Motion of an electron through vacuum fluctuations

By Anirudh Gundhi

Based on PRA 107 (2023) 6, 062801 (arXiv:2301.11946, with Angelo Bassi)
Università degli Studi di Trieste

Trento, July 03-07, 2023

Does an electron in a superposition of two different spatial locations decohere due to zero point fluctuations?

Interaction with the radiation field

(1) The Lagrangian for a non-relativistic electron interacting with the radiation field is given by

$$
\begin{equation*}
L(t)=\frac{1}{2} m \dot{\mathbf{r}}_{e}^{2}-V_{0}\left(\mathbf{r}_{e}\right)+\frac{\epsilon_{0}}{2} \int d^{3} r\left(\mathbf{E}_{\perp}^{2}(\mathbf{r})-c^{2} \mathbf{B}^{2}(\mathbf{r})\right)-e \mathbf{r}_{e} \mathbf{E}_{\perp}\left(\mathbf{r}_{e}\right) . \tag{1}
\end{equation*}
$$

Interaction with the radiation field

(1) The Lagrangian for a non-relativistic electron interacting with the radiation field is given by

$$
\begin{equation*}
L(t)=\frac{1}{2} m \dot{\mathbf{r}}_{e}^{2}-V_{0}\left(\mathbf{r}_{e}\right)+\frac{\epsilon_{0}}{2} \int d^{3} r\left(\mathbf{E}_{\perp}^{2}(\mathbf{r})-c^{2} \mathbf{B}^{2}(\mathbf{r})\right)-e \mathbf{r}_{e} \mathbf{E}_{\perp}\left(\mathbf{r}_{e}\right) . \tag{1}
\end{equation*}
$$

(2) The goal is to describe the effective dynamics of the charged particle, having taken into account its interaction with the radiation field environment.

Interaction with the radiation field

(1) The Lagrangian for a non-relativistic electron interacting with the radiation field is given by

$$
\begin{equation*}
L(t)=\frac{1}{2} m \dot{\mathbf{r}}_{e}^{2}-V_{0}\left(\mathbf{r}_{e}\right)+\frac{\epsilon_{0}}{2} \int d^{3} r\left(\mathbf{E}_{\perp}^{2}(\mathbf{r})-c^{2} \mathbf{B}^{2}(\mathbf{r})\right)-e \mathbf{r}_{e} \mathbf{E}_{\perp}\left(\mathbf{r}_{e}\right) . \tag{1}
\end{equation*}
$$

(2) The goal is to describe the effective dynamics of the charged particle, having taken into account its interaction with the radiation field environment.
(3) This can be achieved by deriving the reduced density matrix for the electron.

Density matrix from path integral

(1) From the path integral formalism we have

$$
\begin{align*}
\left\langle x_{\mathrm{f}}\right| \hat{U}\left(t ; t_{\mathrm{i}}\right)\left|x_{\mathrm{i}}\right\rangle & =\int_{\substack{x(t)=x_{f}, x\left(t_{\mathrm{i}}\right)=x_{i}}} D[x] e^{i S / \hbar}, \\
\psi\left(x_{f}, t\right) & =\int_{x(t)=x_{f}} D[x] e^{i S / \hbar} \psi\left(x_{i}, t_{i}\right), \\
\left\langle x_{f}^{\prime}\right| \hat{\rho}\left|x_{f}\right\rangle & =\int_{\substack{x(t)=x_{f}, x^{\prime}(t)=x_{f}^{\prime}}} D\left[x, x^{\prime}\right] e^{\frac{i}{\hbar}\left(S\left[x^{\prime}\right]-S[x]\right)} \psi\left(x_{i}^{\prime}\right) \psi^{*}\left(x_{i}\right) . \tag{2}
\end{align*}
$$

Density matrix from path integral

(1) From the path integral formalism we have

$$
\begin{align*}
\left\langle x_{\mathrm{f}}\right| \hat{U}\left(t ; t_{\mathrm{i}}\right)\left|x_{\mathrm{i}}\right\rangle & =\int_{\substack{x(t)=x_{f}, x\left(t_{i}\right)=x_{i}}} D[x] e^{i S / \hbar}, \\
\psi\left(x_{f}, t\right) & =\int_{x(t)=x_{f}} D[x] e^{i S / \hbar} \psi\left(x_{i}, t_{i}\right), \\
\left\langle x_{f}^{\prime}\right| \hat{\rho}\left|x_{f}\right\rangle & =\int_{\substack{x(t)=x_{f}, x^{\prime}(t)=x_{f}^{\prime}}} D\left[x, x^{\prime}\right] e^{\frac{i}{\hbar}\left(S\left[x^{\prime}\right]-S[x]\right)} \psi\left(x_{i}^{\prime}\right) \psi^{*}\left(x_{i}\right) . \tag{2}
\end{align*}
$$

