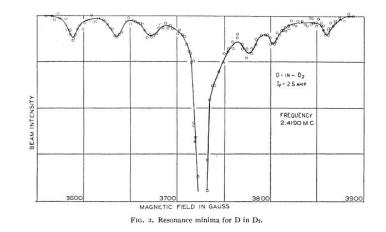
Overview and perspective: theory

Wim Cosyn Florida International University

Tensor Polarized observables ECT* workshop, July 2023

Tensor polarization

- Present for particles with spin ≥ 1
- Not present for the nucleon
- Additional spin degrees of freedom that can be exploited in polarized measurements
 → more ways of looking at a system
- Focus is on spin 1 (massive)
 - Deuteron
 - Vector mesons
- Link between spin-1 and partonic properties
- Studies of NN-force


Deuteron

• Only stable 2 nucleon system (pn)

- Small binding energy ~2 MeV
- $J^{\pi} = 1^+$, isospin 0 \rightarrow L = 0,2
- $\frac{\mu_d \mu_p \mu_n}{\mu_d} = -0.026$ \rightarrow S-wave (L=0) dominates
- Quadrupole moment 0.282 fm²
 → needs D-wave (L=2)
 - \rightarrow non-central (tensor) NN-force

An Electrical Quadrupole Moment of the Deuteron*

J. M. B. KELLOGG Columbia University, Hunter College (JRZ), New York, New York, January 15, 1939. J. M. B. KELLOGG I. I. RABI N. F. RAMSEY, JR. J. R. ZACHARIAS

Density matrix

- Characterizes statistical ensemble of quantum system
- 3 by 3 matrix for spin-1 system
- Multipole decomposition: 5 tensor $\rightarrow 1 \otimes 1 = 0 \oplus 1 \oplus 2$
- $\rightarrow \mathbf{1} \otimes \mathbf{1} = \mathbf{0} \oplus \mathbf{1} \oplus \mathbf{2}$ Expectation values $\langle O \rangle = \sum_{\lambda\lambda'} \rho_{\lambda\lambda'} \langle \lambda' | O | \lambda \rangle \quad \rho(\lambda, \lambda') = \begin{bmatrix} \frac{1}{3} + \frac{1}{2}S_L + \frac{1}{2}T_{LL} & \frac{1}{2\sqrt{2}}S_T e^{-i(\phi_h \phi_S)} & \frac{1}{2}T_{TT} e^{-i(2\phi_h 2\phi_{T_T})} \\ + \frac{1}{\sqrt{2}}T_{LT} e^{-i(\phi_h \phi_S)} & \frac{1}{3} T_{LL} & \frac{1}{2\sqrt{2}}S_T e^{-i(\phi_h \phi_S)} \\ + \frac{1}{\sqrt{2}}T_{LT} e^{i(\phi_h \phi_T_L)} & \frac{1}{\sqrt{2}}T_{LT} e^{-i(\phi_h \phi_T_L)} \\ \frac{1}{2}T_{TT} e^{i(2\phi_h 2\phi_{T_T})} & \frac{1}{2\sqrt{2}}S_T e^{i(\phi_h \phi_S)} & \frac{1}{3} \frac{1}{2}S_L + \frac{1}{2}T_{LL} \\ \frac{1}{\sqrt{2}}T_{LT} e^{i(\phi_h \phi_T_L)} & \frac{1}{\sqrt{2}}T_{LT} e^{i(\phi_h \phi_T_L)} \end{bmatrix}.$ Expectation values
- **Polarization measurements**
- All pure states have tensor polarization
- $\lambda = 0$ has no vector polarization

Tensor asymmetries

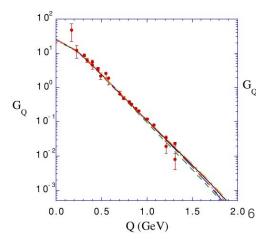
- Density matrix parameters appear in cross section decomposition
 - \rightarrow multiply independent structure functions
 - \rightarrow much richer structure for spin 1 compared to nucleon
 - \rightarrow harder to disentangle experimentally

$$d\sigma^+ + d\sigma^- - 2d\sigma^0$$

will select tensor polarized contributions

 \rightarrow no electron polarization needed

 \rightarrow normalized to unpolarized cross section: A_{zz}, T₂₀


• Polarized along a certain direction

 \rightarrow different directions will select different T_{LL}, T_{LT}, T_{TT} etc.

