Causal fermion systems
and collapse

Felix Finster

Fakultät für Mathematik
Universität Regensburg

Johannes-Kepler-Forschungszentrum
für Mathematik, Regensburg

Workshop Colmo, ECT* Trento
4 July 2023
causal fermion systems can describe non-smooth spacetime structures; in particular, spacetimes involving fluctuating fields
Summary of basic features

- **causal fermion systems** can describe **non-smooth spacetime structures**; in particular, spacetimes involving **fluctuating fields**
- **causal action principle** describes **nonlinear dynamics**
causal fermion systems can describe non-smooth spacetime structures; in particular, spacetimes involving fluctuating fields
causal action principle describes nonlinear dynamics

Main message of this talk:

- gives rise to a relativistic effective collapse model,
- has similarities with CSL model.
Summary of basic features

- **causal fermion systems** can describe **non-smooth spacetime structures**; in particular, spacetimes involving **fluctuating fields**

- **causal action principle** describes **nonlinear dynamics**

Main message of this talk:

- Gives rise to a **relativistic effective collapse model**, and has similarities with **CSL model**.

Specific features:

- **finite propagation speed**, i.e. no superluminal travelling
- **stochastic** and **nonlinear terms** break Lorentz invariance
A few basic structures
A few basic structures

- Complex Hilbert space \((\mathcal{H}, \langle . | . \rangle_{\mathcal{H}})\),
describes “occupied one-particle states” of the system
A few basic structures

- Complex Hilbert space \((\mathcal{H}, \langle \cdot | \cdot \rangle_{\mathcal{H}})\), describes “occupied one-particle states” of the system

- Spacetime \(M\) (topological space),
 Spinor bundle: to every \(x \in M\) there is an associated complex vector space \(S_x M\) (spin space)
A few basic structures

- Complex Hilbert space \((\mathcal{H}, \langle .| . \rangle_{\mathcal{H}})\), describes “occupied one-particle states” of the system
- Spacetime \(M\) (topological space),
 Spinor bundle: to every \(x \in M\) there is an associated complex vector space \(S_{xM}\) (spin space)
- Every Hilbert space vector \(u \in \mathcal{H}\) is represented by a spinorial wave function (physical wave function)

\[
\psi^u \in \Gamma(M, SM) , \quad \psi^u(x) \in S_{xM} .
\]
A few basic structures

- Complex Hilbert space \((\mathcal{H}, \langle .|.| \rangle_\mathcal{H})\), describes “occupied one-particle states” of the system
- Spacetime \(M\) (topological space), Spinor bundle: to every \(x \in M\) there is an associated complex vector space \(S_x M\) (spin space)
- Every Hilbert space vector \(u \in \mathcal{H}\) is represented by a spinorial wave function (physical wave function)

\[\psi^u \in \Gamma(M, SM) , \quad \psi^u(x) \in S_x M . \]

- Basic object for what follows: wave evaluation operator

\[\psi : \mathcal{H} \to \Gamma(M, SM) , \quad \psi u := \psi^u \]
A few basic structures

- Complex Hilbert space \((\mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}})\), describes “occupied one-particle states” of the system
- Spacetime \(M\) (topological space), Spinor bundle: to every \(x \in M\) there is an associated complex vector space \(S_xM\) (spin space)
- Every Hilbert space vector \(u \in \mathcal{H}\) is represented by a spinorial wave function (physical wave function)
 \[\psi^u \in \Gamma(M, SM)\, , \quad \psi^u(x) \in S_xM\, .\]
- Basic object for what follows: wave evaluation operator
 \[\Psi : \mathcal{H} \to \Gamma(M, SM)\, , \quad \Psi u := \psi^u\]
- In simple terms, choosing an orthonormal basis \((e_i)\),
 \[\Psi = (\psi^{e_1}, \psi^{e_2}, \ldots)\]
A few basic structures

- Complex Hilbert space \((\mathcal{H}, \langle . | . \rangle_{\mathcal{H}})\), describes “occupied one-particle states” of the system.

- Spacetime \(M\) (topological space), Spinor bundle: to every \(x \in M\) there is an associated complex vector space \(S_x M\) (spin space).

