Vector- and tensor-deuteron legacy of NIKHEF and MIT-Bates

S. Širca, U of Ljubljana, Slovenia

Trento, July 12, 2023

AmPS at NIKHEF

Zhou++, NIMA 378, 40 (1996)

Accelerator / Experiment Layout at MIT-Bates

Hasell++, NIMA **603**, 247 (2009) Morozov++, PRSTAB **4**, 104002 (2001)

First detector setup in ITF @ NIKHEF

Zhou++, NIMA 378, 40 (1996)

- ABS mounted horizontally
- Electrons: EM calorimeter = 6 layers of CsI(Tl) blocks, +2 plastic scintillators for triggering, $\Delta \Omega = 180 \text{ msr}$, $\delta E \approx 22 \text{ MeV}$
- Hadrons: range telescope = $1 \times 2 \text{ mm} + 15 \times 1 \text{ cm}$ plastic scintillator +2 sets of VDCs for tracking, $\Delta \Omega \approx 300 \text{ msr}$, $E_{\text{thr}}^d = 19 \text{ MeV}$
- Used for T_{20} in elastic ² \overrightarrow{H} (e, e') and A_{d}^{T} in QE ² \overrightarrow{H} (e, e'p)

NIKHEF setup with BigBite

de Lange++, NIMA **406**, 182 (1998); NIMA **412**, 254 (1998) Higinbotham, NIMA **414**, 332 (1998)

- Electrons: NIKHEF incarnation of BigBite: $\Delta \Omega = 96 \text{ msr}$, $250 \le p \le 720 \text{ MeV}/c$
- Hadrons: ToF system = 2 arrays of segmented (20 cm) plastic scintillators: " δE "/3 mm + " ΔE "/10 mm (veto) + "E"/20 cm
- Used for A_{ed}^{v} in QE ${}^{2}\vec{H}(\vec{e}, e'n) \Longrightarrow G_{E}^{n}$ and A_{ed}^{v} in QE ${}^{2}\vec{H}(\vec{e}, e'p)$

The BLAST Detector @ MIT-Bates

- Toroidal field, 8 normal conducting coils, max. 3.8 kGauss
- Only 1/6 azimuth instrumented
 - \triangleright VDCs: $\pm 15^{\circ}$ in ϕ , L and R, 20° -80° in θ
 - \triangleright Aerogel Cherenkov detectors for e $|\pi$: $n = 1.020, 1.030; \epsilon \approx 90\%$
 - \triangleright ToF scintillators: BC-408
 - ▷ Neutron detectors ("Ohio walls", LADS15, LADS20 in variable configuration): BC-408

Hasell++, NIMA 603, 247 (2009)

WC

CC

NC

The heart of both setups: the ABS = Atomic Beam Source

- Exploits hyperfine states of deuterium atoms
- Interaction Hamiltonian of coupled nuclear (\vec{I}) and electron (\vec{J}) spins:

• Energy eigenstates = linear combinations of spin eigenstates:

$$|1\rangle = |1, \frac{1}{2}\rangle \qquad \alpha_{+\pm} = \sqrt{\frac{1}{2}(1 + a_{\pm})} \\ |2\rangle = \alpha_{-+} |1, -\frac{1}{2}\rangle + \alpha_{++} |0, \frac{1}{2}\rangle \qquad \alpha_{-\pm} = \sqrt{\frac{1}{2}(1 - a_{\pm})} \\ |3\rangle = \alpha_{--} |0, -\frac{1}{2}\rangle + \alpha_{+-} |-1, \frac{1}{2}\rangle \qquad a_{\pm} = (x \pm \frac{1}{3})/\sqrt{1 \pm \frac{2}{3}x + x^2} \\ |4\rangle = |-1, -\frac{1}{2}\rangle \qquad x = B/B_{c} \\ |5\rangle = \alpha_{+-} |0, -\frac{1}{2}\rangle - \alpha_{--} |-1, \frac{1}{2}\rangle \\ |6\rangle = \alpha_{++} |1, -\frac{1}{2}\rangle - \alpha_{-+} |0, \frac{1}{2}\rangle$$

