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(Simple) Quantum Systems

Two-level system governed by Schrodinger equation (to become quantum)

ΔE

kBT ≪ ΔE

Γ ≪ ΔE (Dissipation)

(Thermal)



Qubit can be realized

Two-level system governed by Schrodinger equation (to become quantum)

ΔE

kBT ≪ ΔE

Γ ≪ ΔE (Dissipation)

(Thermal)

Γ = 0 ≪ ΔE

20mK ≪ 500mK

ΔE ≈ 10GHz ≈ 500mK

E.g. Superconducting resonator

https://www.semanticscholar.org/paper/Dispersive-Measurement-of-Superconducting-Qubits-Khezri/df60aa53c9908d9f597a69bc873bef3810586e73



Measurement…projection of finding a state in ground state

ΔE

kBT ≪ ΔE

Γ ≪ ΔE (Dissipation)

(Thermal)

https://www.semanticscholar.org/paper/Dispersive-Measurement-of-Superconducting-Qubits-Khezri/df60aa53c9908d9f597a69bc873bef3810586e73



Hamiltonian: cQED

Qubit: Two-level atom is equivalent to a spin-half

Resonator: Bosonic  
creation and annihilation operators

Wikipedia cQED



Qubit (First Generation)

Silicon based Ion trap

Diamond based Superconducting

Neutral atoms

Two level qubits



- Systems are evolved by unitary transformations, Measurement are not

Quantum circuits and algorithm

• Quantum operations are reversible
• non-reversible operation is a Measurement of a qubit



BIG problem of noise adds to this question of measurement

Simple two level systems have no intrinsic protection from relaxation or decoherence

No noise Decoherence



Just gets worse…

Simple two level systems have no intrinsic protection from relaxation or decoherence

No noise
Title: Resolving catastrophic error bursts from cosmic rays 
 in large arrays of superconducting qubits



“New" Josephson Junctions
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JFET as a new tool for qubits

L = 100 nm
T = 20 mK
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Mayer, W. et al. Appl. Phys. Lett. 114, 103104 (2019)



Tunability of frequency
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Strickland et al., PR Applied 2023
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cQED Ideas: spectroscopy - weak measurement

Elfeki et al., arXiv:2303.04784



15

!"#$%%

&' ()*

!"#$%%

Resonator-SQUID

SQUID QP injector junction

40 µm

cQED Ideas: spectroscopy - weak measurement



Control Steps: Quasi Particle Poisoning

A. P. Vepsalainen et al., Nature (2020)

Resonator-SQUID

https://topocondmat.org/w2_majorana/signatures.html

Hays, Springer Theses (2021)

J. Farmer et al., APL (2021)

https://topocondmat.org/w2_majorana/signatures.html
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Control Steps: Quasi Particle Poisoning

Microwave
cavity

(forming cavity)

Transmission line PCB
with RF connectors

Superconducting
EMC shielding

Space for 
magnet coil

a) b)

6-3-1 T Vector Dilution Fridge with qubit setup



Control Steps: Quasi Particle Poisoning
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Resonator-SQUID

Vbias

Elfeki et al., arXiv:2303.04784

  Topological gap (~ns) << Majorana qubit clock time << QPP time

• Deepest trap ( ) at : 

 = 15.6 GHz 

• Applied clearing tone frequency = 18GHz

τ = 1 ϕ = 0.5

ΔA = Δ − Δ 1 − τsin2(ϕ/2)



Control Steps: Quasi Particle Poisoning

Elfeki et al., arXiv:2303.04784

Clearing time: time it takes for QPs to clear out of the 
Andreev trap after pulse starts

1
2 3

Trapping time: time it takes QPs to fall into Andreev trap 
after pulse ends 

Applied clearing tone frequency = 18GHz



Control Steps: Quasi Particle Poisoning

Elfeki et al., arXiv:2303.04784
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Different Qubits: Topological Superconducting Systems

0| ⟩ 1| ⟩
Nayak et al., Rev. Mod. Phys. 80 (2008) 

Leijnse & Flensberg, Semicond. Sci. Technol. 27 (2012)
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Different Noise: Topological Superconducting Systems
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Topological Superconductivity in JJ

Dartiailh et al.  Phys. Rev. Lett. 126, 036802 (2021) 
Mayer et al.  Appl. Phys. Lett. 114, 103104 (2019)

Pientka et al.  Phys. Rev. X 7, 021032  (2017) 
Hell et al. Phys. Rev. Lett. 118, 107701 (2017)

𝐸𝑆𝑂 ≫ 𝐸𝑍 > Δ2 + 𝜇2

topological

trivial

spin-orbit coupling Zeeman effect superconductivity

chemical potential phase
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Topological Superconductivity in JJ

Setiawan, et al., PRB (2019) 
Ren et al., Nature 2019 
Fornieri et al., Nature 2019 
Tong et al., PRL (2020) 

W = 4 µm

L = 100 nm
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Pakizer et al., PRR (2021)
Dartiailh et al., PRL (2021)

Simulations by Igor Zutic and Alex Matos-Abiague

W = 4 µm

L = 100 nm
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Experiment: Topological Josephson Junctions
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Experiment: Topological Josephson Junctions
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Dependence of magnetic field angle

W = 4 µm

L = 100 nm
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- Rashba SOC couples B to momentum only if B is oriented in y direction

Dartiailh et al., PRL (2021)
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Setting up phase measurement reference

S

S to P 

JJ1 gate fixed

JJ2 
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Topological Superconductivity in JJ
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Outlook for Fusion Experiments

Alicea et al., Nature Physics,  7, 412 (2011)

Bauer et al., SciPost Phys. 5, 004 (2018)

B//X

S

S

ϒ1 ϒ2 ϒ3 ϒ4
Superconductor

Superconductor

S

S

ϒ1 ϒ2
Superconductor

Superconductor
Alicea et al., Nature Physics,  7, 412 (2011)
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We showed single-gate JJs can make a phase transition. If this transition is topological then: 



Going back to foundations
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Exchange statistics

Example: 



Kitaev - Majorana fermions

Alexei Kitaev, 2000, 2001 1D toy model 

- Majorana fermion (1940s): fermion that is its own antiparticle (maybe Neutrino?)