(2) Separate the environmental degrees of freedom

$$
\begin{align*}
& \left\langle x_{f}^{\prime} ; \Pi^{f \prime}\right| \hat{\rho}(t)\left|x_{f} ; \Pi^{f}\right\rangle=\int_{\substack{x(t)=x_{f}, x^{\prime}(t)=x_{f}^{\prime}}} D\left[x, x^{\prime}\right] e^{\frac{i}{\hbar}\left(S_{\mathbf{s}}\left[x^{\prime}\right]-S_{\mathbf{s}}[x]\right)} \rho_{\mathbf{s}}^{i} \times \\
& \times \int_{\substack{\Pi_{n}(t)=\Pi^{f} \\
\Pi^{\prime}(t)=\Pi^{\prime}}} D\left[\mu, \mu^{\prime}\right] e^{\frac{i}{\hbar}\left(S_{\mathrm{EM}}\left[\mu^{\prime}\right]+S_{\mathrm{int}}\left[x^{\prime}, \Pi^{\prime}\right]-S_{\mathrm{EM}}[\mu]-S_{\mathrm{int}}[x, \Pi]\right)} \rho_{\mathrm{EM}}^{i} . \tag{3}
\end{align*}
$$

Reduced density matrix

(1) The trace over the environmental degrees of freedom can be calculated since it simply corresponds to computing a Gaussian functional integral.

Reduced density matrix

(1) The trace over the environmental degrees of freedom can be calculated since it simply corresponds to computing a Gaussian functional integral.
(2) Doing that we get the formal expression for reduced density matrix of the electron

$$
\begin{equation*}
\left\langle x_{f}^{\prime}\right| \hat{\rho}_{r}(t)\left|x_{\mathbf{f}}\right\rangle=\int_{\substack{x(t)=x_{f}, x^{\prime}(t)=x_{f}^{\prime}}} D\left[x, x^{\prime}\right] e^{\frac{i}{\hbar}\left(s_{\mathbf{s}}\left[x^{\prime}\right]-S_{\mathbf{s}}[x]+S_{\mathbf{F}}\left[x, x^{\prime}\right]\right)} \rho_{r}\left(x_{i}^{\prime}, x_{i}, t_{i}\right), \tag{4}
\end{equation*}
$$

Reduced density matrix

(1) The trace over the environmental degrees of freedom can be calculated since it simply corresponds to computing a Gaussian functional integral.
(2) Doing that we get the formal expression for reduced density matrix of the electron

$$
\begin{equation*}
\left\langle x_{\boldsymbol{f}}^{\prime}\right| \hat{\rho}_{r}(t)\left|x_{\boldsymbol{f}}\right\rangle=\int_{\substack{x(t)=x_{\boldsymbol{f}} \\ x^{\prime}(t)=x_{f}^{\prime}}} D\left[x, x^{\prime}\right] e^{\frac{i}{\hbar}\left(s_{\boldsymbol{s}}\left[x^{\prime}\right]-S_{\mathbf{s}}[x]+S_{\mathbf{F}}\left[x, x^{\prime}\right]\right)} \rho_{r}\left(x_{i}^{\prime}, x_{i}, t_{i}\right), \tag{4}
\end{equation*}
$$

(3) where the so called influence functional $S_{\text {IF }}$ is given by

$$
S_{\mathrm{IF}}\left[x, x^{\prime}\right]=\frac{1}{2} \int_{t_{i}}^{t} d t_{1} d t_{2}\left[x\left(t_{1}\right) \quad x^{\prime}\left(t_{1}\right)\right] \cdot M\left(t_{1} ; t_{2}\right) \cdot\left[\begin{array}{c}
x\left(t_{2}\right) \tag{5}\\
x^{\prime}\left(t_{2}\right)
\end{array}\right] .
$$