Hadronic matrix elements

$$\begin{aligned} \langle \mathbf{d}' | J^{\mu} | \mathbf{d} \rangle &= -\left(\left\{ G_1(Q^2)[\xi'^* \cdot \xi] - G_3(Q^2) \frac{(\xi'^* \cdot q)(\xi \cdot q)}{2m_d^2} \right\} (d^{\mu} + d'^{\mu}) \\ &+ G_M(Q^2)[\xi^{\mu}(\xi'^* \cdot q) - \xi'^{*\mu}(\xi \cdot q)] \right) \end{aligned}$$

- quark/gluon currents & correlators \rightarrow form factors & parton distribution functions
- Operators still the same \rightarrow same QCD evolution etc.
- Tensor polarization \rightarrow richer structure of independent structures
- Quadrupole formfactor from elastic ed
- Probed in (semi)inclusive DIS, exclusive reactions with polarized deuteron
 - \rightarrow global fits
 - \rightarrow model calculations

NOVEL EFFECTS IN DEEP INELASTIC SCATTERING FROM SPIN-ONE HADRONS¹

Inclusive DIS: b1 [See talk Kumano]

Pervez HOODBHOY², R.L. JAFFE and Aneesh MANOHAR³

• b1 is a **structure function**

$$\begin{split} W_{\mu\nu} &= -F_1 g_{\mu\nu} + F_2 \frac{p_{\mu} p_{\nu}}{\nu} - b_1 r_{\mu\nu} + \frac{1}{6} b_2 (s_{\mu\nu} + t_{\mu\nu} + u_{\mu\nu}) + \frac{1}{2} b_3 (s_{\mu\nu} - u_{\mu\nu}) \\ &+ \frac{1}{2} b_4 (s_{\mu\nu} - t_{\mu\nu}) + i \frac{g_1}{\nu} \epsilon_{\mu\nu\lambda\sigma} q^\lambda s^\sigma + i \frac{g_2}{\nu^2} \epsilon_{\mu\nu\lambda\sigma} q^\lambda (p \cdot q s^\sigma - s \cdot q p^\sigma), \end{split}$$

- at LO charge weighted tensor polarized pdf \rightarrow difference of unpolarized quark distribution between $\lambda = \mp 1$ and $\lambda = 0$
- Kumano-Close sum rule

A

- Hermes data (puzzle?), upcoming JLab
- Tensor asymmetry still measures combination of 4 SF [See talk Zec]

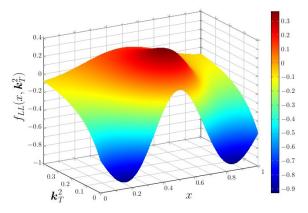
$$zz = 2 \frac{[T_{LL}](\Lambda_d = +1)(F_{UT_{LL},T} + \epsilon F_{UT_{LL},L} + [T_{LT}\cos\phi_{T_L}](\Lambda_d = +1)\sqrt{2\epsilon(1+\epsilon)}F_{UT_{LT}}^{\cos\phi_{T_L}} + [T_{TT}\cos2\phi_{T_T}](\Lambda_d = +1)\epsilon F_{UT_{TT}}^{\cos2\phi_{T_T}}}{F_{UU,T} + \epsilon F_{UU,L}}$$

$$7$$

$Gluon\ transversity\ pdf\ [See\ talk\ Maxwell]$

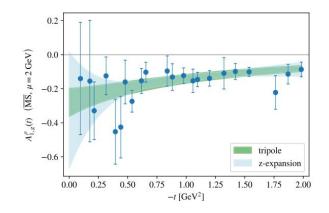
- Gluon helicity flip \rightarrow impossible in nucleon
- Has to probe gluons beyond single-nucleon level
- But resides in twist-4 SF
- Lattice study for φ meson (moment) [Detmold, Shanahan PRD'16]
- Recent work on DY [Kumano, QT Song PRD'20]

