Higher-Twist Effects on Measurements of b_1

Allison J. Zec (she/her)

Univ. of New Hampshire

2023-07-10

The Tensor Experiments

b₁ Experiment

- Intended to improve upon HERMES' 2005 data
- Verifications of zero-crossing
 - Implications for Close-Kumano sum rule
- Tensor physics at quark level
- Better understanding of b₁ allows discrimination of different deuteron components by spin (e.g., quarks vs gluons)

See K. Slifer experimental talk for more info!

E12-13-011

The Deuteron Tensor Structure Function b_1

K. Slifer *et al*, JLab C12-13-011 **Spokespersons:** K. Slifer, O.R. Aramayo, J.P. Chen, N. Kalantrians, D. Keller, E. Long, P. Solvignon

- Approved for 30 days of physics running + 10.8 days overhead
- 11 GeV beam incident on polarized target
- 9.2% systematic error on A_{zz}
- Foward scattering angles

	x _{Bj}	Q^2 [GeV ²]	E_0' [GeV]	θ _{e'} [°]
SHMS	0.15	1.21	6.70	7.35
SHMS	0.30	2.00	7.45	8.96
SHMS	0.452	2.58	7.96	9.85
HMS	0.55	3.81	7.31	12.50

E12-13-011

The Deuteron Tensor Structure Function b_1

K. Slifer et al, JLab C12-13-011

Azz Experiment

- First-of-its-kind quasielastic Azz measurement
- Implications for SRC physics and deuteron wavefunction
- Widest range of x covered by a single measurement
- Measurement of T₂₀ included!

Spokespersons: E. Long, K. Slifer, P. Solvignon, D. Day, D. Keller, D. Higinbotham

> See E. Long talk on Thursday for more info!

E12-15-005

Quasi-Elastic and Elastic Deuteron Tensor Asymmetries

E. Long et al, JLab C12-15-005

Azz Kinematics

- Approved for 34 days of physics running + 10.3 days overhead
 - 25 days 8.8 GeV beam
 - 8 days 6.6 GeV beam
 - 1 day of 2.2 GeV beam
- 9.2% systematic error on A_{zz} , 7.4% on T_{20}
- Forward scattering angles

E ₀ [GeV]	Q^2 [GeV ²]	E'_0	θ _{e'} [°]
8.8	1.5	8.36	8.2
8.8	2.9	7.26	12.2
6.6	0.7	6.35	7.5
6.6	1.8	5.96	12.3
2.2	0.2	2.15	10.9
2.2	0.3	2.11	14.9
	E ₀ [GeV] 8.8 8.8 6.6 6.6 2.2 2.2	$\begin{array}{c c} E_0 & Q^2 \\ \hline [GeV] & [GeV^2] \\ \hline 8.8 & 1.5 \\ 8.8 & 2.9 \\ 6.6 & 0.7 \\ 6.6 & 1.8 \\ 2.2 & 0.2 \\ 2.2 & 0.3 \\ \end{array}$	$\begin{array}{c cccc} E_0 & Q^2 & E_0' \\ \hline [GeV] & [GeV^2] & [GeV] \\ \hline 8.8 & 1.5 & 8.36 \\ \hline 8.8 & 2.9 & 7.26 \\ \hline 6.6 & 0.7 & 6.35 \\ \hline 6.6 & 1.8 & 5.96 \\ \hline 2.2 & 0.2 & 2.15 \\ \hline 2.2 & 0.3 & 2.11 \\ \end{array}$

E12-15-005

Quasi-Elastic and Elastic Deuteron Tensor Asymmetries

E. Long et al, JLab C12-15-005

Higher Twist Theory and b₁ Extraction

$$A_{zz} = 2 \frac{[T_{LL}](\Lambda_d = +1)(F_{UT_{LL},T} + \epsilon F_{UT_{LL},L} + [T_{LT} \cos \phi_{T_L}](\Lambda_d = +1)\sqrt{2\epsilon(1+\epsilon)}F_{UT_{LT}}^{\cos \phi_{T_L}} + [T_{TT} \cos 2\phi_{T_T}](\Lambda_d = +1)\epsilon F_{UT_{TT}}^{\cos 2\phi_{T_T}}}{F_{UU,T} + \epsilon F_{UU,L}}$$