- Every Hilbert space vector \(u \in \mathcal{H}\) is represented by a spinorial wave function (physical wave function):

\[
\psi^u \in \Gamma(M, SM), \quad \psi^u(x) \in S_x M.
\]

- Basic object for what follows: wave evaluation operator

\[
\Psi : \mathcal{H} \to \Gamma(M, SM), \quad \Psi u := \psi^u
\]

- In simple terms, choosing an orthonormal basis \((e_i)\),

\[
\Psi = (\psi^{e_1}, \psi^{e_2}, \ldots)
\]

Describes the family of all one-particle wave functions of the system.
Example: Dirac spinors in Minkowski vacuum

- Spacetime M is Minkowski space
- Physical wave functions satisfy the Dirac equation
 \[
 (i\gamma^j \partial_j - m) \psi = 0
 \]
- Convenient to combine the Dirac equations for all physical wave functions as
 \[
 (i\gamma^j \partial_j - m) \Psi = 0
 \]
 (recall that $\Psi = (\psi^{e_1}, \psi^{e_2}, \ldots)$, thus one equation for the whole family)
Example: Dirac spinors in Minkowski vacuum

- Physical picture: Dirac’s hole theory

\[\omega \]

\[\vec{k} \]

- Dirac sea
- Particles
- Anti-particles

Felix Finster
Causal fermion systems
This Dirac sea configuration corresponds to a minimizer of the causal action principle.

Basic question: How do interacting systems in Minkowski space look like? (no gravity, . . .)

Proceed step by step. First example: External potential

\[(i \gamma^j \partial_j + e \gamma^j A_j - m) \psi = 0, \quad \Box A = 0.\]

All wave functions “feel” the same potential.
It turns out that the causal action principle gives rise to a plethora of fields.

The number N of fields scales like

$$N \sim \frac{\ell_{\text{min}}}{\varepsilon}$$

with

$$\ell_{\text{Planck}} \ll \ell_{\text{min}} \ll \ell_{\text{macro}}$$

(and ℓ_{Planck} denotes the Planck scale)

Different wave functions “feel” different potentials.

The low-energy wave functions (i.e. $|\omega| \lesssim \ell_{\text{Planck}}^{-1}$) “feel all the potentials at the same time”.
Linearized fields in Minkowski space

- Coupling is made precise by Dirac equation

\[(i \gamma^j \partial_j + \sum_{a=1}^N \gamma_j A^j_a E_a - m) \psi = 0 \]

with integral operators E_a, being nonlocal on the scale ℓ_{min}.

- Recall that classical potentials give rise to gauge phases,

\[\psi(x) \rightarrow e^{i\Lambda(x)} \psi(x). \]

Similarly, the plethora of fields gives rise to many phase factors

\[\psi(x) \rightarrow \sum_{a=1}^N \sum_{\alpha=1}^L e^{i\Lambda_{a\alpha}(x)} \psi_{a\alpha}(x) \]

- leads to dephasing and decoherence effects
Felix Finster
Causal fermion systems

Effective description in Fock spaces

- Is ongoing work with C. Dappiaggi, N. Kamran, M. Reintjes.
System can be described at any time \(t \) by a quantum state \(\omega^t : \mathcal{A} \rightarrow \mathbb{C} \), where \(\mathcal{A} \) is the algebra of observables.

The system can be represented on Fock space \(\mathcal{F} \) (fermionic and bosonic)

\[
\omega^t(A) = \text{Tr}_{\mathcal{F}} (\sigma^t A) \quad \text{if pure state} \quad \langle \psi | A | \psi \rangle
\]

In what follows consider pure state \(|\psi\rangle \in \mathcal{F} \).
Fock state has a **distinguished decomposition**

\[|\Psi\rangle = \sum_{\alpha=1}^{L} |\Psi_\alpha\rangle \]

(related to above **dephasing and decoherence effects**)

Dynamics described by

\[i\partial_t |\Psi\rangle = H |\Psi\rangle \]

with a Hamiltonian of the form

\[H = H_{\text{Dirac}} + H_{\text{stochastic}} + H_{\text{nonlinear}} \]
The stochastic term

\[H_{\text{stochastic}} = B \]

with \(\langle B_i \rangle = 0 \), \(\langle B_i(x) \, dB_j(y) \rangle = \delta_{ij} \, C(x, y) \)

and a covariance \(C(x, y) \).

- Not Markovian, but covariance decays on a small time scale (presumably \(\sim \ell_{\text{min}} \)?)
 similar to “colored noise”
- Strength of stochastic term determined by plethora of background fields \(A_a \).
The nonlinear term

\[|\Psi> = \sum_{\alpha=1}^{L} |\Psi_{\alpha}> \quad \text{distinguished Fock decomposition} \]

\[H_{\text{nonlinear}} \psi = \int_{\mathbb{R}^3} \sum_{\alpha=1}^{L} <\Psi_{\alpha}|A(x)\psi_{\alpha}>_{\mathcal{F}} \psi(x) \, d^3x \]

- position basis is distinguished
- only “diagonal” \(<\Psi_{\alpha}| \cdots |\Psi_{\alpha}>\)-terms come up;
- this leads to a “damping” of the nonlinear term by a scaling factor
 \[\times \frac{1}{L} \]
- this is why nonlinear term becomes very small
Consider causal fermion systems in Minkowski space

Described by family of fermionic wave functions, encoded in wave evaluation operator Ψ

Causal action principle gives rise to plethora of fields

Coupling of these fields yields dephasing and decoherence effects.

