1 on the average
nuclear density 〈ρ〉 should be more pronounced F2A(x,Q2)

∣∣
x>1

∝ 〈ρ〉n, n > 1, see below] than for the kinematical
region of the EMC effect (x ∼ 0.3−0.7), where the small deviation of F2A/F2N from unity is proportional to 〈ρ〉. Thus,
it may provide important information on the equation of state at large densities. Evidently, by measuring F2A(x,Q2)
at x > 1 one can demonstrate the presence of correlations, but cannot determine their quark-gluon structure. For
this purpose a comparison of F2A(x,Q2) with the data on near-threshold (e, e′) reactions and related processes is
necessary. Note also that knowledge of F2A(x,Q2) at x > 1 is necessary for the accurate extraction of ΛQCD from
the measurements on nuclear targets on the basis of the evolution equation. It is easy to demonstrate [321] that the
existing procedure, like, e.g., in ref. [322], where it is assumed that F2A(x,Q2) → 0 for x → 1, underestimates ΛQCD

(Λtrue
QCD − ΛQCD may be as 20 − 30 MeV cf. ref. [323]).
In the pre EMC effect era the value of F2A(x,Q2) at x > 1 has been predicted in ref. [324–326] on the basis of

the few-nucleon correlation model (FNCM) for the single-nucleon light-cone density matrix ρN
A(α, pt) (see summary

in Appendix B). The presence of a large tail of superfast quarks was suggested for deuterons [327]] and nuclei [328]
by assuming that for fast backward pion production58

GA/π
h (xF, pt) ≡

dσ(h + A → π + X)
(dxF/xF) d2pt

∝ F2A(xF, Q2). (6.1)

The calculation of ref. [324–326] neglects possible nonnucleon degrees of freedom and uses the convolution equation
whose derivation was briefly discussed in section 5 5.1 (for a detailed discussion see ref. [320]):

F2A(x,Q2) =
∑

N=p,n

∫
F2N(x/α, Q2)ρN

A(α, kt)
dα

α
d2kt. (6.2)

Since ρN
A(α, kt) at α > 1 rapidly decreases with α (∼ exp−7α), the prediction of eq. (6.2) for the shape of the

x-distribution is rather insensitive to uncertainties in the value of F2N(x,Q2) at x > 0.8 (cf. eq. (5.15) in ref. [320]).
We want to draw attention to the fact that practically the same shape of F2A(x,Q2) is expected in models where the

58 The phenomenological observation that for x ! 0.8, G
p/π+

h (x) ∝ u(x), G
p/π−

h (x) ∝ d(x), was first made in ref. [329]. At x > 0.8, where

the triple-Regge limit contribution dominates, these relations underestimate G
N/π
h (x), e.g. G

p/π+

h (x) ∝ (1− x)2 for x > 0.8 [330]. Note
also that with increasing number of quarks in the system the difference between the behaviour of the pion spectrum for xF → A and
the quark distribution for x → A is expected to become more and more pronounced, e.g. for the deuteron perturbative QCD predicts

[320] G
D/π
h (xF) ∝ (2 − xF)5 for xF → 2, while F2D(x) ∝ (2 − x)10 for x → 2.
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⇤p
A(�, k⌅) =

↵
⌅2(�1 . . .�A, k1⌅ . . . kA⌅)

A⌦

i=1

d�i

�i
d2ki⌅⇥

�
1�
⌥

�i

A

⇥

⇥ ⇥

� A 

i=1

ki⌅

⇥ Z 

i=1

�i⇥(�� �i)⇥(ki⌅ � k⌅). (2.31)

Here ⌅ is the light cone nucleus WF, the solution of Weinberg equation (2.29), which is normalized a usually for
bound state:

↵
⌅2(�1 . . .�A, k1⌅ . . . kA⌅)

A⌦

i=1

d�i

�i
d2ki⌅⇥

�
1�
⌥

�i

A

⇥
⇥(
 

ki⌅) = 1. (2.32)

It is easy to check that ⇤N
A(�, k⌅) as defined in eq. (2.31) satisfies two important sum rules:

A↵

0

⇤N
A(�, k⌅)

d�

�
d2k⌅ = A (2.33)

A↵

0

�⇤N
A(�, k⌅)

d�

�
d2k⌅ =

A↵

0

⇤N
A(�, k⌅)

d�

�
d2k⌅

⌥
�i

A
= A. (2.34)

These sum rules can be derived in a somewhat independent way. Eq. (2.33) represents the sum rule for the baryon
charge conservation. It follows directly from the condition that the matrix element of the baryon current at zero
momentum transfer is equal ⌅A|jB

0 |A⇧/pA|pA⇥⇤ = A. Eq. (2.34) represents the sum rule for the momentum con-
servation. To obtain this sum rule we can use the fact that the matrix element of the energy-momentum tensor
Tµ�(⌅A|Tµ�|A⇧/p2

A|pA⇥⇤) at zero momentum transfer does not depend on the target. This property of Tµ� is a
consequence of the universality of gravitation.

Comment. To check the consistency of the developed approach one can use the celebrated Adler, Dashen, Gell-
Mann, Fubini sum rules [149, 150] and momentum conservation sum rule [151] valid for an arbitrary target in any
renormalizable quantum field theory (QCD) [152, 153]. The application of these sum rules together with eqs. (2.14)
for the nucleus structure functions leads to eqs. (2.33), (2.34) correspondingly. Note however that both of these sum
rules are not fulfilled in the approaches based on the Bethe-Salpeter WF with the o�-mass-shell interacting nucleon
(see the discussion in Appendix A).

2.4.3. Connection with non-relativistic theory of the nucleus

To obtain the usual Schrödinger equation from the Weinberg type eq. (2.29) the approximation

�i

⇤1� k3i/m, (2.35)

{For authors: Shouldn’t the sign be just ⇤ ? } should be used (cf. eq. (2.16)). In this approximation
⇤N
A(�, k⌅) is simply related to the single nucleon density matrix n(k):

n(k) =
↵

⌅̃2
A(k1 . . . kA)

⌦

j=1

d3kj⇥

⇤

⇧
A 

j=1

kj

⌅

⌃
A 

i=1

⇥(k � ki)
A

. (2.36)

Here ⌅̃2
A = ⌅2

A/mA�2 and therefore
�

n(k)d3k = A. From the comparison of eqs. (2.35), (2.36) and eq. (2.30) we
have

⇤N
A(�, k⌅) = m n(k), k =

�
m2(1� �)2 + k2

⌅. (2.37)

An equivalent though more complicated procedure is to consider IMF diagrams for the nuclear WF and to verify that
the angular condition for an A-nucleon system has the same form as for free nucleon system in the approximation
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Example

Single 
nucleon light 
cone density 

matrix
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Now we focus on the LC dynamics for two body case  - 
more technical discussion
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Decomposition over hadronic states could be useless if too 
many states are involved in the Fock representation

|D〉 = |NN〉 + |NNπ〉 + |∆∆〉 + |NNππ〉 + ...

Problem - we cannot use a guiding principle experience of the 
models of NN interactions based on the meson theory of nuclear 
forces - such models have a Landau pole close to mass shell and hence 
generate a lot of multi meson configurations. (On phenomenological 
level - problem with lack of enhancement of antiquarks in nuclei)

Instead, we can use the information on NN interactions at energies 
below few GeV and the chiral dynamics combined with the following 
general quantum mechanical principle - relative magnitude of different 
components in the wave function should be similar to that in the NN 
scattering at the energy corresponding to off-shellness of the component.  
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The analyses using QCD dispersion sum rules [49–51] have demonstrated that the properties of light hadrons
(nucleon, π-, ρ-mesons, . . .) are basically determined by the quark condensates. For example, if there were no quark
condensate, a nucleon would have a mass of the order of 10 MeV due to terms mqq̄q in the QCD Lagrangian. (mq is
the current mass of the light quarks, mu ≈ 4 MeV, md ≈ 7 MeV, ms ≈ 150 MeV.) The numerical value of the chiral
condensate in the normalization point ∼ 0.5 GeV is [52, 53]

〈0|ūu|0〉 = 〈0|d̄d|0〉 ≈ −(240 MeV)3. (2.14)

This number can be roughly interpreted as the presence in the vacuum of one quark and antiquark of each flavour
per fm3.

2.2.3. Is the spontaneously broken chiral symmetry responsible for most of nuclear physics?

Due to the small values of the bare masses of the u, d, and s quarks as compared to the typical scale of the
strong interactions, mρ ≈ 770 MeV, the QCD Lagrangian is approximately symmetric under the group of chiral
transformations: q → exp(iγ5ωaλa)q, where ωa is a constant vector and λa are the Gell-Mann matrices for SU(3).
If the chiral symmetry were unbroken in the limit mq = 0 (as is the case in perturbative QCD) an approximate
degeneracy of the hadron states with different space parity would be observed. In particular, the vector meson 1−
(nucleon 1/2+) would have the same mass as the axial meson 1+ (nucleon resonance 1/2−). The observed splittings
mA1 − mρ ≈ 0.4 GeV and mN(1535) − mN ≈ 0.6 GeV are too large to be induced by nonzero bare masses of quarks.
This discussion shows that the almost precise chiral symmetry of the QCD Lagrangian is spontaneously broken due
to nonperturbative effects, e.g. due to the formation of a quark-antiquark condensate 〈0|ūu + d̄d + s̄s|0〉. But if
a continuous symmetry is spontaneously broken, the Goldstone theorem predicts the existence of massless bosons
(in the limit mq = 0). The real masses of these bosons are nonzero since the mass term in the QCD Hamiltonian
HI = muūu + mdd̄d + mss̄s violates the chiral invariance. The “pseudo-goldstone” bosons can be identified with the
nonet of pseudoscalar mesons π, K, η, η′. The large mass of η′ is due to the ghost pole specific for QCD (see refs.
[54, 55]).

