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(Simple) Quantum Systems NYU

Two-level system governed by Schrodinger equation (to become quantum)

07

kpT < AE (Thermal)

I' < AE (Dissipation)



Qubit can be realized NYU

Two-level system governed by Schrodinger equation (to become quantum)

kpyT < AE  (Thermal)

20mK <« S500mK I' <« AE (Dissipation)

=0 AE

https://www.semanticscholar.org/paper/Dispersive-Measurement-of-Superconducting-Qubits-Khezri/df60aa53c9908d9f597a69bc873bef3810586e73



Measurement...projection of finding a state in ground state

NYU
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RF Resonat%— AMP

kpyT < AE  (Thermal)

_ @ or Im(e)

I < AE  (Dissipation)

https://www.semanticscholar.org/paper/Dispersive-Measurement-of-Superconducting-Qubits-Khezri/df60aa53c9908d9f597a69bc873bef3810586e73



Hamiltonian: cQED
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E = E pr (& 4+ &’r) Resonator: Bosonic
creation and annihilation operators

S = &+ O_  Qubit: Two-level atom is equivalent to a spin-half

Wikipedia cQED



Qubit (First Generation)

Neutral atoms

Diamond based

Insulator

o (G W oy
. L o8 O
. “hosphorus Atony

Silicon based

lon trap



Quantum circuits and algorithm

- Systems are evolved by unitary transformations, Measurement are not

e Quantum operations are reversible
e non-reversible operation is a Measurement of a qubit
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BIG problem of noise adds to this question of measurement

NYU
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Measurement
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Dephasing

No noise Decoherence

Simple two level systems have no intrinsic protection from relaxation or decoherence



Just gets worse...

89 100 98
95 96

Errors 100%|

No noise

McEwen et al., Nature Physics, 18, 107-111 (2022)

Title: Resolving catastrophic error bursts from cosmic rays
in large arrays of superconducting qubits

Simple two level systems have no intrinsic protection from relaxation or decoherence



“New" Josephson Junctions NYU
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Josephson Junction Devices
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JFET as a new tool for qubits
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Mayer, W. et al. Appl. Phys. Lett. 114, 103104 (2019)



Tunability of frequency
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cQED ldeas: spectroscopy - weak measurement

Elfeki et al., arXiv:2303.04784 ,



cQED ldeas: spectroscopy - weak measurement NYU

Resonator-SQUID

SQUID QP injector junction

15



Control Steps: Quasi Particle Poisoning NYU

Resonator-SQUID

Josephson junction

Impinging radiation Energy relaxation carriers ~ Superconducting phenomenon

Photon AN\ lonization e, ht Cooper pair ~ (EIE»
B particle () ——— Phonon \AA/\/  Quasiparticle (e

A. P. Vepsalainen et al., Nature (2020)
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https://topocondmat.org/w2 majorana/signatures.html
Hays, Springer Theses (2021)
J. Farmer et al., APL (2021)


https://topocondmat.org/w2_majorana/signatures.html

Axion dark matter radio

The Axion Haloscope
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Field cancellation coil:
cancels the residual
magnetic field around the
SQUID electronics

Field Cancellation
Coil

Superconducting
QUantum Interference
Device (SQUID) amplifiers:
amplifies the
signal while being quantum
noise limited

SQUID Amplifier
Package

Dilution Refrigerator

Antennas

Antennas: pick up signal

8 Tesla Magnet

Magnet: facilitates the axion

Microwave Cavity conversion to photons, 8T

Tuning Rods Microwave Cavity: converts

axions into photons, tunable

Rakshya Khatiwada 07/20/2020 12



Control Steps: Quasi Particle Poisoning NYU
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Control Steps: Quasi Particle Poisoning NYU

Resonator-SQUID

« Deepest trap (7 = 1) at ¢p = 0.5:

Ay=A— A\/ 1 — zsinX(h/2) = 15.6 GHz

* Applied clearing tone frequency = 18GHz
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Elfeki et al., arXiv:2303.04784