Relativistic model: Dirac dynamics + corrections
But corrections are not relativistically covariant (depend on microstructure of spacetime).

Similar to CSL model, we obtain a stochastic and a nonlinear term; detailed scalings still need be worked out (ongoing work also with J. Kleiner and C. Paganini)
www.causal-fermion-system.com

Thank you for your attention!
The role of causality

\[\psi(x) : \mathcal{H} \to S_x \]
wave evaluation operator

\[P(x, y) := \psi(x) \psi(y)^* : S_y \to S_x \]
kernel of fermionic projector

\[A_{xy} := P(x, y) P(y, x) : S_x \to S_x \]
closed chain

The eigenvalues \(\lambda_{xy}^{j} \in \mathbb{C} \) of \(A_{xy} \) determine the causal structure:

Definition (causal structure)

The points \(x, y \in \mathcal{F} \) are called

- **spacelike** separated if \(|\lambda_{xy}^{j}| = |\lambda_{xy}^{k}| \) for all \(j, k = 1, \ldots, 2n \)
- **timelike** separated if \(\lambda_{xy}^{1}, \ldots, \lambda_{xy}^{2n} \) are all real and \(|\lambda_{xy}^{j}| \neq |\lambda_{xy}^{k}| \) for some \(j, k \)
- **lightlike** separated otherwise
For causal fermion systems in Minowski space, this causal structure coincides with the usual causal structure, up to corrections involving ℓ_{Planck}.

This causal structure is relevant for transmitting information.
The role of causality

Plethora of fields A_a, $a = 1, \ldots, L$

- create non-local correlations
- generated decoherence effects and entanglement on macroscopic scale
- collapse phenomena also occur on macroscopic scale

But, as usual, all this cannot be used for signalling.
Quantum spacetimes

General question: How does an interacting measure look like?

- In more mathematical terms: What is the structure of minimizing measures?

![Diagram showing classical and quantum spacetime]

- A classical spacetime: \(M \) diffeomorphic to manifold
- A quantum spacetime: \(M \simeq M \times B \)

- F.F., “Perturbative Quantum Field Theory in the Framework of the Fermionic Projector”
Quantum spacetimes

Complicated non-smooth structure expected:

Should account for macroscopic superpositions and entanglement:
Basic questions:

- How can one make this picture precise?
- How can one understand the structure of the interacting measure?
- Goal: Express in the familiar language of quantum field theory.

Working this out leads to quantum states
General ideas for the construction of a quantum state

General setting:

- Two minimizing causal fermion systems
 - $\mathcal{H}, \mathcal{F}, \rho$ describing vacuum
 - $\tilde{\mathcal{H}}, \tilde{\mathcal{F}}, \tilde{\rho}$ describing the interacting spacetime
- Corresponding spacetimes:
 \[
 M := \text{supp } \rho, \quad \tilde{M} := \text{supp } \tilde{\rho}
 \]

Goal: Compare $\tilde{\rho}$ and ρ at time t.

- Interacting spacetime can be arbitrarily complicated (interacting quantum fields, entanglement, collapse)
- Describe by objects in the vacuum spacetime: free fields, wave functions, ...
General ideas for the construction of a quantum state

- Basic object: **Nonlinear surface layer integral**

 - identify Hilbert spaces by choosing $V : \mathcal{H} \to \tilde{\mathcal{H}}$ unitary

$$
\gamma_{\tilde{\Omega},\Omega}(\tilde{\rho}, \rho) := \int_{\tilde{\Omega}} d\tilde{\rho}(x) \int_{\tilde{M} \setminus \Omega} d\rho(y) \mathcal{L}(x, y) \\
- \int_{\tilde{M} \setminus \tilde{\Omega}} d\tilde{\rho}(x) \int_{\Omega} d\rho(y) \mathcal{L}(x, y)
$$
identification of Hilbert spaces:

- Choose $V : \mathcal{H} \rightarrow \tilde{\mathcal{H}}$ unitary
- Work exclusively in \mathcal{H}
- But: identification is not canonical, gives freedom

\[\rho \rightarrow \mathcal{U}\rho , \quad (\mathcal{U}\rho)(\Omega) := \rho(\mathcal{U}^{-1}\Omega\mathcal{U}) \]

This freedom can be treated by integrating over \mathcal{U}

- Let $G \subset U(\mathcal{H})$ be compact subgroup
- μ_G normalized Haar measure on G
The localized refined partition function

Better: Consider a double integral over the unitary group, because it contains more information on relative phases.