As a consequence of the small masses of pseudogoldstones, the physics of the strong interactions at space-time
intervals

√
(∆x)2 ' 1/mρ (2.15)

should be determined by their interactions. The effective chiral Lagrangian (including terms with four derivatives of
the field U) has been calculated in refs. [56–58]:

L =
∫

d4x
1
4
F 2

πTr(∂µU(x)∂µU+(x) + LWZ + Lm + · · · . (2.16)

Fπ = 94 MeV is the π → µν decay constant. U(x) = exp iπa(x)λa/Fπ, and πa(x) is the nonet of chiral fields
(a = 1, . . . , 9). LWZ is the Wess-Zumino term arising due to the Adler-Bardeen axial anomaly. The term Lm is
proportional to the quark masses. We shall not write these terms explicitly. The dots denote terms containing higher
derivatives of U . The chiral QCD Lagrangian enables us to calculate (in good agreement with experiment) low-energy
π-meson and K-meson interactions and even the properties of the η(560) and η′(960) mesons. (See, e.g., ref. [59].)
The broken chiral symmetry (PCAC) has been successfully applied to the πN interaction (see ref. [60] and references
therein).

Since the pion is a Goldstone boson, its interaction with hadrons is proportional to the pion momentum kπ for
small kπ (in the limit of zero quark masses). As a result, the dominant contribution to nonresonant pion production
comes from pion emission off the external nucleon lines. The emission from the interaction blob is suppressed by an
extra factor ∼ kπ/mρ [61]. Therefore, direct (nonresonant) pion production in the process NN → NNπ is small in a
wide kinematical region:

σ(NN → NNπ)
σ(NN → NN)

( k2
π

16π2F 2
π

. (2.17)

The right-hand side of eq. (2.17) is actually the standard parameter of chiral perturbation theory. Equation (2.17)
explains the well-known experimental observation that up to Tp ( (2 − 5) GeV the inelastic nucleon cross section is
determined by two-body processes of baryon resonance production (predominantly ∆-isobar for Tp ≤ 1.5 GeV). Thus
the typical mass scale that determines the admixture of nonnucleon components in the wave function of the nucleus
is not mπ but m∆ − mN ≈ 0.3 GeV and for the deuteron (due to its isoscalarity) ! 2(m∆ − mN) ≈ mN∗ − mN ∼
(0.5 − 0.6) GeV. Thus, broken chiral symmetry seems relevant for the dominance of the nucleon degrees of freedom
in the wave function of the nucleus.

,
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As a consequence of the small masses of pseudogoldstones, the physics of the strong interactions at space-time
intervals

√
(∆x)2 ' 1/mρ (2.15)

should be determined by their interactions. The effective chiral Lagrangian (including terms with four derivatives of
the field U) has been calculated in refs. [56–58]:

L =
∫

d4x
1
4
F 2

πTr(∂µU(x)∂µU+(x) + LWZ + Lm + · · · . (2.16)

Fπ = 94 MeV is the π → µν decay constant. U(x) = exp iπa(x)λa/Fπ, and πa(x) is the nonet of chiral fields
(a = 1, . . . , 9). LWZ is the Wess-Zumino term arising due to the Adler-Bardeen axial anomaly. The term Lm is
proportional to the quark masses. We shall not write these terms explicitly. The dots denote terms containing higher
derivatives of U . The chiral QCD Lagrangian enables us to calculate (in good agreement with experiment) low-energy
π-meson and K-meson interactions and even the properties of the η(560) and η′(960) mesons. (See, e.g., ref. [59].)
The broken chiral symmetry (PCAC) has been successfully applied to the πN interaction (see ref. [60] and references
therein).

Since the pion is a Goldstone boson, its interaction with hadrons is proportional to the pion momentum kπ for
small kπ (in the limit of zero quark masses). As a result, the dominant contribution to nonresonant pion production
comes from pion emission off the external nucleon lines. The emission from the interaction blob is suppressed by an
extra factor ∼ kπ/mρ [61]. Therefore, direct (nonresonant) pion production in the process NN → NNπ is small in a
wide kinematical region:

σ(NN → NNπ)
σ(NN → NN)

( k2
π

16π2F 2
π

. (2.17)

The right-hand side of eq. (2.17) is actually the standard parameter of chiral perturbation theory. Equation (2.17)
explains the well-known experimental observation that up to Tp ( (2 − 5) GeV the inelastic nucleon cross section is
determined by two-body processes of baryon resonance production (predominantly ∆-isobar for Tp ≤ 1.5 GeV). Thus
the typical mass scale that determines the admixture of nonnucleon components in the wave function of the nucleus
is not mπ but m∆ − mN ≈ 0.3 GeV and for the deuteron (due to its isoscalarity) ! 2(m∆ − mN) ≈ mN∗ − mN ∼
(0.5 − 0.6) GeV. Thus, broken chiral symmetry seems relevant for the dominance of the nucleon degrees of freedom
in the wave function of the nucleus.

Important simplification of the final states in NN interactions: direct 
pion production is suppressed for a wide range of energies due to 
chiral properties of the NN interactions:

⇒ Main inelasticity for NN scattering for Tp ≤ 1 GeV is Δ-isobar 

production which is forbidden in the deuteron channel.  

|Δ Δ> threshold is kN =

√

m2
∆
− m2

N
≈ 800 MeV !!!

Small parameter for inelastic effects in the deuteron WF, 
while relativistic effects are already significant as v/c ~1

kN ≈ 550 MeVFor the nuclei where single Δ can be produced 

Warning:  Correspondence argument (WF ⇔ continuum ) is not  applicable

for the cases when the probe interacts with rare configurations 
(EMC effect?)  in the bound nucleons due to the presence of an additional scale
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Light-cone Quantum mechanics of two nucleon system

Due to the presence of a small parameter (inelasticity of NN interactions) 
it makes sense to consider two nucleon approximation for the LC wave 
function of the deuteron.  

Key point is presence of the unique matching between nonrelativistic and 
LC wave functions in this approximation. Proof is rather involved.

First step: include interactions which do not have two nucleon 
intermediate states into kernel  V (like in nonrel. QM) to build a 
Lippman-Schwinger type (Weinberg type) equation.

=

T TV V

+

i i if f fn
16



The LC “energy denominator” is 1/(pn+
− pf+

)

Using explicit expression for the propagator in terms of the 
LC variables and using corresponding expressions for the 

two-body phase volume on LC we obtain:

T (αi,kit,α f ,k f t) =V (αi,kit,α f ,k f t)+
Z
V (αi,kit,α0,k0t)

dα0

4α0(1�α0)
d2k0t
(2π)3

⇥ T (α0,k0t,α f ,k f t)
[(m2+ k0t

2)/α0(1�α0)� (m2+ k2f t)/α f (1�α f )]/2
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Second step: Impose condition that master equation should 
lead to the Lorentz invariance of the on-energy-shell 
amplitude of NN scattering

Introduce  three- vector !k = (k3, kt) with 

α =

√

m2 + k2 + k3

2
√

m2 + k2

M
2

NN =
m2 + k2

t

α(1 − α)
= 4m

2 + 4k
2Invariant mass of two 

nucleon system is
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deuteron can be reasonably described as a system of two nucleons. In the approximation where the high-momentum
component of the wave function of the nucleus is due to a succession of hard two-nucleon collisions practically the
same argument indicates the dominance of the nucleon degrees of freedom in the wave function of the nucleus in a
wide kinematical region.

In the light-cone quantum mechanics of the NN system the Weinberg equation for the off-light-cone-energy-shell
amplitude, T , of the NN system plays the same role as the Schrödinger equation in the nonrelativistic theory. To
simplify the discussion we restrict ourselves to the case of spinless nucleons:

T (αi, kit,αf, kft) = V (αi, kit,αf, kft) +
∫

V (αi, kit,α
′, k′

t)
dα′

4α′(1 − α′)
d2k′

t

(2π)3

× T (α′, k′
t,αf, kft)

[(m2 + k′
t
2)/α′(1 − α′) − (m2 + k2

ft)/αf(1 − αf)]/2
. (A1)

Here (αj , kjt) is the light-cone momentum of a nucleon in the initial, intermediate and final state. As usual the kernel
V does not contain diagrams which have two-nucleon intermediate states. It is convenient to introduce new variables
kj3 [495]:

αj =
1
2

(
1 + kj3

/√
k2

j + m2
)

. (A2)

kj = (kj3, kjt) is the nucleon momentum in the c.m. system of the two-nucleon system. In these variables eq. (A1)
obtains the form:

T (ki, kf, ki3, kf3) = V (ki, kf, ki3, kf3)

+
∫

V (ki, k
′, ki3, k

′
3)

d3k′
√

k′2 + m2

1
4(2π)3

T (k′, kf, k′
3, kf3)

k′2 − k2
f

. (A3)

On the energy shell T (k, k3, kf, kf3) = T (k2, k2
f , kkf), V (k, k3, kf, kf3) = V (k2, k2

f , kkf). The necessity to reproduce the
rotational invariance of the on-shell T puts a severe restriction on the form of V off energy shell: V = V (k2, k2

f , kkf).
The simplest method to prove this statement is to calculate T on energy shell in terms of perturbation theory in the
potential V . For example, in second order in the potential V we obtain:

T (k, kf) − V (k, kf)

=
∫

V (k, k3, k
′, k′

3)V (k′, k′
3, kf, k3f)

d3k′

4
√

k′2 + m2

1
(2π)3

1
k′2 − k2

f

. (A4)

For arbitrary potential V the right-hand side of eq. (A4), contrary to the left-hand side, depends on the direction of
the 3-axis. Evidently, the only form compatible with eq. (A4) is

V (k, k3, kf, kf3) = V (k2, k2
f , kkf). (A5)

This argument can easily be improved by considering an arbitrary order of perturbation theory in the potential V .
Equation (A5) recovers the rotational invariance for the light-cone quantum mechanics of the two-nucleon system.
(The same form of the angular momentum constraint has been suggested in ref. [495] in the context of quark models of
a hadron.) As a consequence of eq. (A5) the Weinberg equation (A3) obtains a form quite similar to the nonrelativistic
Schrödinger equation:

T (k, kf) = V (k, kf) +
∫

V (k, k′)
d3k′

4
√

k′2 + m2

1
k′2 − k2

f

1
(2π)3

T (k′, kf).

