

Testing quantum mechanics with 16-microgram Schrödinger cat states

Dr. Matteo Fadel

precision spectroscopy

matter-wave interferometry

mechanical oscillators

bulk acoustic-wave resonator

Crystal vibration Piezo

frequency $\sim 6\,{\rm GHz}$

effective mass $\,M_{
m eff} pprox 16\,\mu{
m g}$

number of atoms $\,\sim 10^{17}$

bulk acoustic-wave resonator

frequency $\sim 6\,{\rm GHz}$ effective mass $M_{\rm eff} \approx 16\,\mu{
m g}$ number of atoms $\,\sim 10^{17}$

ground state cooling "for free"

acoustic mode

Ρ

 $g_0/2\pi \approx 260\,\mathrm{kHz}$

$$H/\hbar = g_0(\sigma^+ a + \sigma^- a^\dagger)$$

$$H/\hbar = g_0(\sigma^+ a + \sigma^- a^\dagger)$$

Jaynes-Cummings interaction in the strong coupling regime $g_0 \gg \kappa, \gamma$

preparation of the resonator state

preparation of the resonator state

Squeezed states

use the qubit as a four-wave mixer

work in progress!

preparation of the resonator state

Squeezed states

use the qubit as a four-wave mixer

work in progress!

Cat states

measurement of the resonator state

Resonant swap to the qubit (limited to the $|0\rangle, |1\rangle$ subspace)

measurement of the resonator state

Resonant swap to the qubit (limited to the $|0\rangle, |1\rangle$ subspace)

Off-resonant dispersive interaction with the qubit

measurement of the resonator state

Resonant swap to the qubit (limited to the $|0\rangle, |1\rangle$ subspace)

Off-resonant dispersive interaction with the qubit

X, P measurement

work in progress!

initial state: $|\psi(0)\rangle = |\pm X, \alpha\rangle$

 $H = \hbar g_0 (a\sigma_+ + a^{\dagger}\sigma_-)$

 $\approx \hbar g_0 \alpha \sigma_x$ for $|\alpha| \gg 1$ and real

initial state: $|\psi(0)\rangle = |\pm X, \alpha\rangle$

$$H = \hbar g_0 (a\sigma_+ + a^{\dagger}\sigma_-)$$

$$\approx \hbar g_0 \alpha \sigma_x \qquad \text{for } |\alpha| \gg 1 \text{ and real}$$

to first order the state evolution is

$$|\psi(t)\rangle \approx \frac{e^{\mp i g_0 t/2\alpha} |e\rangle \pm |g\rangle}{\sqrt{2}} \left| \alpha e^{\mp i g_0 t/2\alpha} \right\rangle$$

J. Gea-Banacloche, PRL 65, 3385 (1990)

$$D = |\alpha_1 - \alpha_2|/2$$

$$D = |\alpha_1 - \alpha_2|/2$$

decoherence

decoherence

negativity
$$= \int d\beta \left[|W(\beta, t)| - W(\beta, t) \right]$$

nonlinear standard QM modification $\partial_t \rho_t = \mathcal{L} \rho_t + \frac{1}{\tau_e} \mathcal{M}_\sigma \rho_t$

standard QM nonlinear modification
$$\partial_t \rho_t = \mathcal{L} \rho_t + \frac{1}{\tau_e} \mathcal{M}_{\sigma} \rho_t$$

example of modification:

$$2\Gamma \mathcal{D}[X]
ho$$

$$\mathcal{D}[X]\rho = X\rho X - \{X^2, \rho\}/2$$

standard QM nonlinear modification
$$\partial_t \rho_t = \mathcal{L} \rho_t + \frac{1}{\tau_e} \mathcal{M}_{\sigma} \rho_t$$

example of modification:

$$2\Gamma \mathcal{D}[X]\rho$$

$$\mathcal{D}[X]\rho = X\rho X - \{X^2, \rho\}/2$$

which gives:
$$\partial_t \rho_t \approx \left(\Gamma + \frac{1}{T_1}\right) \mathcal{D}[\mathbf{a}] \rho + \Gamma \mathcal{D}[\mathbf{a}^{\dagger}] \rho$$

standard QM nonlinear modification
$$\partial_t \rho_t = \mathcal{L} \rho_t + \frac{1}{\tau_e} \mathcal{M}_{\sigma} \rho_t$$

example of modification:

$$2\Gamma \mathcal{D}[X]\rho \qquad \qquad \mathcal{D}[X]\rho = X\rho X - \{X^2, \rho\}/2$$

which gives:
$$\partial_t \rho_t \approx \left(\Gamma + \frac{1}{T_1}\right) \mathcal{D}[\mathbf{a}] \rho + \Gamma \mathcal{D}[\mathbf{a}^{\dagger}] \rho$$

analytical solution:

$$W(X, P, t) = f[W(X, P, 0)]$$

B. Schrinski, et al. PRL 130 (2023)

B. Schrinski, et al. PRL 130 (2023)

 $\Gamma = 120 \text{ Hz}$

for DP model: $R_0 > 6.2 \cdot 10^{-17}$

M. Fadel, arXiv:2305.04780

macroscopicity μ : measure how well an experiment can exclude a generic set of nonlinear extensions to QM

$$\mu = \log_{10} \frac{\tau_e}{1\,\mathrm{s}}$$

macroscopicity μ : measure how well an experiment can exclude a generic set of nonlinear extensions to QM

$$\mu = \log_{10} \frac{\tau_e}{1\,\mathrm{s}}$$

	experiment	year	μ
mechanical resonators	Bulk acoustic waves [this work]	2022	11.3
	Phononic crystal resonator [13]	2022	~ 9.0*
	Surface acoustic waves [12]	2018	$\sim 8.6^*$
matter-wave interference	Molecule interferometry [8]	2019	14.0
	Atom interferometry [6]	2019	11.8
	BEC interferometry [5]	2017	12.4

outlooks

The Branco Weiss Fellowship Society in Science

Theory collaborators: Björn Schrinski Klaus Hornberger Stefan Nimmrichter

Works discussed here:

- M. Bild, M. Fadel, Y. Yang, et al., Science 380 (2023)
- B. Schrinski, ... and M. Fadel, PRL 130 (2023)
- M. Fadel, arXiv:2305.04780