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Does an electron in a superposition of two di�erent spatial locations decohere due
to zero point �uctuations?
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Interaction with the radiation �eld

1 The Lagrangian for a non-relativistic electron interacting with the radiation
�eld is given by

L(t) =
1

2
mṙ2e − V0(re) +

ε0
2

∫
d3r

(
E
2

⊥(r)− c2B2(r)
)
− ereE⊥(re) . (1)

2 The goal is to describe the e�ective dynamics of the charged particle, having
taken into account its interaction with the radiation �eld environment.

3 This can be achieved by deriving the reduced density matrix for the electron.
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Density matrix from path integral

1 From the path integral formalism we have

〈xf | Û(t; ti) |xi〉 =

∫
x(t)=xf ,
x(ti )=xi

D[x ]e iS/~ ,

ψ(xf , t) =

∫
x(t)=xf

D[x ]e iS/~ψ(xi , ti ) ,

〈x ′f | ρ̂ |xf 〉 =

∫
x(t)=xf ,
x′(t)=x′

f

D[x , x ′]e
i
~ (S[x′]−S[x])ψ(x ′i )ψ

∗(xi ) . (2)

2 Separate the environmental degrees of freedom〈
x ′f ; Πf ′∣∣ ρ̂(t)

∣∣xf; Πf
〉

=

∫
x(t)=xf,
x′(t)=x′

f

D[x , x ′]e
i
~ (SS[x′]−SS[x])ρiS×

×
∫

Π(t)=Πf ,

Π′(t)=Πf ′

D[µ, µ′]e
i
~ (SEM[µ′]+Sint[x′,Π′]−SEM[µ]−Sint[x,Π])ρiEM . (3)

4 / 17 Anirudh Gundhi Trento, July 03-07, 2023



Density matrix from path integral

1 From the path integral formalism we have
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Reduced density matrix

1 The trace over the environmental degrees of freedom can be calculated since
it simply corresponds to computing a Gaussian functional integral.

2 Doing that we get the formal expression for reduced density matrix of the
electron

〈x ′f | ρ̂r (t) |xf〉 =

∫
x(t)=xf,
x′(t)=x′

f

D[x , x ′]e
i
~ (SS[x′]−SS[x]+SIF[x,x′])ρr (x

′
i , xi , ti ) , (4)

3 where the so called in�uence functional SIF is given by

SIF[x , x ′] =
1

2

∫ t

ti

dt1dt2
[
x(t1) x ′(t1)

]
·M(t1; t2) ·

[
x(t2)
x ′(t2)

]
. (5)

4 with (ΠE := −Π/ε0)

M(t1; t2) =
ie2

~

〈T̃ {Π̂E(t1)Π̂E(t2)}
〉
0

−
〈

Π̂E(t1)Π̂E(t2)
〉
0

−
〈

Π̂E(t2)Π̂E(t1)
〉
0

〈
T {Π̂E(t1)Π̂E(t2)}

〉
0

 . (6)
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Time evolution of the reduced density matrix

The time evolution of the reduced density matrix takes the standard basis
independent form

δt ρ̂r =− i

~

[
Ĥs , ρ̂r

]
− 1

~

∫ t−ti

0

dτN (t; t − τ) [x̂ , [x̂Hs (−τ), ρ̂r (t)]]

+
i

2~

∫ t−ti

0

dτD(t; t − τ) [x̂ , {x̂Hs (−τ), ρ̂r (t)}] . (7)

N (t1; t2) :=
e2

2~

〈
{Π̂E(t1), Π̂E(t2)}

〉
0

,

D(t1; t2) :=
ie2

~

〈[
Π̂E(t1), Π̂E(t2)

]〉
0

θ(t1 − t2) . (8)
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Kernels

1 From standard quantization of the radiation �eld we have

Π̂E(r, t) = i

(
~c

2ε0(2π)3

) 1
2
∫

d3k
√
k
∑
ε

âε(k)e i(k·r−ωt)εxk + c.c . (9)

2 Using the expression above we can calculate the two-point correlations

〈Π̂E(x(t1), t1)Π̂E(x(t2), t2)〉0

=
−i~c
2ε04π2

�̂

{
1

r

∫ ∞
0

dke−iωkτ
(
e ikr − e−ikr

)
e−ωk/ωmax

}
=

~c
π2ε0

1

(r2 − c2(τ − iε)2)2
, ε :=

1

ωmax

. (10)

3 where

τ := t1 − t2 , r := |x(t1)− x(t2)| , �̂ := − 1

c2
∂2τ + ∂2r . (11)
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âε(k)e i(k·r−ωt)εxk + c.c . (9)

2 Using the expression above we can calculate the two-point correlations

〈Π̂E(x(t1), t1)Π̂E(x(t2), t2)〉0

=
−i~c
2ε04π2

�̂

{
1

r

∫ ∞
0

dke−iωkτ
(
e ikr − e−ikr

)
e−ωk/ωmax

}
=

~c
π2ε0

1

(r2 − c2(τ − iε)2)2
, ε :=

1

ωmax

. (10)

3 where

τ := t1 − t2 , r := |x(t1)− x(t2)| , �̂ := − 1

c2
∂2τ + ∂2r . (11)