- Where ϵ and γ are kinematic factors
- *T_{LL}*, *T_{LT}* and *T_{TT}* are tensor polarization factors dependent on *P_{zz}* as well as scattering & polarization direction

W. Cosyn, Y.-B. Dong, S. Kumano and M. Sargsian PRD **95** 074036 (2017)

$$F_{UT_{LL},L} = \frac{1}{x_D} \sqrt{\frac{2}{3}} \left[2(1+\gamma^2) x_D b_1 - (1+\gamma^2)^2 \left(\frac{1}{3} b_2 + b_3 + b_4\right) - (1+\gamma^2) \left(\frac{1}{3} b_2 - b_4\right) - \left(\frac{1}{3} b_2 - b_3\right) \right],$$

$$F_{UT_{LL},T} = -\frac{1}{x_D} \sqrt{\frac{2}{3}} \left[2(1+\gamma^2) x b_1 - \gamma^2 \left(\frac{1}{6} b_2 - \frac{1}{2} b_3\right) \right],$$

$$F_{UT_{LT}}^{\cos\phi_T_{\parallel}} = -\sqrt{\frac{2}{3}} \frac{\gamma}{2x_D} \left[(1+\gamma^2) \left(\frac{1}{3} b_2 - b_4\right) + \left(\frac{2}{3} b_2 - 2b_3\right) \right],$$

$$F_{UT_{TT}}^{\cos(2\phi_{T_{\perp}})} = -\sqrt{\frac{2}{3}} \frac{\gamma^2}{x_D} \left(\frac{1}{6} b_2 - \frac{1}{2} b_3\right).$$
(32)

Top: A_{zz} written as a function of helicity amplitudes with, *Right*: Helicity amplitude definitions

b_1 Extraction from A_{zz}

If polarized along the q-vector...

$$egin{split} \mathcal{A}_{zz}^{polq} &= 2(1+\gamma^2)(\epsilon-1)b_1 + rac{1}{3x}\left(rac{\gamma^2}{2} - \epsilon(1+\gamma^2)^2 - \epsilon(1+\gamma^2) - \epsilon
ight)b_2 + \ &rac{1}{x}\left(\epsilon - rac{\gamma^2}{2} - \epsilon(1+\gamma^2)^2
ight)b_3 - rac{\epsilon}{x}(1+\gamma^2)\gamma^2b_4 \end{split}$$

If polarized along the electron beam axis...

$$\begin{split} A_{zz}^{pol_e} &= 2(1+\gamma^2)(\epsilon-1)\left(\frac{1}{4} + \frac{3}{4}\cos(2\theta_q)\right)b_1 + \\ &\left[\frac{1}{3x}\left(\frac{\gamma^2}{2} - \epsilon(1+\gamma^2)^2 - \epsilon(1+\gamma^2) - \epsilon\right)\left(\frac{1}{4} + \frac{3}{4}\cos(2\theta_q)\right)\right]b_2 + \\ &\left[\frac{1}{x}\left(\epsilon - \frac{\gamma^2}{2} - \epsilon(1+\gamma^2)^2\right)\left(\frac{1}{4} + \frac{3}{4}\cos(2\theta_q)\right)\right]b_3 + \\ &\left[\frac{3}{4}\sin(2\theta_q)\sqrt{2\epsilon(1+\epsilon)}\frac{\gamma}{x} + \frac{3}{4}(1-\cos(2\theta_q))\frac{\epsilon\gamma^2}{2x}\right]b_3 + \\ &\left[\frac{3}{4}\sin(2\theta_q)\sqrt{2\epsilon(1+\epsilon)}\frac{\gamma}{2x}(1+\gamma^2) - \frac{\epsilon}{x}(1+\gamma^2)\gamma^2\right)\left(\frac{1}{4} + \frac{3}{4}\cos(2\theta_q)\right)\right]b_4 \end{split}$$

b_1 Extraction from A_{zz}

If polarized along the q-vector...

$$\begin{aligned} A_{zz}^{pol_q} = & C_{b_1}(\epsilon, \gamma, x, \theta_q = 0)b_1 + C_{b_2}(\epsilon, \gamma, x, \theta_q = 0)b_2 + \\ & C_{b_3}(\epsilon, \gamma, x, \theta_q = 0)b_3 + C_{b_4}(\epsilon, \gamma, x, \theta_q = 0)b_4 \end{aligned}$$