Reduced density matrix

(1) The trace over the environmental degrees of freedom can be calculated since it simply corresponds to computing a Gaussian functional integral.
(2) Doing that we get the formal expression for reduced density matrix of the electron

$$
\begin{equation*}
\left\langle x_{f}^{\prime}\right| \hat{\rho}_{r}(t)\left|x_{f}\right\rangle=\int_{\substack{x(t)=x_{f} \\ x^{\prime}(t)=x_{f}^{\prime}}} D\left[x, x^{\prime}\right] e^{\frac{i}{\hbar}\left(s_{\mathbf{s}}\left[x^{\prime}\right]-S_{\mathbf{s}}[x]+S_{\mathbf{F}}\left[x, x^{\prime}\right]\right)} \rho_{r}\left(x_{i}^{\prime}, x_{i}, t_{i}\right), \tag{4}
\end{equation*}
$$

(3) where the so called influence functional $S_{\text {IF }}$ is given by

$$
S_{\mathrm{IF}}\left[x, x^{\prime}\right]=\frac{1}{2} \int_{t_{i}}^{t} d t_{1} d t_{2}\left[x\left(t_{1}\right) \quad x^{\prime}\left(t_{1}\right)\right] \cdot M\left(t_{1} ; t_{2}\right) \cdot\left[\begin{array}{c}
x\left(t_{2}\right) \tag{5}\\
x^{\prime}\left(t_{2}\right)
\end{array}\right] .
$$

4 with ($\Pi_{\mathrm{E}}:=-\Pi / \epsilon_{0}$)

$$
M\left(t_{1} ; t_{2}\right)=\frac{i e^{2}}{\hbar}\left[\begin{array}{cc}
\left\langle\tilde{\mathcal{T}}\left\{\hat{\Pi}_{\mathbf{E}}\left(t_{1}\right) \hat{\Pi}_{\mathbf{E}}\left(t_{2}\right)\right\}\right\rangle_{0} & -\left\langle\hat{\Pi}_{\mathbf{E}}\left(t_{1}\right) \hat{\Pi}_{\mathbf{E}}\left(t_{2}\right)\right\rangle_{0} \tag{6}\\
-\left\langle\hat{\Pi}_{\mathbf{E}}\left(t_{2}\right) \hat{\Pi}_{\mathbf{E}}\left(t_{1}\right)\right\rangle_{0} & \left\langle\mathcal{T}\left\{\hat{\Pi}_{\mathbf{E}}\left(t_{1}\right) \hat{\Pi}_{\mathbf{E}}\left(t_{2}\right)\right\}\right\rangle_{0}
\end{array}\right]
$$

Time evolution of the reduced density matrix

The time evolution of the reduced density matrix takes the standard basis independent form

$$
\begin{align*}
\delta_{t} \hat{\rho}_{r}= & -\frac{i}{\hbar}\left[\hat{H}_{s}, \hat{\rho}_{r}\right] \\
& -\frac{1}{\hbar} \int_{0}^{t-t_{i}} d \tau \mathcal{N}(t ; t-\tau)\left[\hat{x},\left[\hat{x}_{H_{s}}(-\tau), \hat{\rho}_{r}(t)\right]\right] \\
& +\frac{i}{2 \hbar} \int_{0}^{t-t_{i}} d \tau \mathcal{D}(t ; t-\tau)\left[\hat{x},\left\{\hat{x}_{H_{s}}(-\tau), \hat{\rho}_{r}(t)\right\}\right] \tag{7}\\
\mathcal{N}\left(t_{1} ; t_{2}\right): & =\frac{e^{2}}{2 \hbar}\left\langle\left\{\hat{\Pi}_{\mathbf{E}}\left(t_{1}\right), \hat{\Pi}_{\mathbf{E}}\left(t_{2}\right)\right\}\right\rangle_{0} \\
\mathcal{D}\left(t_{1} ; t_{2}\right): & =\frac{i e^{2}}{\hbar}\left\langle\left[\hat{\Pi}_{\mathbf{E}}\left(t_{1}\right), \hat{\Pi}_{\mathbf{E}}\left(t_{2}\right)\right]\right\rangle_{0} \theta\left(t_{1}-t_{2}\right) \tag{8}
\end{align*}
$$