In the light-cone dynamics of the deuteron this equation has been discussed in refs. [494, 496]. The suggested method
of deducing angular momentum conservation can be easily generalized to account for spin and isospin of nucleons,
and unequal masses of nucleons. The above discussed derivation of angular condition shows that, in order to establish
the form of the angular condition in a more general case which includes nonnucleon degrees of freedom, one should
investigate the many-channel Weinberg equation and use the Lorentz invariance of all on-energy-shell amplitudes.

For a many-nucleon system the form of the angular constraint, in spite of a number of interesting attempts, has
not been clarified. For a discussion of the many-body Weinberg equation and its relationship with the nonrelativistic
theory of nuclei, and for references, see ref. [494].
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On-mass-shell
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The simplest method to prove this statement is to calculate T on energy shell in terms of perturbation theory in the
potential V . For example, in second order in the potential V we obtain:

T (k, kf) − V (k, kf)

=
∫

V (k, k3, k
′, k′

3)V (k′, k′
3, kf, k3f)

d3k′

4
√

k′2 + m2

1
(2π)3

1
k′2 − k2

f

. (A4)

For arbitrary potential V the right-hand side of eq. (A4), contrary to the left-hand side, depends on the direction of
the 3-axis. Evidently, the only form compatible with eq. (A4) is

V (k, k3, kf, kf3) = V (k2, k2
f , kkf). (A5)

This argument can easily be improved by considering an arbitrary order of perturbation theory in the potential V .
Equation (A5) recovers the rotational invariance for the light-cone quantum mechanics of the two-nucleon system.
(The same form of the angular momentum constraint has been suggested in ref. [495] in the context of quark models of
a hadron.) As a consequence of eq. (A5) the Weinberg equation (A3) obtains a form quite similar to the nonrelativistic
Schrödinger equation:
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In the light-cone dynamics of the deuteron this equation has been discussed in refs. [494, 496]. The suggested method
of deducing angular momentum conservation can be easily generalized to account for spin and isospin of nucleons,
and unequal masses of nucleons. The above discussed derivation of angular condition shows that, in order to establish
the form of the angular condition in a more general case which includes nonnucleon degrees of freedom, one should
investigate the many-channel Weinberg equation and use the Lorentz invariance of all on-energy-shell amplitudes.

For a many-nucleon system the form of the angular constraint, in spite of a number of interesting attempts, has
not been clarified. For a discussion of the many-body Weinberg equation and its relationship with the nonrelativistic
theory of nuclei, and for references, see ref. [494].
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For arbitrary potential V the right-hand side of eq. (A4), contrary to the left-hand side, depends on the direction of
the 3-axis. Evidently, the only form compatible with eq. (A4) is
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This argument can easily be improved by considering an arbitrary order of perturbation theory in the potential V .
Equation (A5) recovers the rotational invariance for the light-cone quantum mechanics of the two-nucleon system.
(The same form of the angular momentum constraint has been suggested in ref. [495] in the context of quark models of
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In the light-cone dynamics of the deuteron this equation has been discussed in refs. [494, 496]. The suggested method
of deducing angular momentum conservation can be easily generalized to account for spin and isospin of nucleons,
and unequal masses of nucleons. The above discussed derivation of angular condition shows that, in order to establish
the form of the angular condition in a more general case which includes nonnucleon degrees of freedom, one should
investigate the many-channel Weinberg equation and use the Lorentz invariance of all on-energy-shell amplitudes.

For a many-nucleon system the form of the angular constraint, in spite of a number of interesting attempts, has
not been clarified. For a discussion of the many-body Weinberg equation and its relationship with the nonrelativistic
theory of nuclei, and for references, see ref. [494].

For rotational invariance of T it is sufficient that the same 
relation is satisfied for V off-mass-shell. The proof that this 
condition is also necessary  is much more complicated (FS + 
Mankievich 91) . At the same time  it is obvious  that it would 
be very difficult to satisfy the highly nonlinear equation for the 
on-shell amplitude if this condition were violated. 

The proof uses methods of complex angular momentum plane 
and assumption that the amplitude is decreases sufficiently 
fast with momentum transfer (actually rather slow decrease 
was sufficient).
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Very similar structure for the equation for the scattering 
amplitude in NR QM and for LC. If a NR potential leads to a 
good description of phase shifts the same is true for its LC 
analog. Hence simple approximate relation for LC and NR two 
nucleon wave function 
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Z
Ψ2
NN

✓
m2+ k2t
α(2�α)

◆
dαd2kt
α(2�α)

= 1

Spin zero /unpolarized case

rescale α→2α  so that 0<α <2  with α=1 corresponds to a nucleon 
at rest  ( more convenient when generalizing to A>2)

Relation between LC and NR wf.∫
φ2(k)d3k = 1

Ψ2

NN

(

m2 + k2
t

α(2 − α)

)

=
φ2(k)

√

(m2 + k2)

Similarly for the spin 1 case we have two invariant vertices as in NR theory:

 hence there is a simple connection to the S- and D- wave NR WF of D

 D
µ ✏

D
µ = ū(p1)

�
�µG1(M

2
NN ) + (p1 � p2)µG2(M

2
NN )

�
u(�p2)✏

D
µ
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For two body system in two nucleon approximation 
the biggest difference between NR and virtual nucleon 
approximation and LC is in the relation of the wave 
function and the scattering amplitude

Let us illustrate this  for the high energy deuteron break up
 h(e) + D→X + N  in the impulse approximation with nucleon been 

in the deuteron fragmentation region - spectator contribution.

For any particle, b,   in the final state in the target fragmentation region the 
light cone fractions are conserved under longitudinal boosts
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2.5. Relativistic e�ects in the hadron scattering from deuteron

A theoretical description of high-energy hadron-deuteron interactions is considerably more complicated than that
for lepton-deuteron scattering processes. Realistic models of these reactions however can be constructed by applying
traditional physical approximations like the impulse approximation or Glauber theory generalized by Gribov [162] to
the high energy processes with multiparticle production (see also [163, 164] There exist two important reasons for the
validity of these approximations for high-energy hadronic processes: (a) In the high-energy process the fast deuteron
prescattering state is formed long before the target at distances of order

⇤ 1
EN2 + EN2 � ED

⇤ 2P

4(m2 + k2
⇤)/�(2� �)�M2

D

. (2.50)

Moreover, due to Lorentz dilatation the characteristic time between di⇥erent fluctuations within the fast deuteron
becomes larger at high energy than the characteristic time for the interaction with the target ⇤ 1/m. Therefore the
deuteron in some sense can be considered as a collection of free nucleons. In typical high energy hadronic reactions the
energy transfer is not su⇧cient to resolve quarks and gluons. Thus, soft hadronic processes could not be considered
as incoherent in terms of pointlike quarks and gluons. That is why they are usually described in terms of hadron
exchanges. (b) Experimentally average Feynman x, p⇤ for nucleon in inelastic h + N ⌅ N + X reaction are about
0.5 and 0.4 GeV/c respectively. Thus in inelastic hD reaction large momentum ⇤ 1 GeV/c is transfered to the target
nucleon in the deuteron rest frame.

Let us now consider inclusive high-energy reactions

hadron + D⌅ b + X,

where the produced hadron b is kinematically forbidden for the scattering from a free nucleon. Let particle ”b” be in
the deuteron fragmentation region. At infinite energies this kinematic region corresponds to the condition that the
light cone fraction of the deuteron momentum carried by particle ”b” �b/2 = (Eb + pbZ)/(ED + pDZ) is within the
limits 2 > �b > 1. The condition �b = 1 is the kinematic boundary for the elementary processes h + N⌅ b + X. In
the deuteron rest frame and Eh ⌅⇧ this condition has the form:16

2 > �b ⇥
�⇤

m2
b + p2

b � pbZ

⇥
/MD > 1 (2.51)

where the Z axis is chosen along the projectile direction. For light particles b like N, ⇥, k this region covers backward
angles only. For mb > mN it covers also forward angles. In this review we restrict ourselves to the discussion of fast
backward (FB) particles production, since only this kinematic region has been investigated experimentally. These
particles are referred to in the literature as cumulative particles [13, 14], backward particles [22, 23], backward emitted
particles [46] etc.

Since these reactions are typical fragmentation processes their inclusive cross section should be independent of
initial energy at Eh ⌅⇧:
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This property is known as Feynman scaling [128] and it is observed for all high energy hadron reactions if �b is not
small (see e.g. [127]). The experience in quantum field theory (cf. section 2 2.1) hints that GD/b

h cointains information
on the deuteron WF.

2.5.1. Direct mechanism of fast backward (FB) particles production

Let us first consider the case of FB particles “b” absent in the deuteron WF (⇥, k, �). A natural mechanism for
this reaction is the production of particle “b” in the scattering of an initial hadron h from a nucleon with � > 1 (a
backward nucleon in the deuteron rest frame) [25, 59, 61–63, 76–78]. In impulse approximation the direct mechanism

16 Evidently at intermediate energies kinematic restrictions are more stringent and part of the region �b < 1 is forbidden for the scattering
from free nucleon.
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LC imp.approx.

NR imp.approx.

NR/Virtual nucleon:  observed momentum is the same as in the WF,  
asymptotic at α→2,kt=0, is determined by WF at finite momentum 0.75 
m, and has the same (2-α) dependence on α.

LC nucleon:  nonlinear relation between internal momentum k and 
observed momentum p (see next slide).   Asymptotic behavior at  α→2 
is determined by WF at k→∞.  Similar to particle physics.
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We demonstrate that S, D deuteron wave functions and therefore the nuclear core hypothesis can be investigated directly 
by studying the backward proton production in the hadronic reaction h + D ~ p + X with a polarized deuteron. 

The nuclear core hypothesis is of  fundamental im- 
portance for nuclear physics. However a direct experi- 
mental verification of  the idea is lacking yet.  Existing 
evidence, coming mostly from NN phase-shift data, is 
rather indirect. 

