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I. Inflation and scalar cosmological 
perturbations theory



FLRW Cosmology

𝑑𝑠2 = −𝑑𝑡2 + 𝑎2 𝑡
𝑑𝑥2

1 − 𝐾𝑥2
+ 𝑥2 𝑑𝜃2 + sin2 𝜃 𝑑𝜙2 

V. Mukhanov, Physical Foundations of Cosmology, Cambridge University Press (2005).
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• The homogeneity and isotropy 
conditions of the Cosmological 
Principle lead to the Robertson-
Walker metric 

• Among the problems of the FLRW 
cosmology, one finds:
• Horizon problem
• Flatness problem



Cosmic Inflation: Basic concepts 
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• Cosmic inflation is an initial era in which 
the expansion rate ሶ𝑎 is accelerating. 

• The evolution of the scalar field driving 
inflation is given by:

Credit: T.-P. Cheng, A College Course on Relativity and Cosmology, Oxford University Press (2015). 

D. H Lyth and A. R. Liddle, The Primordial Density Perturbation. Cosmology, Inflation and the Origin of Structure.
Cambridge University Press (2009).
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Cosmic Inflation: Basic concepts 

• The slow-roll condition implies the 
following flatness conditions on 
the potential 𝑉(𝜑) 

• If the slow-roll condition is valid, 
then inflation is guaranteed.
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Credit: Adapted from J. Levenga, Slow-roll inflation and the Hamilton-Jacobi Formalism, University of Groningen (2019). 



Roberston-Walker Metric and scalar 
perturbations

V. Mukhanov, Sov. Phys. JETP 67, 1297 (1988).
V. Mukhanov, H. Feldman, and R. Brandenberger, Physics Reports 215, 203 (1992).
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The most general form of the line element for a background described by the 
Robertson-Walker metric and scalar perturbations is given by

d𝑠2 = 𝑎2 𝜂 1 + 2𝜙 d𝜂2 − 2𝐵|𝑖d𝑥𝑖d𝜂 − 1 − 2𝜓 𝛾𝑖𝑗 + 2𝐸|𝑖𝑗 d𝑥𝑖d𝑥𝑗

One of the gauge-invariant quantities that can be constructed is the so-called 
Mukhanov-Sasaki variable 𝑣, which reads

𝑣 = 𝑎 𝛿𝜑 +
𝜑0

′

ℋ
𝜓



Gravity + Scalar field action
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𝑧 = 𝑎𝑀Pl 2𝜖/𝑐𝑠

V. Mukhanov, Sov. Phys. JETP 67, 1297 (1988).
V. Mukhanov, H. Feldman, and R. Brandenberger, Physics Reports 215, 203 (1992).
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In terms of the Mukhanov-Sasaki variable 
𝑣, the action of gravity + scalar field, up to 
second order in the perturbations reads:

with

Misao Sasaki
(1952)

Viatcheslav Mukhanov
(1956)



Quantization of cosmological perturbations

V. Mukhanov, Sov. Phys. JETP 67, 1297 (1988).
V. Mukhanov, H. Feldman, and R. Brandenberger, Physics Reports 215, 203 (1992).
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The power spectrum 𝒫 ℛ(𝑘) of the comoving curvature perturbation ℛ reads 

ℛ2 =
ො𝑣2

𝑧2
0 ℛ2(𝜂, 𝒙) 0 = නd ln 𝑘  𝒫 ℛ(𝑘)

After quantizing 𝑣, one can show that the corresponding field operator ො𝑣  
satisfies the equation

ො𝑣′′ − 𝑐𝑠
2∇2 ො𝑣 −

𝑧′′

𝑧
ො𝑣 = 0 



II. Dynamical collapse models



Gaussian continuous measurements
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K. Jacobs, Quantum Measurement Theory and its Applications (Cambridge University Press, 2014).
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A Gaussian quantum continuous measurement of an operator ො𝑎 is 
described through the SDE:

A measurement record 
𝑇

Δ𝑡

Measurement process

encodes the definition of a 
continuous measurement. 



Continuous Spontaneous Localization (CSL) 
model
 

Credit: M. Carlesso, S. Donadi, L. Ferialdi, M. Paternostro, H. Ulbricht and A. Bassi, Nat. Phys. 18, 243-250 (2022)
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The most robust dynamical collapse model is the CSL 
model, which in its mass proportional version is 
defined at the level of the wavefunction through the 
following SDE: 

−
𝛾

2𝑚0
2 න d𝒙 𝑀 𝒙 − 𝑀 𝒙

2
 d𝑡 | ۧ𝜓

𝑀 𝒙 =
𝑚

2𝜋𝑟𝑐

3 න d𝒚𝑒
−

|𝒙−𝒚|2

2𝑟𝑐
2 ො𝑎†(𝒚) ො𝑎(𝒚)where

𝜆GRW = 10−16 s−1



Motivations to incorporate collapse models
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• How to generalize collapse 
models within a relativistic 
context?

• The Cosmological Principle leads 
to a natural notion of time. 

• Concepts such as observers and 
detectors do not have precise 
definitions in a primordial 
Universe. 

• Collapse models do not depend 
on the existence of an observer. 

• Collapse models are falsifiable. 

Credit: https://hubblesite.org/science/galaxies



Collapse models within a cosmological 
context 
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• Bounds for the parameters of 
the CSL model from heating of 
the intergalactic medium.

• Candidates to implement an 
effective cosmological constant.

• Effects of collapse models 
during inflation and the 
emergence of cosmic structure.



A cosmological arena for collapse models
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Since the mass density is not uniquely defined 
in general relativity, this model [CSL] is 
ambiguous when applied to cosmology. We 
however show that most natural choices of the 
density contrast already make current 
measurements of the cosmic microwave 
background incompatible with other laboratory 
experiments.

Credit: J. Martin and V. Vennin, Phys. Rev. Lett. 124, 080402 (2020).



Effects of Dynamical Collapse Models in 
Cosmology

𝐻total = 𝐻 + 𝐻DC

𝐻DC
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S. L. Adler and A. Bassi, J. Phys. A 40, 15083 (2007).

We implemented the effects of dynamical collapse models in standard Cosmology, by 
defining the total Hamiltonian as:

Employing an interaction picture approach, and making use of the noise trick of the 
CSL model, we defined the stochastic Hamiltonian:

where



Correction to the Power Spectrum of ℛ 
during Inflation

ℋDC
𝐼 𝜂, 𝒙 =
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We set the collapse operator to be the Hamiltonian density of standard Cosmology, 
which during the inflationary epoch is given by

The leading order correction to the power spectrum 𝒫 ℛ of ℛ is 

Δ𝒫 ℛ ≈
17

36
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𝜆 < 107 s−1

A. Gundhi, JLGR, M. Carlesso, A. Bassi, Phys. Rev. Lett. 127, 091302 (2021).



J. Martin and V. Vennin, Phys. Rev. Lett. 124, 080402 (2020).
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Correction to the Power Spectrum of ℛ 
during the Radiation Dominated Era
Extending the previous analysis to the radiation dominated era, the collapse operator 
now reads:

During this epoch, the leading order correction to the power spectrum 𝒫 ℛ of ℛ is now 
given by 

𝜆 < 1064 s−1



Summary and Conclusions

Inflation Radiation dominated era
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* Compared to 𝜆 < 5.6 × 10−90 s−1 of previous works.

A. Gundhi, JLGR, M. Carlesso, A. Bassi, Phys. Rev. Lett. 127, 091302 (2021).
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Thank you for your attention
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