Kernels

(1) From standard quantization of the radiation field we have

$$
\begin{equation*}
\hat{\Pi}_{\mathbf{E}}(\mathbf{r}, t)=i\left(\frac{\hbar c}{2 \epsilon_{0}(2 \pi)^{3}}\right)^{\frac{1}{2}} \int d^{3} k \sqrt{k} \sum_{\varepsilon} \hat{a}_{\varepsilon}(\mathbf{k}) e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)} \varepsilon_{\mathbf{k}}^{x}+\text { c.c. } \tag{9}
\end{equation*}
$$

Kernels

(1) From standard quantization of the radiation field we have

$$
\begin{equation*}
\hat{\Pi}_{\mathbf{E}}(\mathbf{r}, t)=i\left(\frac{\hbar c}{2 \epsilon_{0}(2 \pi)^{3}}\right)^{\frac{1}{2}} \int d^{3} k \sqrt{k} \sum_{\varepsilon} \hat{\mathbf{a}}_{\varepsilon}(\mathbf{k}) e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)} \varepsilon_{\mathbf{k}}^{X}+\text { c.c } . \tag{9}
\end{equation*}
$$

(2) Using the expression above we can calculate the two-point correlations

$$
\begin{align*}
& \left\langle\hat{\Pi}_{\mathbf{E}}\left(x\left(t_{1}\right), t_{1}\right) \hat{\Pi}_{\mathbf{E}}\left(x\left(t_{2}\right), t_{2}\right)\right\rangle_{0} \\
& =\frac{-i \hbar c}{2 \epsilon_{0} 4 \pi^{2}} \hat{\square}\left\{\frac{1}{r} \int_{0}^{\infty} d k e^{-i \omega_{k} \tau}\left(e^{i k r}-e^{-i k r}\right) e^{-\omega_{k} / \omega_{\max }}\right\} \\
& =\frac{\hbar c}{\pi^{2} \epsilon_{0}} \frac{1}{\left(r^{2}-c^{2}(\tau-i \epsilon)^{2}\right)^{2}}, \quad \epsilon:=\frac{1}{\omega_{\max }} . \tag{10}
\end{align*}
$$

Kernels

(1) From standard quantization of the radiation field we have

$$
\begin{equation*}
\hat{\Pi}_{\mathbf{E}}(\mathbf{r}, t)=i\left(\frac{\hbar c}{2 \epsilon_{0}(2 \pi)^{3}}\right)^{\frac{1}{2}} \int d^{3} k \sqrt{k} \sum_{\varepsilon} \hat{\mathbf{a}}_{\varepsilon}(\mathbf{k}) e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)} \varepsilon_{\mathbf{k}}^{X}+\text { c.c } . \tag{9}
\end{equation*}
$$

(2) Using the expression above we can calculate the two-point correlations

$$
\begin{align*}
& \left\langle\hat{\Pi}_{\mathbf{E}}\left(x\left(t_{1}\right), t_{1}\right) \hat{\Pi}_{\mathbf{E}}\left(x\left(t_{2}\right), t_{2}\right)\right\rangle_{0} \\
& =\frac{-i \hbar c}{2 \epsilon_{0} 4 \pi^{2}} \hat{\square}\left\{\frac{1}{r} \int_{0}^{\infty} d k e^{-i \omega_{k} \tau}\left(e^{i k r}-e^{-i k r}\right) e^{-\omega_{k} / \omega_{\max }}\right\} \\
& =\frac{\hbar c}{\pi^{2} \epsilon_{0}} \frac{1}{\left(r^{2}-c^{2}(\tau-i \epsilon)^{2}\right)^{2}}, \quad \epsilon:=\frac{1}{\omega_{\max }} . \tag{10}
\end{align*}
$$

(3) where

$$
\begin{equation*}
\tau:=t_{1}-t_{2}, \quad r:=\left|x\left(t_{1}\right)-x\left(t_{2}\right)\right|, \quad \hat{\square}:=-\frac{1}{c^{2}} \partial_{\tau}^{2}+\partial_{r}^{2} . \tag{11}
\end{equation*}
$$

Kernels

Noise kernel \mathcal{N}

$$
\begin{equation*}
\mathcal{N}(\tau)=\frac{e^{2}}{\pi^{2} \epsilon_{0} c^{3}} \frac{\left(\epsilon^{4}-6 \epsilon^{2} \tau^{2}+\tau^{4}\right)}{\left(\epsilon^{2}+\tau^{2}\right)^{4}} \tag{12}
\end{equation*}
$$