If polarized along the electron beam axis...

$$A_{zz}^{pol_e} = C_{b_1}(\epsilon, \gamma, x, \theta_q)b_1 + C_{b_2}(\epsilon, \gamma, x, \theta_q)b_2 + C_{b_3}(\epsilon, \gamma, x, \theta_q)b_3 + C_{b_4}(\epsilon, \gamma, x, \theta_q)b_4$$

b_1 Extraction from A_{zz}

If polarized along the q-vector...

$$\begin{aligned} A_{zz}^{pol_q} = & C_{b_1}(\epsilon, \gamma, x, \theta_q = 0)b_1 + C_{b_2}(\epsilon, \gamma, x, \theta_q = 0)b_2 + \\ & C_{b_3}(\epsilon, \gamma, x, \theta_q = 0)b_3 + C_{b_4}(\epsilon, \gamma, x, \theta_q = 0)b_4 \end{aligned}$$

If polarized along the electron beam axis...

$$A_{zz}^{pol_e} = C_{b_1}(\epsilon, \gamma, x, \theta_q)b_1 + C_{b_2}(\epsilon, \gamma, x, \theta_q)b_2 + C_{b_3}(\epsilon, \gamma, x, \theta_q)b_3 + C_{b_4}(\epsilon, \gamma, x, \theta_q)b_4$$

Why do we care?

Does polarizing along the q-vector provide a significantly cleaner extraction of b_1 ? (Enough to justify the labor and expense of putting in a chicane in the Hall C beamline?)

(Calculations courtesy of W. Cosyn group)

b_2 , b_3 & b_4 Contamination

Sanity Check: Low-High Q^2 Comparison

Higher twist effects should become less and less as $Q^2 \rightarrow \infty$

Sanity Check: Low-High Q^2 Comparison

Tensor Structure Functions

Data courtesy of W. Cosyn group, with Paris SLAC

 At b₁ expt. kinematics, b₁₋₄ are similar magnitude

 b₂₋₄ as yet unmeasured

Tensor Structure Functions

Data courtesy of W. Cosyn group, with Paris SLAC $Q^2 = 10$ D_1 • At b_1 expt. 0.006 b2 kinematics, b3 b_{1-4} are Tensor Polarized SF 0.004 b4 similar magnitude 0.002 b₂₋₄ as yet unmea-0.000 sured -0.002 Effect of resonances -0.004changes at 0.75 1.25 0.00 0.25 0.50 1.00 1.50 1.75 2.00 higher Q^2 2*x

 b_{2-4} contributions to b_1 measurement exist regardless of polarization direction choice.

Summary

Professors

Nathalv Santiestehan

Flena I ond

Allison Zec

David Ruth

Michael McClellan

Zoe Wolters

Anchit Arora

Thank you to the UNH PolTarg Group and our collaborators at FIU!

- Tensor experiment program progressing
- b₁ experiment between conditional removal and jeopardy

- Studies of higher-twist effects have preliminary results
- No results suggest need to polarize along Q-vector
- UNH companion studies forthcoming!

Allison J. Zec (she/her)

Higher-Twist Effects on Measurements of b1

2023-07-10 15 / 16

Trans & Nonbinary Physicists

The Trans and Nonbinary Physicists Discord server is an online community for transgender and nonbinary physicists — from enthusiasts to professors! — to socialize, network, and support one another. All are welcome, and so far we have over 200 members from across the world!

Trans & Nonbinary Physicists

The Trans and Nonbinary Physicists Discord server is an online community for transgender and nonbinary physicists — from enthusiasts to professors! — to socialize, network, and support one another. All are welcome, and so far we have over 200 members from across the world!

Questions, comments, concerns, observations?