Control Steps: Quasi Particle Poisoning NYU

Applied clearing tone frequency = 18GHz

— |
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Clearing time: time it takes for QPs to clear out of the
Andreev trap after pulse starts
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after pulse ends 200 205 210 300 305 310
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Elfeki et al., arXiv:2303.04784



Control Steps: Quasi Particle Poisoning NYU
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Different Qubits: Topological Superconducting Systems

“Traditional” Topological
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Nayak et al., Rev. Mod. Phys. 80 (2008)
Leijnse & Flensberg, Semicond. Sci. Technol. 27 (2012)
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Different Noise: Topological Superconducting Systems NYU

Protected Encoding Protected Manipulation
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Dartiailh et al. Phys. Rev. Lett. 126, 036802 (2021)
Mayer et al. Appl. Phys. Lett. 114, 103104 (2019)
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Q ng;f;‘;;?on Topological Superconductivity in JJ NYU

Physics

spin-orbit coupling Zeeman effect superconductivity
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Dartiailh et al., PRL (2021)
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- Rashba SOC couples B to momentum only if B is oriented in y direction

Dartiailh et al., PRL (2021)
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Physics

Center for
CQ I = Outlook for Fusion Experiments NYU

We showed single-gate JJs can make a phase transition. If this transition is topological then:
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Alicea et al., Nature Physics, 7, 412 (2011) Bauer et al., SciPost Phys. 5, 004 (2018)



Going back to foundations

PiV(Zy...2%5...%5...ZN) = €79V (T ...T5...%4...ZN)
The particles are identical since an overall phase 1s not observable.

But changing back amounts to nothing!

Pi=1 = ¢%=4%1

So there are only two alternatives:
P,=1; 6;;=0 Boson

j ij =T Fermion



Going back to foundations

PiV(Zy...2%5...%5...ZN) = €79V (T ...T5...%4...ZN)
The particles are identical since an overall phase 1s not observable.

But changing back amounts to nothing!

Pi=1 = ¢%=4%1

So there are only two alternatives:
P,=1; 6;;=0 Boson

j ij =T Fermion

* A quasiparticle emergent in 2-D quantum systems with topological nature.

* Unlike fermions and bosons, under particle exchange they obey statistics as:

"le ’(,02 > — ew |¢2 ’(Pl > where e'? can be any value between -1 and +1.



Exchange statistics

NYU

Anyons

* A quasiparticle emergent in 2-D quantum systems with topological nature.

- Unlike fermions and bosons, under particle exchange they obey statistics as:

: 2 |’¢1 ¢2 > — 6 ”ng ’I,bl > where e'? can be any value between -1 and +1.

3D
* For non-Abelian anyons,

@ e'® > rotation matrix U(6)
—> can be used to create universal gates

Example:

/2D

The Fibonacci model contains two particle types: the vacuum with charge 0 and denoted by 0, and the

non-trivial anyon with charge 1 and denoted by 7. Explicitly, the fusion rules are:

TRT=0DP1 0xXx0=0 TRO0=1 0RT=r1

where @ denotes the fusion (merging) of two particles and denotes @ multiple possible outcomes.



Kitaev - Majorana fermions

NYU

- Majorana fermion (1940s): fermion that is its own antiparticle (maybe Neutrino?)

y =y

@ ¢ @@ @Gmmeocerm@P @
YA 1 7B,1 Va2 782 /a3 78,3 YA N 7B N

Alexei Kitaev, 2000, 2001 1D toy model

J J A
Hy = Z (ﬂcjci - §(Cz'+1 - cj+1)(ci T Cj)) = Z (_Gczci — 5(01+1Ci + CIC-Z'.) + E(CH-IC-:'. + CICIH))

2

Kitaev predicted that a 1D chain under appropriate
conditions can host delocalized Majorana modes




Majorana fermion chain

Y1 Y2 Y3 Y4 V5 V6 2N
- _ O O

(N pairs)

* The only thing that distinguishes the Majorana zero modes is their position in the
network.