To verify the core hypothesis one should check that 
the deuteron wave function has a sharp edge at r c 

0.4 fm and consequently it oscillates in momentum 
space. In particular the S-wave should have a node at 
k N ~ 300 MeV/c and S, D-waves should be compar- 
able at large nucleon momenta  (k N ~ 250 MeV/c). 

Generally it was proposed (see e.g. ref. [2] ) to 
study elastic eD scattering off  a polarized deuteron. 
This experiment is technically very difficult. More- 
over one cannot measure here the D wave functions 
themselves but only their convolutions. At the same 
time the spectator distribution in high energy hD scat- 
tering (backward produced nucleons in the D lab. 
frame) is proport ional  to the square of  the D wave 
functions. Therefore this reaction can be used for a 
straightforward check of  the nuclear core hypothesis.  
Qualitatively it predicts that, for spectator momenta  

3 0 0 - 4 0 0  MeV/c where the S-wave has its node, the 
cross section is determined by the D-wave and there- 
fore strongly depends on D polarization. The ex- 
pected magnitude of  the effect is large ( >  30%) for a 
spectator with p ~ 200 MeV/c * 1 

,1 Evidently the same reasoning is valid for the deep inelastic 
Q + D ~ 12' + N + X reaction, where corrections to the im- 
pulse approximation are much smaller. 

N 

(b) (a) 

Fig. 1. Mechanisms of nucleon production in the impulse ap- 
proximation. 

The quantitative quantum mechanical description 
of the high energy inclusive reaction h + D ~ p + X is 
faced with certain difficulties due to the inadequate ac- 
count of  the relativistic space- t ime  development of  
the process [3].  Similar difficulties are present in the 
relativistic description based on the consideration of  
a concrete Feynman diagram with the interacting nu- 
cleon off-mass-shell [4] (see discussion in refs. [5,3] ). 
Moreover there exists the ambiguity due to the D spin 
as the D -* NN vertex depends on 4 invariant functions 
[6] and not  on two as in quantum mechanics. How- 
ever if the relativistic space- t ime  picture of  high ener- 
gy scattering [7,8] is taken into account in a consis- 
tent way [9,3] all these difficulties are absent. Indeed, 
the scattering amplitude is on the energy shell (if  the 
incident energy is sufficiently large), the D is described 
by two wave functions which are in straightforward 
correspondence with quantum mechanical S- and D- 
wave functions. Therefore we shall follow the ap- 
proach of  ref. [9].  In the impulse approximation nu- 
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FIG. 3.17:

�/2 = (
�

m2 + p2�p3)/mD. The result of the calculation overestimates experimental data by (30-50 %26. It is worth

noting that in the studied range of spectator momenta the dominant contribution is given by D-wave. To check this

important feature of the realistic WFs experiments with polarized deuteron beams are necessary (see [7] and section

3 3.3).

3.5.3. Comparison with other approaches

First we compare predictions of eq. (3.37) with the quantum mechanical approach and the Bethe-Salpeter approach

[65], which is similar to approaches [114, 170, 171] for the deuteron structure functions and the deuteron form factor,

which were discussed in the previous subsections. These approaches lead to eqs. (3.44) and (3.45)respectively27

G
D/N
h (p) = ⇤hN

tot⌅
2
D(p)(1 + p3/M)(2� �). (3.44)

G
D/N
h (p) = ⇤hN

tot⌅
2
D(p)(2� �)⇥(2� �). (3.45)

Here p is the spectator momentum in the deuteron rest frame. 1 + p3/M , (2 � �) is the Möller flux factor, which

reflects the Doppler shift for the frequency of the interacting nucleon. � is given by eq. (3.43) and ⌅2(p) = (U2(p) +

W 2(p))/(
�

m2 + p2). ⇥(2� �) accounts for the phase space restrictions due to energy conservation.

Eq. (3.37) and eqs. (3.44), (3.45) correspond to a qualitatively di�erent space-time picture of the strong interaction.

Thus it seems instructive to compare predictions of these models for the nucleon yield. To be definite we use the

deuteron rest frame.

(1) In the Bethe-Peierls approximation when p/m ⇥ 1 (p2 � m⇧D) all formulae coincide. Really this case cor-

responds to the pointlike vertex D ⇤ NN, where expression (3.37) follows from the exact calculation of the

Feynman diagrams [1–3, 61–63].

26 We consider this as one of the evidencies that the absolute normalization of the data [27] should be increased by a factor 1.5-2 (cf.

footnote on p. 84. Note also that it is necessary to check the accuracy of scaling in variable � at � 1.5 at higher energies.

27 To simplify the comparison we consider here the predictions of the models in the impulse approximation.

LC

NR
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FIG. 3.15: The fast backward proton production in the pD scattering at p� = 0 [27, 39]. The solid curve is the result of
calculation in the relativistic Glauber approximation. Dashed curve is the QCD prediction of section 4 normalized at pN =
0.5 GeV/c. The broken (dashed) curves is the prediction of the Schmidt-Blankenbecler model [71] assuming �(pcm/pcm max)
scaling normalized at pN = 0.3 GeV/c.

FIG. 3.16: Test of the � scaling hypothesis in p+p⇥ ⇥+ +X reaction at pN = 8.9 GeV/c [27] (p� = 0). The solid and dashed
curves are the predictions based on the high energy data [182, 183] assuming � scaling and radial scaling (x = Ecm/Ecm max �
pcm/pcm/pcm max) For authors: is this relation OK? correspondingly.

The same pattern of scaling onset is observed for the process p+p� � +X (fig. 3.16). We want to emphasize that
condition (3.42) is not fulfilled if standard variables such as x = p�L/p�max or E�/E�

max are used (see e.g., [25, 37, 71]) to
compare asymptotic formulae with experiment. In particular these variables vary up to x = 1 at any incident energy.
As a result an artificial violation of the Yang scaling is introduced, see e.g. fig. 3.16 and the dotted curve in fig. 3.15.
This is especially clear for the region of small spectator momenta pN, where the validity of the impulse approximation
can be strictly proved. For example the use of variable x = p�/p�max leads to a change of the cross-section of the
p + D � p + X reaction by a factor of 300 at x = 1

2 , p⇥ = 0 in the range Einc
N = 2-100 GeV (at large energy x = 1

2 ,
p⇥ = 0 corresponds to pN = 0).

In fig. 3.15 a calculation of p + D � p + X [61–63, 106–109] using eq. (3.37) is compared with experimental data
[27, 38, 39]. We use the Hamada-Johnston WF of the deuteron-solution of Weinberg eq. (2.22) and scaling variable

↵ = (
p

p2 +m2 � p3)/(mD/2)

↵ = 1� k3p
k2 +m2

- still small effect in inclusive processes up 
to large spectator momenta.  Due to 
smooth drop of ψ2D(κ)

Nonlinear relation between p and k
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Fig. 1. The momentum dependence of the S- and D-wave deuteron wave functions. 

investigated so far’ although it is expected to be rather specific (see discussion 
below and fig. 1). 

The aim of this paper is to find feasible ways of measuring the short-range spin 
structure of the deuteron WF in high-energy processes off the polarized deuteron. 
We shall concentrate on the inclusive reactions p(e) + 6 + N + X, where a proton 
(neutron) is registered in the deuteron fragmentation region, and on the reaction 
e + b + e -6 X at x = -42/2q~m~ > 1. An experimental study of such processes is now 
possible due to the development of polarized deuterium targets ‘) and the acceler- 
ation of 9 GeV/c polarized deuterons in Dubna 4). As a by-product of our investiga- 
tion we analyse the problem of extracting the polarized neutron structure function 
from an 66 experiment which is under way in SLAC 3), We calculate also total 
and differential cross sections of the e + 6 + e + N + N reaction at large momentum 
transfer since a detailed investigation of this reaction could be expected soon using 
the polarized deuterium gas jet target technique in the electron storage rings 
developed in Novosibirsk 5). We discuss also high-energy processes with polarized 
6Li which seem necessary for an accurate analysis of experiments with the polarised 
D”Li targets planned for the FNAL tevatron 6). In addition, we show in the appendix 
that study of the reaction I) -+- N + 3 +X gives a possibility of measuring the full spin 
matrix density of the deuteron. We discuss briefly predictions of perturbative QCD 
for spin effects in the leading hadron production in fragmentation processes. 

’ The only exception is the measurement of elastic p6 scattering *). These data are sensitive to the 
guadrupole form factor and indicate (in agreement with the convekional theory of the deuteron) that 
the D-wave in the deuteron V?F dominates at k = 0.2 GeV/c. 

The ratio of S and D - waves is much more 
sensitive to relativistic effects than ψ2D(κ) 
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We demonstrate that S, D deuteron wave functions and therefore the nuclear core hypothesis can be investigated directly 
by studying the backward proton production in the hadronic reaction h + D ~ p + X with a polarized deuteron. 

The nuclear core hypothesis is of  fundamental im- 
portance for nuclear physics. However a direct experi- 
mental verification of  the idea is lacking yet.  Existing 
evidence, coming mostly from NN phase-shift data, is 
rather indirect. 

To verify the core hypothesis one should check that 
the deuteron wave function has a sharp edge at r c 

0.4 fm and consequently it oscillates in momentum 
space. In particular the S-wave should have a node at 
k N ~ 300 MeV/c and S, D-waves should be compar- 
able at large nucleon momenta  (k N ~ 250 MeV/c). 

Generally it was proposed (see e.g. ref. [2] ) to 
study elastic eD scattering off  a polarized deuteron. 
This experiment is technically very difficult. More- 
over one cannot measure here the D wave functions 
themselves but only their convolutions. At the same 
time the spectator distribution in high energy hD scat- 
tering (backward produced nucleons in the D lab. 
frame) is proport ional  to the square of  the D wave 
functions. Therefore this reaction can be used for a 
straightforward check of  the nuclear core hypothesis.  
Qualitatively it predicts that, for spectator momenta  

3 0 0 - 4 0 0  MeV/c where the S-wave has its node, the 
cross section is determined by the D-wave and there- 
fore strongly depends on D polarization. The ex- 
pected magnitude of  the effect is large ( >  30%) for a 
spectator with p ~ 200 MeV/c * 1 

,1 Evidently the same reasoning is valid for the deep inelastic 
Q + D ~ 12' + N + X reaction, where corrections to the im- 
pulse approximation are much smaller. 