NUCLEAR GLUONOMETRY

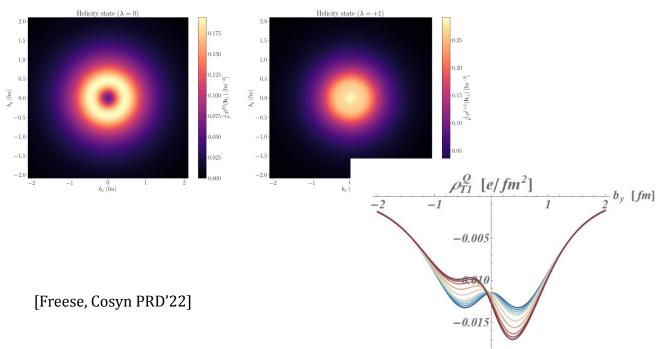

R. L. Jaffe and Aneesh Manohar

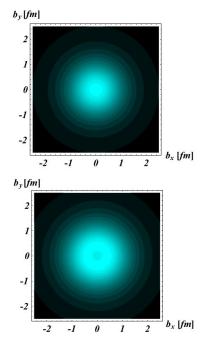
ABSTRACT

We identify a new leading twist structure function in QCD which can be measured in deep inelastic scattering from polarized targets (such as nuclei) with spin ≥ 1 . The structure function measures a gluon distribution in the target and vanishes for a bound state of protons and neutrons, thereby providing a clear signature for exotic gluonic components in the target.


Spin-1 Transverse momentum distributions

- First discussed for quarks at leading twist by Bacchetta & Mulders (2000) \rightarrow gluons D. Boer et al. JHEP 2016
- Recently extended to twist 4 [Kumano & Q.T. Song JHEP 2021]
- SIDIS and Drell-Yann (NICA, Spinquest) measurements
- Several model calculations for rho meson
 - NJL [Ninoyima, Bentz, Cloet PRC '17]
 - LF holographic [C. Mondal et al]


Generalized Parton Distributions


- Leading twist [Berger et al PRL'04; Cosyn, Pire PRD'18]
- Spin sum rule [Abidin, Carlson PRD'08; Taneja, Liuti et al. PRD'12] and Energy-Momentum tensor [+ Holstein PRD'06, Cotogno et al EPJC '19]
- Extract from coherent exclusive reactions \rightarrow few Hermes data, JLab possibilities
- Lattice study of gluon GravFF in φ-meson [Detmold, Pefkou, Shanahan, Hackett 17+]
 NJL calculations for rho-meson GravFF [Freese, Cloet, PRC'19]

Transverse densities

• Obtained from FT of form factors (EM, gravitational)

[[]Carlson, VdHaeghen EPJA'08]

[[]Lorce, Wang, '23]

Model calculations

- EM form factors [See reviews Garcon, Van Orden '01; Gilman, Gross '02]
- Only spin-1 precision data set that has tensor pol. data
- Many models, with different approaches, challenging calculations
 - Need for relativistic treatment
 - Substantial differences from how relativistic effects are included or mesonic contributions
 - Light-front treatments need to impose angular conditions
- How to reach same level / avoid pitfalls for other observables

NN-force [Frankfurt, Strikman NPA'83]

- Tensor/unpol: currents couple similarly to nucleon
- Tensor asymmetry mainly sensitive to deuteron structure
- Probes wf bilinear proportional to D-wave
- Test different deuteron wf, dynamics

 → short-range NN force
 → non-nucleonic dof?

 \Rightarrow Talks Strikman, Sargsian

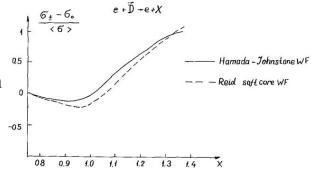
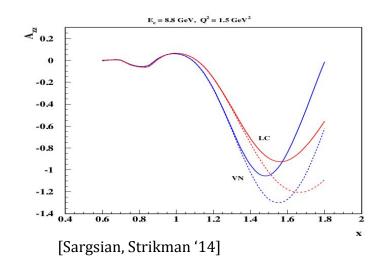



Fig. 3. The dependence of $F_{2D}^{\xi}(x, q^2)$ on the deuteron polarization.

Beyond Inclusive observables

• Spectator tagged DIS

Ο

- Restriction on initial state, no averaging over all configurations \rightarrow sizeable tensor asymmetry in tagged DIS [talk Weiss]
- Quasi-elastic D(e,e'N) : many reaction frameworks
 - Polarization observables very sensitive to model inputs

 \Rightarrow Talks Yero, Jeschonnek; see also recent Flores, Chabysheva, Hiller PRC23 Grassi, Golak et al. PRC22

• Need to include (spin-dependent) FSI

Conclusions

- Tensor polarized observables give access to properties of hadrons beyond beyond spin ½ case
- Proliferation of observables / distribution
 - \rightarrow Important for theory to identify connection between the two
 - \rightarrow Corrections from theory
- Beyond EM FF: few data, some calculations
 - \rightarrow new data can lead to renewed interest
- Deuteron especially interesting as system to study NN interaction