Kitaev predicted that a 1D chain under appropriate 
conditions can host delocalized Majorana modes

γ† = γ



Majorana fermion chain

• The only thing that distinguishes the Majorana zero modes is their position in the 
network. 


• They have no other “flavour” that would allow us to characterize them. They are 
identical to each other, just like all electrons are identical to each other. 


• If we exchanged two Majoranas in space, the system after the exchange would 
look exactly the same as it looked before the exchange.

2N

(N pairs)



Non-Abelian Majorana Zero Modes

γ†
i = γi

By construction, we can pair the Majoranas and form fermionic modes

 = Degenerate zero energy-state manifold

𝑛=1,…,𝑁



Non-Abelian Majorana Zero Modes

We have now a set of N fermionic modes with corresponding creation and annihilation 
operators. Every mode can be empty or it can be occupied by a fermion, giving us two 
possible degenerate quantum state:

∣0⟩ ∣1⟩ for each pair of Majoranas

- 8 possible states, corresponding to all the possible combinations of the occupation 
numbers of the 3 fermionic modes

2N possible quantum states for
 N pairs of Majoranas




Non-Abelian Majorana Zero Modes

|s1, s2, . . . , sN⟩

|s1⟩ if the fermionic mode is not occupied = 0 If occupied = 1

• These states are a complete basis for the Hilbert space of the set of Majorana modes

• These basis states are all eigenstates of the operators


Pn = 1 − 2c†
ncn = iγ2n−1γ2n

Fermion parity operator  

for the pair of Majoranas 2n-1 and 2n 



We, experimentalist, are not only like to build such a network, but also to move the 
position of the domain walls and swap the positions of two Majoranas, for instance by 
performing the following trajectory:


Non-Abelian Majorana Zero Modes



Non-Abelian Majorana Zero Modes

• The adiabatic exchange of two Majoranas does not change the parity of the number 
of electrons in the system

Adiabatic: During moving we never leave the ground state manifold with  states2N

U: the exponential of 𝑖 times a Hermitian operator is a unitary operator



Non-Abelian Majorana Zero Modes

Consider four Majoranas:  

First digit is the occupation number of the fermionic mode

Second digit is the occupation number of the fermionic mode



Non-Abelian Majorana Zero Modes

• These matrices indeed act in a very non-trivial way on the wave function:

If we exchange Majoranas 2 and 3

Initial state

which is a superposition of states! 


Exchange two Majoranas on the wavefunction amounts to much 
more than just an overall phase, as it happens for bosons and 

fermions.



Non-Abelian Majorana Zero Modes

• Let’s try sequence of two exchanges which basically means multiplying the  
corresponding U:

braiding

2d (space) + 1 (time)



System as a whole is a quantum memory

• You could say this is another way to obtain a given unitary operator acting on the 
wave function. In principle both the state of the register and the algorithms are 
topologically protected.

• The environment cannot access the information stored in the Majoranas, as long 
as they are kept far away from each other. The only exception is a change in 
fermion parity. 

• The state of the register is encoded in the fermion parity degrees of freedom, 
which are shared non-locally by the Majoranas. This means that no local 
perturbation can change the state of the register and cause decoherence of the 
quantum state. 



How about “Measurement”?

One way is to measure exchange properties like fusion: 

- need configuration, fast but adiabatic



Topological: Fusion experiment from theory perspective

Measurement is equivalent to sending “charge”



Charge sensing measurement

γ × γ = I + ψ

γ × γ = I Trivial

fusion rule

Non- Trivial  
fusion rule



One possible experimental approach: mini gate

Al

Gate

Al

Al

In
As

1 um



Quasi Particle Poisoning

Parity change

Upper time scale of Majorana qubits

  Topological gap (~ns) << Majorana qubit clock time << QPP time

Quasi Particle Poisoning (unpublished)



“Measurement based QC”

- Entanglement is used as a resource  

- Local measurements on qubits are used to drive the computation  
(one-way quantum computer of Raussendorf and Briegel, who introduced the so- called 
cluster) 

- The randomness in the measurement outcomes can be dealt with by adapting future 
measurement axes so that computation is deterministic




In photonics you can have “Measurement based QC”

- Entanglement is used as a resource  

- Local measurements on qubits are used to drive the computation  
(one-way quantum computer of Raussendorf and Briegel, who introduced the so- called 
cluster) 

- The randomness in the measurement outcomes can be dealt with by adapting future 
measurement axes so that computation is deterministic


State transfer- based 

two-qubit CNOT gate



Further possibility is “Measurement based TQC”

Starting from a maximally entangled anyon pair

+


forced measurements

=


Entanglement resource is fully replenished and returned to its original location

=


Measurement-generated braiding transformations to be employed repeatedly, without exhausting the resources


γ × γ = I + ψ



Possibilities for Measurement in topological superconducting systems

Starting from a maximally entangled anyon pair

+


forced measurements

=


Entanglement resource is fully replenished and returned to its original location

=


Measurement-generated braiding transformations to be employed repeatedly, without exhausting the resources


γ × γ = I + ψ