N 

(b) (a) 

Fig. 1. Mechanisms of nucleon production in the impulse ap- 
proximation. 

The quantitative quantum mechanical description 
of the high energy inclusive reaction h + D ~ p + X is 
faced with certain difficulties due to the inadequate ac- 
count of  the relativistic space- t ime  development of  
the process [3].  Similar difficulties are present in the 
relativistic description based on the consideration of  
a concrete Feynman diagram with the interacting nu- 
cleon off-mass-shell [4] (see discussion in refs. [5,3] ). 
Moreover there exists the ambiguity due to the D spin 
as the D -* NN vertex depends on 4 invariant functions 
[6] and not  on two as in quantum mechanics. How- 
ever if the relativistic space- t ime  picture of  high ener- 
gy scattering [7,8] is taken into account in a consis- 
tent way [9,3] all these difficulties are absent. Indeed, 
the scattering amplitude is on the energy shell (if  the 
incident energy is sufficiently large), the D is described 
by two wave functions which are in straightforward 
correspondence with quantum mechanical S- and D- 
wave functions. Therefore we shall follow the ap- 
proach of  ref. [9].  In the impulse approximation nu- 
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FIG. 7.4: The meson exchange current diagram for the reaction γ∗ + D → N + N.

description of w(r) for r > 2 fm (k ! 0.15 GeV/c) and the prediction of conventional models for the total probability
of the D-wave, PD = (6 ± 1)%, is consistent with the analysis of µd; cf. the discussion in ref. [420]. The recent
measurements [413, 414, 421] of elastic eD → e!D scattering for q ∼ 2 fm−1 probe w(k) for k ∼ 0.2 GeV/c, while
elastic high-energy pD scattering is sensitive to GQ(Q2) at Q2 ∼ 0.3 GeV2/c (see, e.g., ref. [422]).

It has been suggested in the literature that the nuclear core hypothesis may be checked by measuring Gc(Q2)
and GQ at −q2 > 0.5 GeV2 inelastic e!D scattering or by measuring the tensor polarization of the recoil deuteron
(see, e.g., ref. [423], where the experimental problems involved in such measurements are also discussed). Incoherent
phenomena, discussed below, have a number of obvious advantages for performing a critical test of the nuclear core
hypothesis (this was first explained in ref. [424]):

(i) In incoherent processes at high energy one can measure the deuteron wave function directly in momentum space
instead of a convolution of wave functions as in the case of elastic deuteron form factors.

(ii) The nucleon yields in incoherent fragmentation of a two-nucleon correlation and of a 6q bag are qualitatively
different (see the discussion in sections 2 and 8 8.6), while in elastic scattering processes the separation of 6q and
2N contributions is hardly possible.

(iii) The absolute values of the cross sections are much larger than for elastic eD scattering.
(iv) In the kinematical region where the contribution of the high-momentum component of the deuteron wave

function dominates (k > 0.2 GeV/c) the cross section of these reactions should strongly depend on the deuteron
polarization.

7.2. High-Q2 e + "D → e + p + n, e + N + X, e + X reactions

Evidently, detailed information about the structure of the deuteron wave function can be obtained only if the
distribution of spectator nucleons is measured. The high-Q2 exclusive reactions e + D → e + p + n(∆,N∗) seem to
be the simplest for a theoretical analysis, since a large energy-momentum (q) is transferred to the struck nucleon in
a controlled way. At sufficiently high Q2 and W − md " 100 MeV the interference diagram (fig. 8.12 below) is small
(a few percent) in the essential kinematic region. The difference between the final state momenta of the nucleons is
large, so the correction due to misidentification of a spectator and the “active” nucleon is also small even for forward
moving spectators. Besides, the final state interaction estimated within the nonrelativistic approach (sec, e.g., ref.
[425, 426]) is expected to be rather small, ! (10 − 30)%, in the kinematic region discussed. In fact it is even smaller
because at Q2 " 2 GeV2 nucleons are produced in compressed configurations, which have a small interaction cross
section (section 6 6.3). Moreover, in the ratio of the cross sections for γ∗ scattering from polarized and unpolarized
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93 In line with the convention of ref. [428] w(k) is defined so that w(k) > 0 at small k.
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FIG. 7.4: The meson exchange current diagram for the reaction γ∗ + D → N + N.
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FIG. 7.5: (σ± − σ0)/〈σ〉 for backward nucleon production, (a) in high-energy e"D and p"D scattering for the Reid soft core

wave function, (b) in high-energy e"D scattering for the Pans potential wave function and for the QCB model with bag radius
b = 1.2 fm and 1.4 fm.

frame and the inner momentum, k, is given by eq. (5.31); the 3-axis is chosen in the direction of the γ∗ momentum.94
It follows from eq. (7.1) that by studying the dependence of the nucleon yield on the deuteron tensor polarization

one can directly measure the ratio w(k)/u(k). An independent check of the nuclear core hypothesis can be obtained
from the measurement of the dependence of the nucleon polarization on the deuteron vector polarization, see ref.
[427], pp. 578, 579. (For the parametrization of Ω in terms of tensor and vector polarizations, see, e.g., ref. [429].)

It is convenient to represent the magnitude of spin effects in the form of the tensor asymmetry

R = T20 =
[
1
2
(σ+ − σ−) − σ0

]/
〈σ〉, (7.2)

where 〈σ〉 = 1
3 (σ++σ−+σ0). The indices (+,−, 0) denote deuteron helicities. In the deuteron rest frame the deuteron

spin is quantized in the direction of the γ∗ momentum. Note that in the unpolarized electron case σ+ = σ− due to
space parity conservation. Evidently in the physical region R can vary from −3 to 1.5. Using eq. (7.1) we obtain for
R a rather simple expression:

R(ps) =
3(k2

t /2 − k2
z)

k2

u(k)w(k)
√

2 + 1
2w2(k)

u2(k) + w2(k)
. (7.3)

In nonrelativistic quantum mechanics (ps/m % 1) ps and ks coincide. In this case R has the form

Rnonrel(ps) =
3(p2

t/2 − p2
z)

p2

u(p)w(p)
√

2 + 1
2w2(p)

u2(p) + w2(p)
. (7.4)

Eq. (7.3) with a conventional nuclear core wave function like the Reid soft core predicts a large variation of R(ps)

94 The difference between k and p is due to the fact that in eq. (7.1) the space-time picture characteristic for high-energy processes in
relativistic theory [409, 410] is taken into account.
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FIG. 7.6: Angular dependence of (σ±−σ0)/〈σ〉 for the spectator distribution in the reaction e+ "D → N+X at different nucleon
momenta. Solid and dashed lines are predictions of relativistic theory and nonrelativistic quantum mechanics, respectively.

FIG. 7.6: (cont.)

for nucleon momenta ps ! 0.1 GeV/c (fig. 7.5a),95 although no significant effect is expected for ps ! 0.4 GeV/c in the
6q model (see the above discussion in section 7 7.1). The use of different realistic potentials with nuclear core leads
to quite similar expressions for R(ps), probably because in this framework the relationship between the phase shifts

95 Indeed, the qualitative picture of the ps dependence of R at not too large nucleon momenta within the deuteron (k/m ! 1) is quite
simple. It is well known that in corrdinate space, due to the presence of the D-wave, the charge distribution in the deuteron with spin
pointing in the direction of the 3-axis is “cigar-shaped”. Evidently due to the properties of the Fourier transform in momentum space
the deuteron with helicity ±1 has the form of a ball flattened in the direction of the 3-axis. As a result the yield of the backward
spectators is minimal for deuteron helicity ±1.
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FIG. 7.6: (cont.)

and the corresponding wave functions is rather rigid. However, once this relationship is changed, e.g., by introducing
the transitions of two nucleons into a quark compound bag (QCB), the prediction for R(ps) changes significantly at
ps > 0.3 GeV/c, see, e.g., fig. 7.5b.96

It is worthwhile to emphasize that eqs. (7.3) and (7.4) predict a different momentum dependence at fixed angle
and at fixed nucleon momentum (fig. 7.6), It can be seen from fig. 7.6 that the calculation based on eq. (7.4) leads
to R ∼ ( 1

2 cos2 θ − sin2 θ), although a rather complicated angular dependence follows from eq. (7.3) (θ is the angle
between ps and the 3-axis). To our knowledge the discussed angular dependence of R(ps) is the clearest relativistic
effect suggested so far in the literature. Actually this is the only effect where the relativistic relation between k and
ps becomes important at momenta as low as 0.3 GeV/c.

Equation (7.3) predicts Q2 independence of R(ps). Besides, the same R(ps) is expected for different final states
like Nsp + N, Nsp + ∆, Nsp + N∗, . . .. Such a universality of R(ps) at fixed ps is a general feature of the two-
nucleon approximation (valid in all approaches, nonrelativistic, covariant, and light-cone). Thus, the independence
of w(k)/u(k) extracted from different measurements for the same spectator momentum would provide an important
check of the extraction procedure and of the role of the final state interaction.

At the same time one can expect that at large spectator momenta R(ps) would depend on Q2 in the transitional Q2

range 2− 4 GeV2, where scattering off the compressed nucleon configuration becomes important. This is because the
deformation of the bound nucleon wave function should be somewhat different for S- and D-waves due to the different
relative roles of the one- and two-pion exchange potentials. Indeed, the contribution of the two-pion exchange potential,
which leads to a larger deformation of the bound nucleon wave function (cf. the discussion in section 2 2.5 2.5.2), is
more important for the S-wave.