• Vector/tensor polarizations (ensemble averages):

$$P_{z} = \langle I_{z} \rangle = n_{1} + \alpha_{-+}^{2} n_{2} - \alpha_{+-}^{2} n_{3} - \alpha_{--}^{2} n_{5} + \alpha_{++}^{2} n_{6} = n_{+} - n_{-}$$

$$P_{zz} = \langle 3I_{z}^{2} - 2 \rangle = 1 - 3 \left(\alpha_{++}^{2} n_{2} + \alpha_{--}^{2} n_{3} + \alpha_{+-}^{2} n_{5} + \alpha_{-+}^{2} n_{6} \right) = 1 - 3n_{0}$$

Hyperfine transitions in deuterium, *P*_z and *P*_{zz}

ABS setup at NIKHEF and MIT-Bates

ABS — the RF transition schemes

	Tensor	Vector	Vector
	$(B_t \gg 11.7 \text{ mT})$	$(B_t \gg 11.7 \text{ mT})$	$(B_t \ll 11.7 \text{ mT})$
	+ –	+ -	+ –
States after 1^{st} sext.	1, 2, 3	1, 2, 3	1, 2, 3
MFT	$1 \leftrightarrow 4$	$3 \leftrightarrow 4$	$3 \leftrightarrow 4$
States after MFT	2,3,4	1 , 2 , 4	1, 2, 4
States after 2^{nd} sext.	2,3	1, 2	1, 2
SFT	$2 \leftrightarrow 6 3 \leftrightarrow 5$	$2 \leftrightarrow 6$ off	$2 \leftrightarrow 6$
States after SFT	3, 6 2, 5	1, 6, 1, 2	1, 6
WFT	off	off $1, 2 \leftrightarrow 3, 4$	off $1, 6 \leftrightarrow 5, 4$
States after WFT	3, 6 2, 5	1, 6 3, 4	1, 6 4, 5
Tensor Polariz. P_{zz}	+1 -2	+1 +1	+1/2 $+1/2$
Vector Polariz. P_z	0 0	+1 -1	+5/6 $-5/6$
Figure of merit	18	8	5.6

Typical performance of ABS

Target polarimetry #1

Breit-Rabi electron polarimeter

- The 1-4, 2-6 and 3-5 RF transitions involve a *collective* electron and nuclear spin flip
 a measurement of electronic polarization allows one to measure the efficiencies of the MFT and SFT, and control the injected polarization states
- ▷ Typical efficiencies:

 $\varepsilon(1 \leftrightarrow 4) = 0.97 \pm 0.01$ $\varepsilon(2 \leftrightarrow 6) = 1.02 \pm 0.02$ $\varepsilon(3 \leftrightarrow 5) = 0.99 \pm 0.02$

Ferro-Luzzi++, NIMA 364, 44 (1995)

Target polarimetry #2

Ion extraction polarimetry for direct measurement of P_{zz}

▷ Done at NIKHEF and should have been done at MIT-Bates: exploits angular asymmetry of the ³H- \vec{d} fusion process, $n(\theta) \propto 1 - \frac{1}{4}f(E_d)P_{zz}(3\cos^2\theta - 1)$, with $f \approx 0.959$ at $E_d = 51$ keV // Zhou++, NIMA 379, 212 (1996)

Evidence of nuclear tensor polarization in deuterium molecules

$$P_{zz}^{\text{tot}} = \frac{n_{\rm D} P_{zz}({\rm D}) + 2n_{\rm D_2^{\rm rec}} P_{zz}({\rm D_2^{\rm rec}})}{n_{\rm D} + 2n_{\rm D_2^{\rm rec}} + 2n_{\rm D_2^{\rm unp}}} = \xi P_{zz}({\rm D}) + \zeta P_{zz}({\rm D_2^{\rm rec}})$$

- Measured $P_{zz}(D)$ extracted from Teflon-coated Al cell vs. uncoated Cu cell by ion polarimetry: $P_{zz}^+(D) = +0.523 \pm 0.005 / P_{zz}^-(D) = -1.037 \pm 0.007$ vs. $P_{zz}^+(D) = +0.434 \pm 0.027 / P_{zz}^-(D) = -0.974 \pm 0.035$
- Determined $P_{zz}(D_2)$ from asymmetry for electron-deuteron elastic scattering: $A_{ed} = -0.232 \pm 0.014$ vs. $A_{ed} = -0.183 \pm 0.043$