7 / 17 Anirudh Gundhi Trento, July 03-07, 2023



Kernels

Noise kernel N

N (τ) =
e2

π2ε0c3

(
ε4 − 6ε2τ2 + τ4

)
(ε2 + τ2)4

. (12)

Dissipation kernel D

D(τ) =
e2

3πε0c3
θ(τ)

d3

dτ3
δε(τ) , δε(τ) =

1

π

d

dτ
tan−1(τ/ε) . (13)
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Decoherence

ρr (x
′, x , t) = exp

(
− (x ′ − x)2

~
N2(t)

)
ρr (x

′, x , 0) , (14)

where

N2(t) =

∫ t

0

dτ

∫ τ

0

dτ ′N (τ ′) . (15)
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Decoherence

At large times, the length scales over which the superposition can be maintained
(lx(t)) scales with the cuto�

ρr (x
′, x , t) = exp

{
−
(
x ′ − x

lx

)2
}
ρr (x

′, x , 0) , (16)

lx(t) =

√
3πc2

2αω2
max

· (t2 + ε2)2

t4 + 3t2ε2
t�ε
=

√
3π

2α

c

ωmax

. (17)
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2α

c
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. (19)

1 Should we have a small value of the cuto�, as suggested by Barone and
Caldeira in Phys. Rev. A 43, 57 (1991))?

2 Or does the density matrix describe false decoherence, as suggested by Unruh
in Relativistic Quantum Measurement and Decoherence (False Loss of
Coherence, pp. 125�140)?

11 / 17 Anirudh Gundhi Trento, July 03-07, 2023



Decoherence

At large times, the length scales over which the superposition can be maintained
(lx(t)) scales with the cuto�

ρr (x
′, x , t) = exp

{
−
(
x ′ − x

lx

)2
}
ρr (x

′, x , 0) , (18)

lx(t) =

√
3πc2

2αω2
max

· (t2 + ε2)2

t4 + 3t2ε2
t�ε
=

√
3π

2α

c

ωmax

. (19)

1 Should we have a small value of the cuto�, as suggested by Barone and
Caldeira in Phys. Rev. A 43, 57 (1991))?

2 Or does the density matrix describe false decoherence, as suggested by Unruh
in Relativistic Quantum Measurement and Decoherence (False Loss of
Coherence, pp. 125�140)?

11 / 17 Anirudh Gundhi Trento, July 03-07, 2023



False decoherence

1 We consider the situation in which the charged particle interacts with
vacuum �uctuations for a �nite period of time

e′ = ef (t) , f (0) = f (T ) = 0 , f (0 < t < T ) = 1 . (20)

2 The Noise kernel transforms as N → Ñ

Ñ = f (t1)f (t2)N (t1; t2) = f (t1)f (t2)N (t1 − t2) . (21)

3 Coherence is not lost irreversibly since the coherence length becomes in�nite
after switching o� the interaction

l̃x(T ) =

(
2

f 2(0) + f 2(T )

) 1
2
(
3π

2α

) 1
2 1

kmax

. (22)
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Radiation reaction

1 Neutral particle mẍ = − ∂
∂xV (x) = Fext .

2 Charged particle mRẍ = Fext + 2α~
3c2

...
x .
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Features of the Abraham-Lorentz equation

mRẍ = Fext +
2α~
3c2

...
x .

1 The radiation reaction term can be viewed as a frictional force (for SHM,
...
x ≈ −ω0ẋ).

2 For a constant Fext, such as that experienced in a uniform gravitational �eld,
one can see that the particular solution of the di�erential equation is such
that the radiation reaction vanishes.

3 Does that mean that there is no radiation emitted for uniform acceleration?
What about Larmor's formula?

4

∫ x2
x1

2α~
3c2

...
x dx =

∫ t2
t1

2α~
3c2 ȧ · vdt = −

∫ t2

t1

2α~
3c2

a · adt︸ ︷︷ ︸
Larmor's formula

+ at2vt2 − at1vt1︸ ︷︷ ︸
Schott term

.
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The problem

1 Classical mechanics

mRẍ = − ∂

∂x
V (x) +

2α~
3c2

...
x . (23)

2 The runaway solution (V (x) = 0)

mRẍ = mRτ0
...
x =⇒ a(t) = a(t0) exp(t/τ0) . (24)
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The QM Abraham-Lorentz equation

1 Quantum mechanics

mR

d2

dt2
〈x̂〉 = −〈V̂ ,x 〉 −

2α~
3c2

Tr

(
i

~3
ρ̂r (t)

[
Ĥs ,
[
Ĥs ,
[
Ĥs , x̂

]]])
. (25)

2 No runaways (V̂ (x) = 0)

d2

dt2
〈x̂〉 = 0 . (26)

3 When V̂ (x) 6= 0 the two solutions match exactly

mR

d2

dt2
〈x̂〉 = −〈V̂ (x),x 〉+

2α~
3c2

d3

dt3
〈x̂〉 . (27)
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〈x̂〉 . (27)
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The QM Abraham-Lorentz equation

1 Quantum mechanics
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. (25)
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The end

Thanks!
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