In the impulse approximation eq. (7.1) is also valid for the deep inelastic reaction e+D → e+p+X. The final state
interaction between the struck nucleon and the spectator is a correction because a large amount of energy (∼ 1 GeV)
is transferred to the interacting nucleon in an average process. Moreover, the contribution to the nucleon yield due to
the production of nucleons in γ∗N interaction (the direct mechanism) constitutes a small correction to the production
of spectator nucleons in a wide kinematical region, α = (

√
m2 + p2

s − ps3)/m > 1 − x. This region includes (for
sufficiently large x) emission of spectators in the forward direction.

Equation (7.1) may be modified due to suppression of the spectator nucleon yield (with α > 1 − x) as a result
of the final state interaction between hadrons produced in $N interaction and would-be spectators. However, the
suppression of the nucleon yield in different spin states should be rather close, at least at small pt, because secondary
hadron rescatterings mostly suppress the contribution of configurations in the deuteron wave function where p, n are

96 We are indebted to I. M. Narodetski for supplying numerical results for the QCB deuteron wave functions [405].
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Figure 3: ps dependence of the (e, e′p)
tensor polarization at θs = 1800. Solid
and dashed lines are PWIA predictions
of the LC and VN methods, respective
marked curves include FSI.

Figure 4: Q2 dependence of the unpolarized
and tensor polarized cross sections. Solid
line - LC approach with PLC suppression,
dashed - LC, and dashed-dotted - VN.
Experimental data from Ref.[9].

holds even for inclusive "d(e, e′) scattering. In Fig.4, we compare the predictions of the VN and
CT approaches for d(e, e′) reactions with unpolarized and polarized deuteron targets. Yielding
practically the same predictions for a unpolarized target at x < 1, the two approaches differ by
as much as a factor of two in the tensor polarization cross section.

3 Conclusions
We demonstrated that the use of a polarized deuteron target allows to probe effectively

smaller internucleon distances in the deuteron ground state wave function for semiexclusive
(e, e′N) and inclusive (e, e′) reactions. This opportunity can be successfully used to gain a
better understanding of the structure of (moderate) high energy, large Q2 eA interactions. In
particular, we demonstrated that the use of a "d target would allow to observe the onset of Color
Transparency at intermediate energies as well as to confront different descriptions of relativistic
effects in the deuteron and electromagnetic interactions with deeply bound nucleons.
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Very recently initial data from the Novosibirsk experiment aimed to study the reaction γ∗ + D → p + n have
appeared [414]. The asymmetry of the nucleon distribution a(ps), which is proportional to the quantity R(ps) defined
in eq. (7.2), was measured for nearly real γ∗ with Eγ ! 150 GeV (fig. 7.8). The data plotted as a function of the
spectator momentum ps are in qualitative agreement with the prediction of eq. (7.4) (curve 1). Evidently, since the
momentum transfer in the measured range of photon energies is rather small, the final state interaction and the meson
exchange current corrections cannot be neglected. Account of these effects leads to a qualitative description of the
data (solid curve 3) [414]. (The dashed curve 2 is the result of taking into account only the final state interaction.)

Comment. When planning experiments with polarized deuterons one should take into account that in the case of
targets consisting of a polarized deuteron and unpolarized nuclei, the background from the interaction with nuclei
increases as α(x) increases. For example, for a #D 12C target the ratio of the cross sections σγ∗A for A =12C and
A = D is of the order of 40 for x ∼ 1.3 and increases with x. To avoid this problem one can use an electron storage
ring with an internal polarized jet deuteron target, which, however, has a rather low luminosity. At the same time,
for exclusive measurements, like e + D → e + p + n, this effect is much reduced if the resolution of the experiment is
good enough.

7.3. Inclusive reaction with polarized 6Li

Recently, a polarized D 6Li target was developed. Thus, it is feasible now to probe the spin structure of 6Li using
experiments analogous to those suggested for D.

In the framework of the cluster model 6Li can be described as a sum of D and 4He clusters. The variational
calculation of ref. [431] indicates that the D-cluster is somewhat compressed as compared to the free deuteron,
leading to an increase of the high-momentum component of the D-cluster by a factor of γ ∼ 1.5. Since the D-
wave gives a dominant contribution to the deuteron high-momentum component, a similar increase of the D-wave
probability in the D-cluster is expected. In the cluster model it is easy to estimate the dependence of the inclusive
cross section for high-energy scattering from 6Li with production of fb protons and pions:

G
6Li/p,π
Ω,a=e,h(α, pt) − G

6Li/p,π
a (α, pt) = γ[GD/pπ

Ω,a (α, pt) − GD/pπ
a (α, pt)], (7.6)

for α > 1. Here Ω denotes the spin density matrix for 6Li and D. Besides,

WΩ
2 6Li(ν, q2) − W2 6Li(ν, q2) $ γ[WΩ

2D(ν, q2) − W2D(ν, q2)], (7.7)

for x = −q2/2mNν > 1 and sufficiently large q2. A similar relation should be valid for the nucleon polarization in the
reactions e, p +6 Li → p + X and e, p + D → p + X at α > 1.

To summarize, we have considered at length a new and potentially quite rich field of research: hard nuclear reactions
with polarized deuterons. We believe that inclusion of a new measured variable – the deuteron spin – will lead to
the disappearance of the somewhat dull smooth curves known from measurements with unpolarized deuterons. Such
measurements would determine more definitely up to what nucleon momenta the two-nucleon description of D remains
a good approximation and where the quark-gluon structure of nucleons comes into play.

8. PROBING MICROSCOPIC NUCLEAR STRUCTURE IN HIGH-Q2 NEAR-THRESHOLD
ELECTRON-NUCLEUS REACTIONS

We shall consider here the reactions

e + A → e′ + X, (8.1)

e + A → e′ + N + X, e′ + N + N + X, (8.2)

and some other related processes mostly in the kinematic region forbidden for the scattering off an isolated stationary
nucleon:

1 GeV2 ! −q2 ≡ Q2, x = Q2/2mNq0 > 1, 1 GeV > W − MA > 50 − 100 MeV. (8.3)

prediction [430] for the case of transverse polarizations of electron and target differs considerably from the prediction of the parton
model. Thus, the violation of the two-nucleon approximation is likely to be larger in this case.

Two LC approaches  
 

“the good current approach” FS81

“collinear  approach” FS88
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FIG. 8.10:

FIG. 8.11:

of coherent recoil seems questionable for y < −0.3 GeV/c. (ii) The scaling laws naturally arise in the nonrelativistic
quantum mechanics of nuclei. (iii) The experimental observation of scaling laws indicates that the dominant contri-
bution to the cross section of reactions (8.1) and (8.2) in the kinematic region (8.3) is given by configurations where
several nucleons come close together. (iv) A significant discrepancy between current calculations of P3He(k,E) and
experiment is observed for the region x > 2, where three-nucleon correlations should give a dominant contribution.
The possible causes of this discrepancy are (a) a considerable underestimate in refs. [451, 452] of the high-momentum
component of three-nucleon correlations; in particular, an adjustment of r3He could increase a3(3He) by a factor
[rtheor(3He)/rexp(3He)]6 ∼ 1.7; (b) enhancement of the cross section due to final state interaction [463] neglected in
eq. (8.27); (c) short-range three-body forces (?); (d) relativistic effects (?); (e) possible role of nonnucleon degrees of
freedom.

8.4. Light-cone dynamics and high-Q2 (e, e′) and (e, e′N) reactions

Since the high-momentum nucleon component of the wave function nucleus is probed in reactions (8.1) and (8.2),
there is a need to take into account relativistic kinematics, recoil, transformation NN̄ pairs, etc. To take into account
the causality in a form compatible with relativistic theory and quantum mechanics we shall apply here the light-
cone quantum-mechanical description of nuclei (see section 2 2.2 2.2.4 for a brief summary of the advantages of the
light-cone description of the scattering process; for a detailed discussion and references, see ref. [449]). The light-
cone formalism is best suited for the description of high-energy processes where the mass of the produced state is
large and where the axis of quantization is denned by the ladder dynamics of the scattering process [449]. However,
this condition is not fulfilled for reactions (8.1). So we will discuss here two variants of choosing the quantization
axis, both with their own merits and shortcomings. Both approximations lead to the same result at large q0 = ν
and in the nonrelativistic limit. It is reassuring also that the numerical results of both approaches are quite close
for Q2 ! 1 GeV2. In section 8 8.4 8.4.3 we shall demonstrate that the developed approach provides a reasonable
description of the SLAC data for reaction (8.1) off D and 3He.

8.4.1. The (e, e′) reaction. “Good” current approach

To compute the total cross section we choose q− = q0 − q3 = 0 and restrict ourselves to the calculation of the
component j+ = j0 + j3 of the electromagnetic current. In this case production of vacuum NN̄ pairs by γ∗ via
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Since the formalism has been considered at length in ref. [449], we will give here only the final results for the
near-threshold kinematic region, where the production of inelastic states in γ∗N interaction is either forbidden or
strongly suppressed kinematically. The structure function W2A(x,Q2)107 is expressed as a convolution of the nucleon
elastic structure function W el

2N(Q2) and the light-cone spectral function PA(α, pt, pR+), the probability distribution
to find in the nucleus a nucleon with light-cone momentum α, pt and given + component of the four-momentum of
the residual system pR [for the formal definition and a discussion of the properties of PA(α, pt, pR+), see Appendix B,
eqs. (B9)-(B15)]:

1
mA

W2A(ν, Q2) =
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F 2
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F 2
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f , (8.41)

where F1N and F2N are the Dirac nucleon form factors, m ≡ mN, kf is the momentum of the produced nucleon in the
centre-of-mass frame, and Ωf is the angular variable for kf; α and pt are expressed in terms of kf as

α = A

(√
m2 + k2

f + kf3

)/(√
m2 + k2

f +
√

M2
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f

)
,

pf = kft − (1 − α/A)et

√
Q2,

(8.42)

where et is a vector in the transverse plane with e2
t = 1.