* They have no other “flavour” that would allow us to characterize them. They are
iIdentical to each other, just like all electrons are identical to each other.

* |f we exchanged two Majoranas in space, the system after the exchange would
look exactly the same as it looked before the exchange.



Non-Abelian Majorana Zero Modes

}/. — }/l- = Degenerate zero energy-state manifold

ground state manifold

By construction, we can pair the Majoranas and form fermionic modes

1 .
Cj; — 3()’211—1 + lYZn) ’

| .
cn = 5(Y2n-1 — i¥2n) ; n=1,....N

NYU



Non-Abelian Majorana Zero Modes

NYU

We have now a set of N fermionic modes with corresponding creation and annihilation
operators. Every mode can be empty or it can be occupied by a fermion, giving us two
possible degenerate quantum state:

|0) 1) for each pair of Majoranas

- 8 possible states, corresponding to all the possible combinations of the occupation
numbers of the 3 fermionic modes

2N possible quantum states for /N pairs of Majoranas



Non-Abelian Majorana Zero Modes

NYU

| Sl > If the fermionic mode is not occupied =0 If occupied = 1

| S1, 85, .00y Sy)

* These states are a complete basis for the Hilbert space of the set of Majorana modes

* These basis states are all eigenstates of the operators

_ B + . Fermion parity operator
Pn =1 2CnCn = WYon—1"2n

for the pair of Majoranas 2n-1 and 2n

|‘P> — Z Xsis,...5n |S1,Sz,---,SN>
s,=0,1



Non-Abelian Majorana Zero Modes

NYU

We, experimentalist, are not only like to build such a network, but also to move the
position of the domain walls and swap the positions of two Majoranas, for instance by

performing the following trajectory:
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. : ¢
Non-Abelian Majorana Zero Modes NYU

Adiabatic: During moving we never leave the ground state manifold with 2N states
¥) - U|¥P) 2N % 2N unitary matrix

* The adiabatic exchange of two Majoranas does not change the parity of the number
of electrons in the system

E
U, Ptot] =0

A

0L

ground state manifold

U: the exponential of i times a Hermitian operator is a unitary operator

U= eXP(ﬂYn}’m) — COS(ﬂ) + Yn¥m Sln(ﬂ) fp = +n/4



Non-Abelian Majorana Zero Modes

NYU

_ i — L
U = exp(i4 Yn}’m) = \/2(1 + ¥Yn¥m)

Consider four Majoranas: |00),]11),|01),|10)

CJlr — %(}'1 + iy7) First digit is the occupation number of the fermionic mode
(| . i - o
c, = 5(% + l}/4) Second digit is the occupation number of the fermionic mode

e 0 0 0
7 )= 0 &7 0 0

1 —-i O 0

T _11-i 1 0 O

Uy = CXP(—}’273) = E 0 0 1 i
O 0 —-i 1



Non-Abelian Majorana Zero Modes

NYU

* These matrices indeed act in a very non-trivial way on the wave function:
Initial state |OO)

If we exchange Majoranas 2 and 3

00) — U23]00) = —(|00) — i[11))

which is a superposition of states!

Exchange two Majoranas on the wavefunction amounts to much
more than just an overall phase, as it happens for bosons and
fermions.



Non-Abelian Majorana Zero Modes

NYU

e Let’s try sequence of two exchanges which basically means multiplying the
corresponding U:

Uxy3U1p # UpUszs

braiding
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2d (space) + 1 (time)



System as a whole is a guantum memory (?’ NYU

* You could say this is another way to obtain a given unitary operator acting on the
wave function. In principle both the state of the register and the algorithms are
topologically protected.