Dissipation kernel \mathcal{D}

$$
\begin{equation*}
\mathcal{D}(\tau)=\frac{e^{2}}{3 \pi \epsilon_{0} c^{3}} \theta(\tau) \frac{d^{3}}{d \tau^{3}} \delta_{\epsilon}(\tau), \quad \delta_{\epsilon}(\tau)=\frac{1}{\pi} \frac{d}{d \tau} \tan ^{-1}(\tau / \epsilon) . \tag{13}
\end{equation*}
$$

Decoherence

$$
\begin{equation*}
\rho_{r}\left(x^{\prime}, x, t\right)=\exp \left(-\frac{\left(x^{\prime}-x\right)^{2}}{\hbar} \mathcal{N}_{2}(t)\right) \rho_{r}\left(x^{\prime}, x, 0\right) \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{N}_{2}(t)=\int_{0}^{t} d \tau \int_{0}^{\tau} d \tau^{\prime} \mathcal{N}\left(\tau^{\prime}\right) \tag{15}
\end{equation*}
$$

Decoherence

At large times, the length scales over which the superposition can be maintained $\left(I_{x}(t)\right)$ scales with the cutoff

$$
\begin{align*}
& \rho_{r}\left(x^{\prime}, x, t\right)=\exp \left\{-\left(\frac{x^{\prime}-x}{I_{x}}\right)^{2}\right\} \rho_{r}\left(x^{\prime}, x, 0\right), \tag{16}\\
& I_{x}(t)=\sqrt{\frac{3 \pi c^{2}}{2 \alpha \omega_{\max }^{2}} \cdot \frac{\left(t^{2}+\epsilon^{2}\right)^{2}}{t^{4}+3 t^{2} \epsilon^{2}}} t \stackrel{>}{=} \sqrt{\frac{3 \pi}{2 \alpha}} \frac{c}{\omega_{\max }} . \tag{17}
\end{align*}
$$

Decoherence

At large times, the length scales over which the superposition can be maintained $\left(I_{x}(t)\right)$ scales with the cutoff

$$
\begin{align*}
& \rho_{r}\left(x^{\prime}, x, t\right)=\exp \left\{-\left(\frac{x^{\prime}-x}{I_{x}}\right)^{2}\right\} \rho_{r}\left(x^{\prime}, x, 0\right), \tag{18}\\
& I_{x}(t)=\sqrt{\frac{3 \pi c^{2}}{2 \alpha \omega_{\max }^{2}} \cdot \frac{\left(t^{2}+\epsilon^{2}\right)^{2}}{t^{4}+3 t^{2} \epsilon^{2}}} t \stackrel{ }{\underline{2}} \epsilon \sqrt{\frac{3 \pi}{2 \alpha}} \frac{c}{\omega_{\max }} . \tag{19}
\end{align*}
$$

(1) Should we have a small value of the cutoff, as suggested by Barone and Caldeira in Phys. Rev. A 43, 57 (1991))?

Decoherence

At large times, the length scales over which the superposition can be maintained $\left(I_{x}(t)\right)$ scales with the cutoff

$$
\begin{align*}
& \rho_{r}\left(x^{\prime}, x, t\right)=\exp \left\{-\left(\frac{x^{\prime}-x}{I_{x}}\right)^{2}\right\} \rho_{r}\left(x^{\prime}, x, 0\right), \tag{18}\\
& I_{x}(t)=\sqrt{\frac{3 \pi c^{2}}{2 \alpha \omega_{\max }^{2}} \cdot \frac{\left(t^{2}+\epsilon^{2}\right)^{2}}{t^{4}+3 t^{2} \epsilon^{2}}} t \stackrel{ }{\underline{2}} \epsilon \sqrt{\frac{3 \pi}{2 \alpha}} \frac{c}{\omega_{\max }} . \tag{19}
\end{align*}
$$

(1) Should we have a small value of the cutoff, as suggested by Barone and Caldeira in Phys. Rev. A 43, 57 (1991))?
(2) Or does the density matrix describe false decoherence, as suggested by Unruh in Relativistic Quantum Measurement and Decoherence (False Loss of Coherence, pp. 125-140)?