- $\implies \Delta P_{zz}(D_2^{rec}) = (0.81 \pm 0.32) \Delta P_{zz}(D)$
- \Rightarrow May allow one to develop a robust polarized H₂/D₂ target insensitive to beam-induced depolarizations, polarization losses due to spin-exchange collisions, and radiation damage to cell surface van den Brand++, PRL 78, 1235 (1997)

The ABC of e-d elastic scattering

- Spin(deuteron) = 1 \implies three form-factors $G_{\rm C}(Q^2)$, $G_{\rm Q}(Q^2)$ and $G_{\rm M}(Q^2)$
- The unpolarized XS, $\sigma_0 = \sigma_{Mott} f_{rec}^{-1} S$, where $S = A(Q^2) + B(Q^2) \tan^2 \theta_e/2$, allows for separation of two linear combinations of form-factors:

$$A(Q^2) = \frac{G_{\rm C}^2}{G_{\rm C}^2} + \frac{8}{9}\eta^2 G_{\rm Q}^2 + \frac{2}{3}\eta G_{\rm M}^2, \quad B(Q^2) = \frac{4}{3}\eta(1+\eta)G_{\rm M}^2, \quad \eta = Q^2/4M^2$$

 \Rightarrow A polarized measurement is needed to disentangle G_{C} from G_{Q}

$$\sigma = \sigma_0 \left[1 + \frac{P_{zz} A_d^{\mathrm{T}}}{\sqrt{2}} \right], \quad A_d^{\mathrm{T}} = \sum_{i=0}^2 d_{2i} T_{2i}$$
$$d_{20} = \frac{3\cos^2 \theta^* - 1}{2}, \quad d_{21} = -\sqrt{\frac{3}{2}}\sin 2\theta^* \cos \phi^*, \quad d_{22} = \sqrt{\frac{3}{2}}\sin^2 \theta^* \cos 2\phi^*$$

• Tensor analyzing powers (access controlled by spin angles (θ^*, ϕ^*)):

$$T_{20} = -\frac{1}{\sqrt{2}S} \left[\frac{8}{3} \eta \, \underline{G_C G_Q} + \frac{8}{9} \eta^2 G_Q^2 + \frac{1}{3} \eta \left(1 + 2(1+\eta) \tan^2 \frac{\theta_e}{2} \right) G_M^2 \right]$$

$$T_{21} = -\frac{2}{\sqrt{3}S} \sqrt{\eta^3 \left(1 + \eta \sin^2 \frac{\theta_e}{2} \right)} G_Q G_M \sec \frac{\theta_e}{2}$$

$$T_{22} = -\frac{2}{2\sqrt{3}S} \eta G_M^2$$

The $T_{20}(70^\circ)$ results from NIKHEF

1996: a single point in T_{20} and T_{22} , small contribution from T_{21} estimated from existing data on $G_Q(Q^2)$ and $B(Q^2)$

1999: three new points, with absolute polarimetry

The $T_{20}(70^\circ)$ results from MIT-Bates

• The 1984 and 1991/1994 MIT-Bates experiments yielded deuteron tensor polarizations t_{20} via d(e, e' d) by using recoil polarimetry

```
Schulze++, PRL 52, 597 (1984)
The++, PRL 67, 173 (1991)
Garçon++, PRC 49, 2516 (1994)
```

- The 2004/2005 experiments at BLAST (using ABS) extracted T_{20} and T_{21} like at NIKHEF
 - Small T₂₂ contribution subtracted by using a parameterization of previous low-Q data
 - In absence of absolute polarimetry, polarization and spin angle calibrated by the two lowest-Q points

\tilde{T}_{20R} from BLAST

Eliminate the dependence on θ_e and G_M ; in addition, divide out the leading Q^2 -dependence ("reduced T_{20} "):

- Precise data covering the minimum of T_{20} and the first node of G_{C}
- Strong constraint on models

