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Summary of basic features

� causal fermion systems can describe non-smooth

spacetime structures;

in particular, spacetimes involving fluctuating fields

� causal action principle describes nonlinear dynamics

Main message of this talk:

gives rise to a relativistic effective collapse model,

has similarities with CSL model.

Specific features:

� finite propagation speed, i.e. no superluminal travelling

� stochastic and nonlinear terms break Lorentz invariance
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A few basic structures

� Complex Hilbert space (H, 〈.|.〉H),
describes “occupied one-particle states” of the system

� Spacetime M (topological space),

Spinor bundle: to every x ∈ M there is an associated

complex vector space SxM (spin space)

� Every Hilbert space vector u ∈ H is represented by a

spinorial wave function (physical wave function)

ψu ∈ Γ(M,SM) , ψu(x) ∈ SxM .

� Basic object for what follows: wave evaluation operator

Ψ : H → Γ(M,SM) , Ψu := ψu

� In simple terms, choosing an orthonormal basis (ei),

Ψ =
(

ψe1 , ψe2 , · · ·
)

Describes the family of all one-particle wave functions of

the system.
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Example: Dirac spinors in Minkowski vacuum

� Spacetime M is Minkowski space

� Physical wave functions satisfy the Dirac equation

(iγ j∂j − m)ψ = 0

� Convenient to combine the Dirac equations for all physical

wave functions as

(iγ j∂j − m)Ψ = 0

(recall that Ψ =
(

ψe1 , ψe2 , · · ·
)

,

thus one equation for the whole family)
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Example: Dirac spinors in Minkowski vacuum

� Physical picture: Dirac’s hole theory

ω

k

anti−particles

particles

Dirac sea

Felix Finster Causal fermion systems



Example: Dirac spinors in Minkowski space

� This Dirac sea configuration corresponds to a minimizer of

the causal action principle.

� Basic question: How do interacting systems in Minkowski

space look like? (no gravity, . . . )

� Proceed step by step. First example: External potential

(iγ j∂j + eγ jAj − m)Ψ = 0 , 2A = 0 .

All wave functions “feel” the same potential.
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Linearized fields in Minkowski space

It turns out that the causal action principle gives rise to a

� plethora of fields

� The number N of fields scales like

N ≃ ℓmin

ε
with ℓPlanck ≪ ℓmin ≪ ℓmacro

(and ℓPlanck denotes the Planck scale)

� F.F., “Solving the linearized field equations of the causal action principle

in Minkowski space,” arXiv:2304.00965 [math-ph]
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Linearized fields in Minkowski space

p

ξ

−ωmin
ℓmin

ϑ

ϑ

ϑ =
1√

ℓmin ωmin
with ϑmin =

√

ℓPlanck

ℓmin
.

� Different wave functions “feel” different potentials.

� The low-energy wave functions (i.e. |ω| . ℓ−1
Planck) “feel all

the potentials at the same time”.
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Linearized fields in Minkowski space

� Coupling is made precise by Dirac equation

(iγ j∂j +

N
∑

a=1

γj A
j
a Ea − m)Ψ = 0

with integral operators Ea, being nonlocal on the scale ℓmin.

� Recall that classical potentials give rise to gauge phases,

Ψ(x) → eiΛ(x)Ψ(x) .

Similarly, the plethora of fields gives rise to many phase

factors

Ψ(x) →
N
∑

a=1

L
∑

α=1

eiΛaα(x) Ψaα(x)

� leads to dephasing and decoherence effects
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Effective description in Fock spaces

� F.F. and Kamran, N., “Complex structures on jet spaces and bosonic

Fock space dynamics for causal variational principles,

arXiv:1808.03177 [math-ph], Pure Appl. Math. Q. 17 (2021) 55–140

� F.F. and Kamran, N., “Fermionic Fock spaces and quantum states for

causal fermion systems,” arXiv:2101.10793 [math-ph],

Ann. Henri Poincaré 23 (2022) 1359–1398

� F.F., Kamran, N. and Reintjes, M., “Entangled quantum states of causal

fermion systems and unitary group integrals,” arXiv:2207.13157

[math-ph]

� Is ongoing work with C. Dappiaggi, N. Kamran, M. Reintjes.
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Effective description in Fock spaces

� System can be described at any time t by a

Quantum state ωt : A → C ,

where A is the algebra of observables.