- localized refined partition function

\[Z^t(\gamma, V, \tilde{\rho}) := \int_{G} d\mu_g(U_<) \int_{G} d\mu_g(U_>) \exp(\gamma \mathcal{T}^t_V(\tilde{\rho}, T_{U_<,U_>\rho})) \]

\[\mathcal{T}^t_V(\tilde{\rho}, T_{U_<,U_>\rho}) \]

\[:= \left(\int_{\tilde{\Omega}^t \cap \tilde{V}} d\tilde{\rho}(x) \int_{\Omega^t \cap V} d\rho(y) + \int_{(\tilde{M} \setminus \tilde{\Omega}^t) \cap \tilde{V}} d\tilde{\rho}(x) \int_{(M \setminus \Omega^t) \cap V} d\rho(y) \right) \]

\[\times |x_{U_>} y_{U_<}^{-1}|^2. \]

- \(V \) is a bounded spacetime region and
- \(\gamma \) is a free parameter (more later)
The localized refined partition function

\[\mathcal{I}_V^t(\tilde{\rho}, T_{\mathcal{U}_<,\mathcal{U}_>}) := \left(\int_{\tilde{\Omega}^t \cap \tilde{V}} d\tilde{\rho}(x) \int_{\Omega^t \cap V} d\rho(y) + \int_{(\tilde{\mathcal{M}} \setminus \tilde{\Omega}^t) \cap \tilde{V}} d\tilde{\rho}(x) \int_{(\mathcal{M} \setminus \Omega^t) \cap V} d\rho(y) \right) \times |x \mathcal{U}_> y \mathcal{U}_<^{-1}|^2. \]

- **Localized**: Consider finite spatial volume and finite time (“laboratory”).

- **Take** infinite volume limit of surrounding region.
The localized refined state

Quantum state $\omega^t_V : \mathcal{A} \to \mathbb{C}$,

$$\omega^t_V(A) = \text{Tr} (\sigma^t A) = \langle \Psi | A | \Psi \rangle$$

- Define with insertions in the partition function, symbolically

$$\omega^t_V(\cdots) := \frac{1}{Z^t_V(\gamma, V, \tilde{\rho})} \int_\mathcal{G} d\mu_g(U<) \int_\mathcal{G} d\mu_g(U>) \times \exp\left(\gamma T^t_V(\tilde{\rho}, T_{U<,U>}\rho)\right) (\cdots)$$

- Compute group integrals asymptotically with saddle point methods.
Application to the quantum state

- One gets families of saddle points (phase freedom)
- Each saddle point can be analyzed explicitly in the asymptotics $\ell_{\text{Planck}} \searrow 0$ (ultraviolet regularization is taken out; formalism of the continuum limit)

$$\sigma^t = \sum_{a \in \mathcal{G}} c_a \left| \sum_{\alpha \in \mathcal{I}_a} \Psi_{a\alpha}^{\mathcal{F}} \right\rangle \left\langle \sum_{\beta \in \mathcal{I}_a} \Psi_{a\beta}^{\mathcal{F}} \right|$$

- In particular: state is positive, i.e. $\omega^t_V(A^*A) \geq 0$.
- Possible to describe macroscopic superpositions and general entangled states,

$$\omega^t(A) = \langle (\Psi_{\text{dead}} + \Psi_{\text{alive}}) | A | (\Psi_{\text{dead}} + \Psi_{\text{alive}}) \rangle^{\mathcal{F}}$$

Construction so far gives ω^t for all t

Next steps:

- Construct time evolution for the density operator
 \[\mathcal{L}^t_{t_0} : \sigma^{t_0} \rightarrow \sigma^t \]

- Is there a unitary time evolution on the Fock space?
 \[\omega^t = U^t_{t_0} \omega^{t_0} (U^t_{t_0})^{-1} \]

Answer: Yes. In this limiting case one gets QFT including loop diagrams, but with intrinsic regularization on scale ℓ_{Planck}.

- There are nonlinear corrections. Connection to collapse phenomena?

Is ongoing work with C. Dappiaggi, N. Kamran, M. Reintjes and J. Kleiner.
Underlying physical principles

- **local gauge principle**: freedom to perform local unitary transformations of the spinors

- **Pauli exclusion principle**: Choose orthonormal basis ψ_1, \ldots, ψ_f of \mathcal{H}. Set $\Psi = \psi_1 \wedge \cdots \wedge \psi_f$,

 gives equivalent description by Hartree-Fock state.

- **the “equivalence principle”**: symmetry under “diffeomorphisms” of M
 (note: M merely is a topological measure space)

 Spacetime and causal structure are emergent
operators in \mathcal{F} can be interpreted as “possible local correlation operators”
or simply as possible events
operators in M are the events realized in spacetime
spacetime is made up of all the realized events
the physical equations relate the events to each other

For details on this connection:
F.F, J. Fröhlich, C. Paganini, C. and M. Oppio,
“Causal fermion systems and the ETH approach to quantum theory,”
www.causal-fermion-system.com

Thank you for your attention!