© P> © > E
WWJ\JW D>
© > © P
LS e
e[
a W\[ g -—,\/\\MAW\/\I\’ 0L
© U 0 D ground state manifold

* The state of the register is encoded in the fermion parity degrees of freedom,
which are shared non-locally by the Majoranas. This means that no local

perturbation can change the state of the register and cause decoherence of the
quantum state.

* The environment cannot access the information stored in the Majoranas, as long

as they are kept far away from each other. The only exception is a change in
fermion parity.



How about “Measurement”?

) C ) D

) D ) D
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- X ol
) D © > ground state manifold

One way is to measure exchange properties like fusion:

- need configuration, fast but adiabatic

wib wmm Initial state
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Topological: Fusion experiment from theory perspective

(a) = Initial state
Probability e
density [
2
i
=
=
A, | Nontrivial fusion
3¢yxy=1+¢
Eoall _
> 0.2 \ -
Goeie gosile) Y:50% — G+H| Detection {6y 100% G
VoS Ison — -: e
2 3 4 i 2, 3 4 5
X (um) X (um)

Measurement is equivalent to sending “charge”

T. Zhou, M. C. Dartiailh, K. Sardashti, J. E. Han, A. Matos-Abiague, J. Shabani, |. Zutic, arXiv:2101.09272



Charge sensing measurement
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One possible experimental approach: mini gate

d —Tank circuit
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Quasi Particle Poisoning (unpublished)

d
J\f\j\/‘* Pair-breaking photon

ww QP/phonon coupling

— —> QP tunneling

e®Quasiparticle @ Cooper pair

NYU

Quasi Particle Poisoning
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Parity change
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Upper time scale of Majorana qubits
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“Measurement based QC”

- Entanglement is used as a resource

- Local measurements on qubits are used to drive the computation
(one-way quantum computer of Raussendorf and Briegel, who introduced the so- called

cluster)

NYU

- The randomness in the measurement outcomes can be dealt with by adapting future
measurement axes so that computation is deterministic

(a)

(b)

10}

0

10)
0)

10)

CNOT

0/1

CNOT

(c) Cluster State

(d) Graph State

+)




ANYU

In photonics you can have “Measurement based QC”

- Entanglement is used as a resource

- Local measurements on qubits are used to drive the computation
(one-way quantum computer of Raussendorf and Briegel, who introduced the so- called
cluster)

- The randomness in the measurement outcomes can be dealt with by adapting future
measurement axes so that computation is deterministic

(a) ) Bell
Measurement m
—(/00) +[11)) =
5 - (0 (2
| / ® \
(b) %) Bell |U’)> X Z (O’ ® O'/>CNOT|w>
AP Measurement m 029 y
j__TI/'J' ’%(mo) F 1|>){ B b \)_(J
'“\\\\/“ — Uo; Uojom|)

State transfer- based

(c) %) sy two-qubit CNOT gate
i I ettty 3 Measurement m,n
Ujk)-" : B
e 100) + |11))®2 : -
jlk:.:-} —( T = :
\/E _UO'J' X ok U‘(U_j 0’;‘.)(0’,“ %Y (T,,)I(.')



Further possibility is “Measurement based TQC”

Measurement-Only Topological Quantum Computation

Parsa Bonderson,! Michael Freedman,' and Chetan Nayak!-2

! Microsoft Research, Station Q, Elings Hall, University of California, Santa Barbara, CA 93106
?Department of Physics, University of California, Santa Barbara, CA 93106
(Dated: August 15, 2008)

NOMECS yXy=I1+y

Starting from a maximally entangled anyon pair
+
forced measurements

Entanglement resource is fully replenished and returned to its original location

Measurement-generated braiding transformations to be employed repeatedly, without exhausting the resources
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Feynman i
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Wigner

.a NoS yXy=1+wy

Starting from a maximally entangled anyon pair
+
forced measurements

Entanglement resource is fully replenished and returned to its original location

Measurement-generated braiding transformations to be employed repeatedly, without exhausting the resources