In the case of γ∗ scattering off a deuteron, eq. (8.41) considerably simplifies since MR = m, and we have

1
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∑
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(
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1N(Q2) +
Q2

4m2
F 2

2N(Q2)
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×
∫
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f

dΩf, (8.43)

where u and w are the S- and D-wave functions108 and

k2
i =

m2 + [kft − (1 − α/2)qt]2

α(2 − α)
− m2. (8.44)

In the deuteron case the contribution of the interference diagram of fig. 8.12 is practically negligible for Q2 > 1 GeV2

and W − MD > 50 MeV. Equation (8.43) roughly describes the SLAC data for Q2 ! 2 GeV2 and somewhat
overestimates the cross section at high Q2 [446–448] (cf. fig. 8.13), probably due to an EMC-like effect, see section
8 8.6. Note also that eq. (8.43) reasonably reproduces y-scaling [471].

The main shortcoming of this approach is that the initial and final states propagate along different directions,
rendering the final state wave function quite complicated. There seems to be no reliable way to calculate the differential
cross section in this approach and to take into account the final state interaction. The way out is to choose the
quantization axis along the reaction axis.

107 Hereafter we restrict ourselves to consideration of W2A(x, Q2), since in this case the contact terms which could not be calculated through
the contribution of large longitudinal distances are suppressed. This approximation is quite similar to the method of dispersion sum
rules (see the discussion in ref. [449]).

108 Remember that in the two-nucleon approximation there exists a rather simple relation between the light-cone and nonrelativistic deuteron
wave functions (see Appendix A).
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FIG. 8.13: Cross section for the reaction e+D → e+X [434–436] as a function of the minimum momentum of the nucleon in the
deuteron wave function, kmin, allowed for the given values of Q2 and W . Here Q2

el is Q2 for elastic scattering off a deuteron (or
nucleon) at θ = 8◦ (10◦). The curves show calculations in the “good current” approach with the Reid soft core wave function.

8.4.2. Direct contribution to (e, e′N) reactions. Collinear approach109

Let us now consider the cross section of the semiinclusive reaction (e, e′N), where N is the nucleon which was struck
by the electron. (The production of nucleons in the decay of the residual system will be considered in section 8 8.5.)
To guarantee the same time development in the initial and final states the quantization hyperplanes in the initial and
final states should coincide. This requirement uniquely fixes the direction of the space component of the quantization
hyperplane to be along the reaction axis, i.e. along the photon momentum in the rest frame of the nucleus. As a
result the rotational invariance of the final answer is ensured. The penalty for this choice is that for not too large
W − MA the cross section cannot be expressed in terms of the “good” components of the e.m. current only.

We restrict ourselves to the case of small-angle scattering for Ee → ∞, which is the most interesting case from the
experimental viewpoint and in which the contribution of the “good” current becomes dominant with increasing ν.

Let us denote the direction of q in the rest frame of the nucleus as the 3-axis. The wave function of the nucleus
is quantized in the x0 + x3 = 0 hyperplane, so that the components p0 − p3 and pt of the momentum are conserved.

109 Readers not interested in the technicalities of the light-cone quantum mechanics of nuclei can safely skip this tedious discussion.

SLAC data for the cross section for 
the D(e,e’) reaction as a function of 
the minimum momentum of the 
nucleon in the deuteron wave 
function, kmin,   allowed for the given 
values of Q2 and W. Here Q2 el is Q2 

for elastic scattering off a deuteron 
(or nucleon) at ϑe=8◦ and 
ϑe=10◦ .The curves show calculations 
in the ``good current'' approach with 
the Reid soft core wave function.
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Serious problem:  for exclusive final state an ad hoc choice of direction of qt 

leads to violation of rotational invariance for the NN final state. Happens for all 
WF except for the point-like vertex (which is the field theory situation for point-
like particles). Can FSI restore rotational invariance? seems unlikely.

q-< 0  hence pair production is only due to instantaneous terms

The procedure is to use gauge invariance to express the contribution 
of the worst current through the good current

“Collinear  approach” : choose the quantization axis along the 
reaction axis. No problems with rotational invariance, but need to 
deal with bad and worst currents. 

q�hi|J+(q)|R, p f i+q+hi|J�(q)|R, p f i = 0

and deal with bad current correction like in QED.
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Fig. 6. The dependence of W$& (v, 4’) for the e +a + e’ + p+ n reaction on the deuteron polarization. 

The results of the calculations of R = (W,‘, (v, 4’) - W$, (v, q2))/ W&Y; q*) with 
Reid soft-core and Ramada-Johnston hard-core WI% (which lead to practically 
coinciding curves) are presented in fig. 6. In the region W -A&<50 MeV the 
curves are broken to emphasize that the final-state interaction, not accounted for 
in our analysis, could be of importance here. Note that the predicted dependence 
of R is stronger than in the deep inelastic case (fig. 3) because in the near-threshold 
reaction a much narrower region of nucleon momenta k contributes in the integrand. 

4.2. ~~~R~N~AL CROSS SECTION 

Now let us derive expressions for W&(Y, q2, l&l, where L& are the angular 
variables, which characterize the angular dis~ibution of nucleons in the y*D c.m.s. 
To do this, note that the derived expressions are invariant under boosts in the 
3-axis direction. In particular, they are valid in the frame where pD = (mu, 0, 0,O) 
and q+ = 0. Thus, it is sufficient to omit integration over L?, in eqs. (15) and (18) 
and to take into account the rotation of the deuteron spin from the deuteron rest 
frame to the c.m.s. 

The integrand of eq. (16) averaged over dQ gives the proton and neutron 
distributions. Since the interference term does not change under the substitution 
kf-* -kf it cont~butes equally to the proton and neutron spectra. All as~met~ 
originates from the impulse approximation term. Indeed since the square of the 
proton form factor is larger than that of the neutron, it is more probable for the 
proton to fly in the y* direction. 

If y* is absorbed. by the neutron, the momentum of the proton in the frame with 
q+. =O and po= 0 is determined from the condition that +, t-components of 
momenta flowing in fig. 5a are conserved. Thus, in this reference frame 

Strong T20 asymmetry for quasielastic (e,e’)

Approximate ξt.n. scaling of  T20 

On mass-shell fsi for   T20 to large extend cancels since it 
weakly depends on pn spin state. 

☛
☛
☛
☛ Much larger effect than in the scaling limit

L.L. Frankfurt, MI. Strikman /High momentum transfer 563 
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Fig. 3. The dependence of F& (x, 4’) on the deuteron polarization. 

In reactions which will be considered below the deuteron WF is not averaged 
or averaged over smaller interval in k. As a result variation of R will be considerably 
larger. 

In the analysis of data from the polarized deuteron target, consisting of a polarized 
deuteron and unpolarized nuclei, it is necessary to take into account that the 
background from nuclei increases as x increases, since the high-momentum com- 
ponent in the nucleus WF is considerably larger than that for the deuteron. For 
example, it was predicted in ref. 13), and it is now confirmed experimentally 14), 
that the ratio of structure functions for 12C and D at x = 1 is of order 40 and 
increases rather rapidly with X. 

The calculation given above is valid in the kinematical region where the descrip- 
tion of the deuteron as a two-nucleon system is well founded, i.e. at n 6 1.4-1.5. 

3. On the problem of the polarized neutron structure function 
extraction from eD scattering 

At present considerable attention is given to the experimental check of QCD 
predictions for the structure function of the polarized neutron. The perturbative 
QCD predicts that helicities of the nucleon and leading quark should coincide at 
x + 1 [ref. “)I. This prediction is in reasonable agreement with SLAC data in the 
case of Ej5 scattering “). For investigation of parton spin structure of the neutron 
it is planned to measure eD scattering 3). However, the presence of a D-wave in 
the deuteron violates the direct relationship between the helicities of the deuteron 
and nucleons (e.g. in the deuteron with helicity 1 the nucleon can have helicity 
-4). For certainty we restrict ourselves to the case of high electron energies and 
quantize the deuteron’spin along the y* momentum direction (3-axis). 

Let us first calculate h? (x, q2) - hI) (x, q’), i.e. the difference of the quark distribu- 
tions with helicities +$ and --i in the deuteron with helicity 1. It is expressed 
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Probing spin effects in the polarized deuteron 

Average proton polarization is 1- 1.5 PD= 0.9 
Nucleons in D-wave in average polarized in direction opposite to the 
direction of the deuteron polarization. At  the same time for pt=0, λΝ=λD/2

564 L.L. Frankfurt, M.I. Strikman / High momenhrm transfer 

through the difference of the nucleon structure functions h?, h! [we use here 
the conventions of ref. lo)]: 

where 5 is the polarization vector of the deuteron .of helicity 1. Using eqs. (5), (6) 
we finally obtain 

h3x,q2)-hX,q2) 

x (h ~(x,cG 42) - h” b/a, q 2N * (11) 
In the region of small x we can in the first approximation neglect the n/cu variation 
of hz as compared to a rather sharp variation of u(k), w(k). As a result in the 
lowest order in k2/m2 we obtain for the asymmetry 

ADO‘T’(~, q2) = (/I?‘~’ (x, q2)-h?(N)(X, q2))/(hyyx, q2)+h?(N)(X, q2)) 

a rather simple expression: 

AD(x, q2) = (l-l.5 P,,)AN(x, 4’). (11’) 

Here PD = (6-7) x 1O-2 is the D-wave probability in the deuteron. Thus, an effective 
nucleon polarization in the deuteron is about 90%. As an illustration of eq. (11) 
we calculate the ratio of asymmetries AD and AP neglecting the neuteron structure 
function (fig. 4). In the calculation we use the Reid soft-core WF and the simple 
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Fig. 4. The ratios of deuteron and nucleon asymmetries for the model described in the text. 

   For the difference of the cross sections with λD = ±1  in 2N LC 
approximation  taking into account spin rotation. 

Longitudinal polarization of a nucleon 

nonrel. limit

Same factor enters in the  differential cross section of ~e ~D ! epn,

➽

Text

measure proton polarization 
➽ complementary way to test nonlinear relation between k and p
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deutcron. Such measurements would determine more definitely up to what nucleon 
momenta the two-nucleon description of D remains a good approximation and 
where the 6q (quark-gluon) component of the deuteron WF comes into play. 