False decoherence

(1) We consider the situation in which the charged particle interacts with vacuum fluctuations for a finite period of time

$$
\begin{equation*}
e^{\prime}=e f(t), \quad f(0)=f(T)=0, \quad f(0<t<T)=1 \tag{20}
\end{equation*}
$$

False decoherence

(1) We consider the situation in which the charged particle interacts with vacuum fluctuations for a finite period of time

$$
\begin{equation*}
e^{\prime}=e f(t), \quad f(0)=f(T)=0, \quad f(0<t<T)=1 \tag{20}
\end{equation*}
$$

(2) The Noise kernel transforms as $\mathcal{N} \rightarrow \tilde{\mathcal{N}}$

$$
\begin{equation*}
\tilde{\mathcal{N}}=f\left(t_{1}\right) f\left(t_{2}\right) \mathcal{N}\left(t_{1} ; t_{2}\right)=f\left(t_{1}\right) f\left(t_{2}\right) \mathcal{N}\left(t_{1}-t_{2}\right) \tag{21}
\end{equation*}
$$

False decoherence

(1) We consider the situation in which the charged particle interacts with vacuum fluctuations for a finite period of time

$$
\begin{equation*}
e^{\prime}=e f(t), \quad f(0)=f(T)=0, \quad f(0<t<T)=1 \tag{20}
\end{equation*}
$$

(2) The Noise kernel transforms as $\mathcal{N} \rightarrow \tilde{\mathcal{N}}$

$$
\begin{equation*}
\tilde{\mathcal{N}}=f\left(t_{1}\right) f\left(t_{2}\right) \mathcal{N}\left(t_{1} ; t_{2}\right)=f\left(t_{1}\right) f\left(t_{2}\right) \mathcal{N}\left(t_{1}-t_{2}\right) \tag{21}
\end{equation*}
$$

(3) Coherence is not lost irreversibly since the coherence length becomes infinite after switching off the interaction

$$
\begin{equation*}
\tilde{I}_{x}(T)=\left(\frac{2}{f^{2}(0)+f^{2}(T)}\right)^{\frac{1}{2}}\left(\frac{3 \pi}{2 \alpha}\right)^{\frac{1}{2}} \frac{1}{k_{\max }} . \tag{22}
\end{equation*}
$$

Radiation reaction

(1) Neutral particle $m \ddot{x}=-\frac{\partial}{\partial x} V(x)=\mathrm{F}_{\text {ext }}$.
(2) Charged particle $m_{R} \ddot{x}=\mathrm{F}_{\text {ext }}+\frac{2 \alpha \hbar}{3 c^{2}} \ddot{x}$.

Features of the Abraham-Lorentz equation

$$
m_{\mathrm{R}} \ddot{x}=\mathrm{F}_{\mathrm{ext}}+\frac{2 \alpha \hbar}{3 c^{2}} \dddot{x}
$$

(1) The radiation reaction term can be viewed as a frictional force (for SHM, $\dddot{x} \approx-\omega_{0} \dot{x}$.

Features of the Abraham-Lorentz equation

$$
m_{\mathrm{R}} \ddot{x}=\mathrm{F}_{\mathrm{ext}}+\frac{2 \alpha \hbar}{3 c^{2}} \dddot{x}
$$

(1) The radiation reaction term can be viewed as a frictional force (for SHM, $\left.\dddot{x} \approx-\omega_{0} \dot{x}\right)$.
(2) For a constant $\mathrm{F}_{\text {ext }}$, such as that experienced in a uniform gravitational field, one can see that the particular solution of the differential equation is such that the radiation reaction vanishes.

Features of the Abraham-Lorentz equation

$$
m_{\mathrm{R}} \ddot{x}=\mathrm{F}_{\mathrm{ext}}+\frac{2 \alpha \hbar}{3 c^{2}} \dddot{x}
$$

(1) The radiation reaction term can be viewed as a frictional force (for SHM, $\left.\dddot{x} \approx-\omega_{0} \dot{x}\right)$.
(2) For a constant $\mathrm{F}_{\text {ext }}$, such as that experienced in a uniform gravitational field, one can see that the particular solution of the differential equation is such that the radiation reaction vanishes.
(3) Does that mean that there is no radiation emitted for uniform acceleration? What about Larmor's formula?