T^e₁₁ from BLAST (e-d elastic)

With polarized beam and vector-polarized target, A_{ed}^{V} becomes accessible:

$$\sigma = \sigma_0 \left[1 + \sqrt{\frac{1}{2}} P_{zz} A_{d}^{T} + \sqrt{\frac{3}{2}} P_{e} P_{z} A_{ed}^{V} \right]$$

$$A_{ed}^{V} = \sqrt{3} \left(\frac{1}{\sqrt{2}} \cos \theta^* T_{10}^{e} (Q^2, \theta_{e}) - \sin \theta^* \cos \phi^* T_{11}^{e} (Q^2, \theta_{e}) \right)$$

$$T_{11}^{e} \propto G_{M} \left(G_{C} + \frac{\eta}{3} G_{Q} \right) - \text{measured for the first time :}$$

$$\int_{0.16}^{0.16} \int_{0.16}^{0.16} \int_{0.16}^{0$$

Hasell++, Annu. Rev. Nucl. Part. Sci. 61, 409 (2011)

$$A_{\text{ed}}^{\text{V}}(\theta^* = 90^\circ, \phi^* = 0^\circ)$$
 in quasi-elastic ${}^2\vec{\text{H}}(\vec{\text{e}}, \text{e'n})$ — NIKHEF

$$\sigma = \sigma_0 \left[1 + P_1^{d} A_d^{V} + P_2^{d} A_d^{T} + h P_e \left(A_e + P_1^{d} A_{ed}^{V} + P_2^{d} A_{ed}^{T} \right) \right]$$

$$P_1^{d} = \sqrt{\frac{3}{2}} (n_+ - n_-)$$

... from the days when each Q^2 -point was precious ... Passchier++, PRL 82, 4988 (1999)

$$A_{ed}^{V}(\theta^* = 90^\circ, \phi^* = 0^\circ)$$
 in quasi-elastic ${}^{2}\vec{H}(\vec{e}, e'p)$ — NIKHEF

Very nice: p_{miss} dependence of $A_{\text{ed}}^{\text{V}}(\theta^* = 90^\circ, \phi^* = 0^\circ)$ at $Q^2 = 0.21 \, (\text{GeV}/c)^2$:

Passchier++, PRL 88, 102303 (2002)

Sidetrack: ${}^{3}\vec{He}(\vec{e}, e'd) \& {}^{3}\vec{He}(\vec{e}, e'p)$ KRAKOW/BOCHUM CALC.

Motivation behind the 2009 BigFamily of polarized-³He experiments in Hall A - incidentally, using BigBite (!)

- *S*' state relevant at small p_r (= p_{miss})?
- *D* state governs variation of A_z at large p_r ?

For answers, see Mihovilovič++, PRL 113, 232505 (2014) and PLB 788, 117 (2019)

$A_{\mathbf{d}}^{\mathrm{T}}$ in quasi-elastic ² $\overrightarrow{\mathbf{H}}$ (e, e'p) — NIKHEF

Probes spin-dependent momentum densities ρ_{m_z} :

• One of the many statements that FSI, MEC & RC are needed

Zhou++, PRL 82, 687 (1999)

 $A_{\text{ed}}^{\text{V}} / A_{\text{d}}^{\text{T}}$ in QE ² $\vec{\text{H}}(\vec{\text{e}}, \mathbf{e'n}) / {}^{2}\vec{\text{H}}(\mathbf{e}, \mathbf{e'n}) - \text{BLAST}$

 $A_{\text{ed}}^{\text{V}} / A_{\text{d}}^{\text{T}}$ in QE ² $\vec{\text{H}}(\vec{\text{e}}, \mathbf{e'p}) / {}^{2}\vec{\text{H}}(\mathbf{e}, \mathbf{e'p}) - \text{BLAST}$

DeGrush++, PRL 119, 182501 (2017)

Conclusions

- O wondrous ABS!
- Groundbreaking vector/tensor deuteron work at NIKHEF ...
- ... which was inherited by & bore more fruit at MIT-Bates
- BLAST: lots of stuff on tape & not analyzed
- Good polarimetry is essential