Backup Slides

Deuteron Tensor Polarization and Properties

Protons & Deuterons

Proton-Neutron bound state

Simplest nuclear system: nucleon interaction effects

$$m = \pm 1, 0$$

Quasielastic Tensor Asymmetry

For $0.8 \leq x \leq 1.8$ σ_p =polarized cross section

 $\sigma_0 =$ unpolarized cross section

$$A_{zz} = \frac{2}{fP_{zz}} \left(\frac{\sigma_{\rho}}{\sigma_0} - 1\right) \qquad (1)$$

- Currently no quasielastic tensor asymmetry measurements!
- Asymmetry in 1.0 < x < 1.8 range predicted as high as 100%
- Difficult to measure with just vector polarized deuterons
- M. Sargsian, M. Strikman arXiv:1409.6056 E. Long *et al*, JLab C12-15-005

Above: Two theory models: AV18 (solid) and CDBonn (dashed) for two different calculation frameworks predicting the quasielastic value of A_{zz} .

Deep Inelastic Tensor Structure Functions

$$W_{\mu\nu} = -\alpha F_1 + \beta F_2 + i\gamma g_1 + i\delta g_2 - \epsilon b_1 + \zeta b_2 + \eta b_3 + \kappa b_4$$

Unpolarized structure functions Vector polarized structure functions Tensor polarized structure functions

For $x \leq 0.5$

$$b_1 = -\frac{3}{2}F_1A_{zz}$$
 (3)

- Callan-Gross relation with $b_2 = 2xb_1$
- *b*₁ sole tensor structure function that has been measured

W. Cosyn, Y. Dong, S. Kumano, M. Sargsian et al, PRD 95 074036 (2017)

0.004 SD+DD 0.003 Convolution 0.002 Model 0.001 $xb_1 0$ 02=1.0 GeV2 -0.001 Nucleon $O^2 = 2.5 \text{ GeV}^2$ $O^2 = 5.0 \text{ GeV}^2$ Model -0.002 0.2 0.4 0.6 0.8 1.2 1.4 0 1.6 x

Allison J. Zec (she/her)

(2)

Current b₁ Data

In traditional deuteron state models b_1 is predicted to be small

K. Slifer et al, JLab C12-13-011

Current b₁ Data

In traditional deuteron state models b_1 is predicted to be small

... but the HERMES experiment measured something different!

K. Slifer et al, JLab C12-13-011

Current *b*1 Data

In traditional deuteron state models b_1 is predicted to be small

... but the HERMES experiment measured something different!

It could be explained by tensor-polarized anti-quark effects

K. Slifer et al, JLab C12-13-011

Current b₁ Data

In traditional deuteron state models b_1 is predicted to be small

... but the HERMES experiment measured something different!

It could be explained by tensor-polarized anti-quark effects

... or by six-quark hidden color effects.

K. Slifer et al, JLab C12-13-011

Current b₁ Data

In traditional deuteron state models b_1 is predicted to be small

... but the HERMES experiment measured something different!

It could be explained by tensor-polarized anti-quark effects

... or by six-quark hidden color effects.

K. Slifer et al, JLab C12-13-011

Elastic Tensor Analyzing Power

$$T_{20} \approx \frac{A_{zz}}{\sqrt{2}d_{20}} \tag{4}$$

- Third of three elastic scattering functions of deuteron
- Extracted by measuring A_{zz} near elastic peak
- Current data doesn't constrain models well at high *x*
- M. Kohl Nucl Phys A 805 (2008)

For **1.5** < *x* < **2.0**

R. Holt, R. Gilman Rept.Prog.Phys. 75 (2012)

JLab & Hall C

JLab

- 12 GeV CEBAF accelerator
- 4 experimental halls running simultaneously
- $\bullet\,$ Beam current up to 200 μA

Hall C

- Two spectrometers
 - HMS (up to 7.3 GeV momentum)
 - Scattering angle $10^\circ \le \theta' \le 85^\circ$
 - SHMS (up to 11 GeV momentum)
 - Scattering angle 5.5° $\leq \theta' \leq$ 40°
- High-rate detector package

BACKUP: Tensor Polarization & DNP

Tensor Polarization

"Typical" vector polarization:

- $P_z = N_+ N_- \tag{5}$
- where $-1 \le P_z \le 1$... but with an m=0 state we have tensor polarization:

$$P_{zz} = (N_+ + N_-) - 2N_0 \qquad (6)$$

where $-2 \le P_{zz} \le 1$

Goal

Create target with high tensor polarization for high-luminosity experiments

where C is a dimensionless calibration constant, $I_{+} = n_{+} - n_{0}$, and $I_{-} = n_{0} - n_{-}$

D. Keller NIM A 981 (2020) 164504