Features of the Abraham-Lorentz equation

$$
m_{\mathrm{R}} \ddot{x}=\mathrm{F}_{\mathrm{ext}}+\frac{2 \alpha \hbar}{3 c^{2}} \dddot{x}
$$

(1) The radiation reaction term can be viewed as a frictional force (for SHM, $\left.\dddot{x} \approx-\omega_{0} \dot{x}\right)$.
(2) For a constant $\mathrm{F}_{\text {ext }}$, such as that experienced in a uniform gravitational field, one can see that the particular solution of the differential equation is such that the radiation reaction vanishes.
(3) Does that mean that there is no radiation emitted for uniform acceleration? What about Larmor's formula?
(4) $\int_{x_{1}}^{x_{2}} \frac{2 \alpha \hbar}{3 c^{2}} \dddot{x} d x=\int_{t_{1}}^{t_{2}} \frac{2 \alpha \hbar}{3 c^{2}} \dot{a} \cdot v d t=\underbrace{-\int_{t_{1}}^{t_{2}} \frac{2 \alpha \hbar}{3 c^{2}} a \cdot a d t}_{\text {Larmor's formula }}+\underbrace{a_{t_{2}} v_{t_{2}}-a_{t_{1}} v_{t_{1}}}_{\text {Schott term }}$.

The problem

(1) Classical mechanics

$$
\begin{equation*}
m_{\mathrm{R}} \ddot{x}=-\frac{\partial}{\partial x} V(x)+\frac{2 \alpha \hbar}{3 c^{2}} \dddot{x} . \tag{23}
\end{equation*}
$$

(2) The runaway solution $(V(x)=0)$

$$
\begin{equation*}
m_{\mathbf{R}} \ddot{x}=m_{\mathbf{R}} \tau_{0} \dddot{x} \Longrightarrow a(t)=a\left(t_{0}\right) \exp \left(t / \tau_{0}\right) . \tag{24}
\end{equation*}
$$

The QM Abraham-Lorentz equation

(1) Quantum mechanics

$$
\begin{equation*}
m_{\mathrm{R}} \frac{d^{2}}{d t^{2}}\langle\hat{x}\rangle=-\left\langle\hat{V},_{x}\right\rangle-\frac{2 \alpha \hbar}{3 c^{2}} \operatorname{Tr}\left(\frac{i}{\hbar^{3}} \hat{\rho}_{r}(t)\left[\hat{\mathrm{H}}_{s},\left[\hat{\mathrm{H}}_{s},\left[\hat{\mathrm{H}}_{s}, \hat{x}\right]\right]\right]\right) \tag{25}
\end{equation*}
$$

The QM Abraham-Lorentz equation

(1) Quantum mechanics

$$
\begin{equation*}
m_{\mathrm{R}} \frac{d^{2}}{d t^{2}}\langle\hat{x}\rangle=-\left\langle\hat{V},_{x}\right\rangle-\frac{2 \alpha \hbar}{3 c^{2}} \operatorname{Tr}\left(\frac{i}{\hbar^{3}} \hat{\rho}_{r}(t)\left[\hat{\mathrm{H}}_{s},\left[\hat{\mathrm{H}}_{s},\left[\hat{\mathrm{H}}_{s}, \hat{x}\right]\right]\right]\right) . \tag{25}
\end{equation*}
$$

(2) No runaways $(\hat{V}(x)=0)$

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}}\langle\hat{x}\rangle=0 \tag{26}
\end{equation*}
$$

The QM Abraham-Lorentz equation

(1) Quantum mechanics

$$
\begin{equation*}
m_{\mathrm{R}} \frac{d^{2}}{d t^{2}}\langle\hat{x}\rangle=-\left\langle\hat{V},{ }_{x}\right\rangle-\frac{2 \alpha \hbar}{3 c^{2}} \operatorname{Tr}\left(\frac{i}{\hbar^{3}} \hat{\rho}_{r}(t)\left[\hat{\mathrm{H}}_{s},\left[\hat{\mathrm{H}}_{s},\left[\hat{\mathrm{H}}_{s}, \hat{x}\right]\right]\right]\right) \tag{25}
\end{equation*}
$$

(2) No runaways $(\hat{V}(x)=0)$

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}}\langle\hat{x}\rangle=0 \tag{26}
\end{equation*}
$$

(3) When $\hat{V}(x) \neq 0$ the two solutions match exactly

$$
\begin{equation*}
m_{\mathrm{R}} \frac{d^{2}}{d t^{2}}\langle\hat{x}\rangle=-\left\langle\hat{V}(x)_{x}\right\rangle+\frac{2 \alpha \hbar}{3 c^{2}} \frac{d^{3}}{d t^{3}}\langle\hat{x}\rangle . \tag{27}
\end{equation*}
$$

The end

Thanks!