We are pleased to thank L.I. Lapidus, V.V. Glagolev, M. MacNa~ghton and 
L.V. Strunov for questioning us about the ways of measuring fast deuteron polariz- 
ation, and A. Yukosawa for discussion of the D6Li target. Our thanks are to 
S.G. Popov and D.K. Toporkov for showing us the polarized jet deuteron target. 

Nute added in proof: Recently a certain difference between the bound nucleon 
wave function and the free one has been discovered by EMC for iron [Phys. Lett. 
123B (1983) 2751 and confirmed by the SLAC data. Our analysis [LNPI preprint 
no. 838 (1983)] indicates that similar (though smaller) effects should be present 
for the deuteron. It would be instructive to study such an effect in the case of 
polarized D since the deformation of a bound nucleon could be different for S- 
and D-waves. The deep inelastic e+D -+ e’+ N+X reaction could provide an 
effective tool for this purpose, since the selection of a fast backward nucleon 
enhances the contribution of small internucleon distances. 

Appendix 

The reaction b + p+ p +X is a method of complete determination of the spin 
density matrix of a fast deuteron. 

It is well known that it is rather difficult to determine the spin density matrix of 
a fast deuteron, && Were we shall present equations necessary for the measmement 
of ft through the study of the angular dist~bution and pola~ation of nucleons 
produced in the D +p+ pi-X reaction. To avoid any significant theoretical uncer- 
tainties in the determination of 0 it is sufficient to restrict the measurements to 
the region of nucleon momenta pN 6 0.1-0.15 GeV/c in the deuteron rest frame. 
In this case nucleons in the deuteron are far apart and therefore Glauber screening 
effects and the final-state interaction are small. The validity of the impulse approxi- 
mation in this kinematics for the unpolarized deuteron with pn 24 GeV/c is 
confirmed experimentally 23a,b). 

Similarly to eq. (7) it is easy to demonstrate, by a quite straightforward calculation, 
that the nucleon momentum density matrix p:‘“(k) for deuteron with spin density 
matrix 0 has the form 

General case of polarized LC density matrix

L.L. Frankfurt, h4.I. Strikman /High momentum transfer 

$CY, pt are the light-cone variables for the nucleon with momentum pl: 

561 

p1= (GYP + (m”+p,“)/aP, @P/2, p,) . 

In the kinematical region where the deuteron can be described as the two-nucleon 
system the light-cone deuteron WF practically coincides with WF of the conven- 
tional theory of the deuteron, extracted on the basis of phase analyses. The proof 
is based on the observation that the form of the Weinberg-Schriidinger equations 
follows from the neglect of other degrees of freedom and the symmetry between 
nucleons ‘). (The main difference from the nonrelativistic quantum mechanics is in 
the relationship between the scattering amplitude and the deuteron WF.) As a 
result G1, G2 are expressed through the nonrelativistic S- and D-wave deuteron 
WF’s u(k), w (k)(j (u2(k) + w2(k)) d3k = 1) as follows: 

G#~:N > = (u(k) - w(k)/fi)~%, 
G2(M&) = -&/8k2(u(k)(l-m/e)+w(k)&2+m/e)), (3) 

where E = JZXP .  We also introduced here the three-vector k [refs. 11S12)] which 
can be interpreted as the internal momentum of the nucleon in the deuteron rest 
frame: 

M& =4(m2+k2), k3=(cx-l)m, kt=p,. (4) 

It is convenient also to express the D + NN vertex using two-component spinors: 

where 

For 

.qGc (a, pt) = cp *A,P = cp “(A: +A,o)40, 

A:=O, A; = -k,Gz(k)(l -cx)2M&&@7, 

AZ = -2MNN(Gl(k)&(2-a(Y)-mGz(k)(l -cT)~/~. 

(5) 

&=&ET, 

A: = i~3,P,k,G,(k>2/Ja(2-a), 

AF172 = 2(Gl(k)m(eei) - 2(ks)kiG2(k))/m, 

A+ = 2(k&)(l -a)(G1(k)+2mG2(k))/m. (6) 

For most of the reactions considered below the cross section can be expressed 
through the nucleon density matrix of the deuteron with polarization 5, averaged 
over nucleon polarizations: p 5 D’N(a, kt). (F or a brief discussion of the general case 

where G1, G2 are LC deuteron vertex functions
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Collider energies ~e ~D ! ep+X

If no EMC effect:

103

FIG. 7.4: The meson exchange current diagram for the reaction γ∗ + D → N + N.

description of w(r) for r > 2 fm (k ! 0.15 GeV/c) and the prediction of conventional models for the total probability
of the D-wave, PD = (6 ± 1)%, is consistent with the analysis of µd; cf. the discussion in ref. [420]. The recent
measurements [413, 414, 421] of elastic eD → e!D scattering for q ∼ 2 fm−1 probe w(k) for k ∼ 0.2 GeV/c, while
elastic high-energy pD scattering is sensitive to GQ(Q2) at Q2 ∼ 0.3 GeV2/c (see, e.g., ref. [422]).

It has been suggested in the literature that the nuclear core hypothesis may be checked by measuring Gc(Q2)
and GQ at −q2 > 0.5 GeV2 inelastic e!D scattering or by measuring the tensor polarization of the recoil deuteron
(see, e.g., ref. [423], where the experimental problems involved in such measurements are also discussed). Incoherent
phenomena, discussed below, have a number of obvious advantages for performing a critical test of the nuclear core
hypothesis (this was first explained in ref. [424]):

(i) In incoherent processes at high energy one can measure the deuteron wave function directly in momentum space
instead of a convolution of wave functions as in the case of elastic deuteron form factors.

(ii) The nucleon yields in incoherent fragmentation of a two-nucleon correlation and of a 6q bag are qualitatively
different (see the discussion in sections 2 and 8 8.6), while in elastic scattering processes the separation of 6q and
2N contributions is hardly possible.

(iii) The absolute values of the cross sections are much larger than for elastic eD scattering.
(iv) In the kinematical region where the contribution of the high-momentum component of the deuteron wave

function dominates (k > 0.2 GeV/c) the cross section of these reactions should strongly depend on the deuteron
polarization.

7.2. High-Q2 e + "D → e + p + n, e + N + X, e + X reactions

Evidently, detailed information about the structure of the deuteron wave function can be obtained only if the
distribution of spectator nucleons is measured. The high-Q2 exclusive reactions e + D → e + p + n(∆,N∗) seem to
be the simplest for a theoretical analysis, since a large energy-momentum (q) is transferred to the struck nucleon in
a controlled way. At sufficiently high Q2 and W − md " 100 MeV the interference diagram (fig. 8.12 below) is small
(a few percent) in the essential kinematic region. The difference between the final state momenta of the nucleons is
large, so the correction due to misidentification of a spectator and the “active” nucleon is also small even for forward
moving spectators. Besides, the final state interaction estimated within the nonrelativistic approach (sec, e.g., ref.
[425, 426]) is expected to be rather small, ! (10 − 30)%, in the kinematic region discussed. In fact it is even smaller
because at Q2 " 2 GeV2 nucleons are produced in compressed configurations, which have a small interaction cross
section (section 6 6.3). Moreover, in the ratio of the cross sections for γ∗ scattering from polarized and unpolarized
deuterons uncertainties due to the off-energy-shell effects in γ∗N interaction, discussed in section 8 8.3, are cancelled
to a large extent. Note also that in order to suppress two-step processes like e + D → e + ∆ + N → e + p + n one
should choose W far enough from W = m∆ + mN.

Since the total cross section of unpolarized electron scattering off a polarized nucleon does not depend on the
nucleon polarization, the ratio of the cross sections of scattering off a polarized and an unpolarized deuteron has a
rather simple form if the polarization of the produced nucleon is not measured [427]:

dσ(e + DΩ → e + N + X)
(dα/α) d2pt

/
dσ(e + D → e + N + X)

(dα/α) d2pt

= 1 +
(

3kikj

k2
Ωij − 1

) 1
2w2(k) +

√
2u(k)w(k)

u2(k) + w2(k)
≡ P (Ω, k), (7.1)

where Ω is the spin density matrix of the deuteron, SpΩ = 1 [the expression for the case of unpolarized deuterons is
given in ref. [410]. eq. (3.17)].93 The relationship between the spectator nucleon momentum, p, in the deuteron lab.

93 In line with the convention of ref. [428] w(k) is defined so that w(k) > 0 at small k.

EMC effect:  

 δ ∝ nucleon off-energy - shellness (virtuality)   

F bound
2N (x/↵, Q2, k)

F2N (x/↵, Q2)
= �(x,Q2, k)

δ  is different for S- and D waves since nucleon deformation since 
interaction of nucleon in a small configuration is reduced in 
different way for single pion and two pion potentials,..

expect: 

δ  is different for the interaction with u and d quarks (may also differ 
for g1 and F2 

❖

❖

❖
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FIG. 8.15: dσ/dΩ dEe from ref. [434–436] calculated in the collinear approach. Curves R and P correspond to the Reid soft
core and Paris potential wave functions. Open dots include final state interaction as computed by Arenhövel [469, 470].

where

ν̃ = (q, pA − pR) = −1
2
αQ2/αq +

1
2
αq(mA − pR+)m, ν̃ = ν + (m̃2 − m2)/2, sin δ =

√
Q2/q3.

Evidently the equations derived enable one to determine three of the four independent structure functions in the

Conclusions

Light-cone approach allows to use a hidden small parameter of 
medium energy NN interactions - small inelasticity.

Several qualitative differences from virtual nucleon approximation

Allows to take into account space-time picture of high energy 
processes.  Good current logic.

⇒

⇒
⇒

⇒ Disentangling S- and D- wave - direct test of the nuclear 
core  dynamics + unique way to descriminate between LC , 
virtual nucleon and non-relativistic descriptions of the 
deuteron  
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