� can be represented on Fock space F (fermionic and

bosonic)

ωt(A) = TrF
(

σtA)
if pure state

= <Ψ|A|Ψ>

� In what follows consider pure state |Ψ> ∈ F .
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Effective description in Fock spaces

� Fock state has a distinguished decomposition

|Ψ> =
L

∑

α=1

|Ψα>

(related to above dephasing and decoherence effects)

� Dynamics described by

i∂t |Ψ> = H |Ψ>

with a Hamiltonian of the form

H = HDirac + Hstochastic + Hnonlinear
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The stochastic term

Hstochastic = B

with 〈〈Bi〉〉 = 0 , 〈〈Bi(x)dBj(y)〉〉 = δij C(x , y)

and a covariance C(x , y).

� Not Markovian, but covariance decays on a small time

scale (presumably ∼ ℓmin?),

similar to “colored noise”

� Strengh of stochastic term determined by plethora of

background fields Aa.
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The nonlinear term

|Ψ> =
L

∑

α=1

|Ψα> distinguished Fock decomposition

HnonlinearΨ =

ˆ

R3

L
∑

α=1

<Ψα|A(x)Ψα>F Ψ(x) d3x

� position basis is distinguished

� only “diagonal” <Ψα| · · · |Ψα>-terms come up;

� this leads to a “damping” of the nonlinear term by a scaling

factor

×1

L

� this is why nonlinear term becomes very small
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Summary

� Consider causal fermion systems in Minkowski space

� Described by family of fermionic wave functions, encoded

in wave evaluation operator Ψ

� Causal action principle gives rise to plethora of fields

� Coupling of these fields yields dephasing and decoherence

effects.

� Relativisic model: Dirac dynamics + corrections

But corrections are not relativistically covariant (depend on

microstructure of spacetime).

� Similar to CSL model, we obtain a stochastic and a

nonlinear term; detailed scalings still need be worked out

(ongoing work also with J. Kleiner and C. Paganini)
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Thank you for your attention!
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The role of causality

Ψ(x) : H → Sx wave evaluation operator

P(x , y) := Ψ(x)Ψ(y)∗ : Sy → Sx kernel of fermionic projector

Axy := P(x , y)P(y , x) : Sx → Sx closed chain

The eigenvalues λ
xy
j

∈ C of Axy determine the causal structure:

Definition (causal structure)

The points x , y ∈ F are called























spacelike separated if |λxy
j | = |λxy

k | for all j , k = 1, . . . ,2n

timelike separated if λ
xy
1 , . . . , λ

xy
2n are all real

and |λxy
j | 6= |λxy

k | for some j , k

lightlike separated otherwise
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The role of causality

� For causal fermion systems in Minowski space, this causal

structure coincides with the usual causal structure, up to

corrections involving ℓPlanck.

� This causal structure is relevant for transmitting

information.
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The role of causality

Plethora of fields Aa, a = 1, . . . ,L

� create non-local correlations

� generated decoherence effects and entanglement on

macroscopic scale

� collapse phenomena also occur on macroscopic scale

But, as usual, all this cannot be used for signalling.
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Quantum spacetimes

General question: How does an interacting measure look like?

� In more mathematical terms: What is the structure of

minimizing measures?

M

a classical spacetime:
M diffeomorphic to manifold

a quantum spacetime:

M ≃ M × B

B

� F.F., “Perturbative Quantum Field Theory in the Framework of the

Fermionic Projector”

arXiv:1310.4121 [math-ph], J. Math. Phys. 55 (2014) 042301
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Quantum spacetimes

Complicated non-smooth structure expected:
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General ideas for the construction of a quantum state

Basic questions:

� How can one make this picture precise?

� How can one understand the structure of the interacting

measure?

� Goal: Express in the familiar language of quantum field

theory.

Working this out leads to quantum states
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General ideas for the construction of a quantum state

General setting:

� Two minimizing causal fermion systems

(H,F, ρ) describing vacuum

(H̃, F̃, ρ̃) describing the interacting spacetime

corresponding spacetimes:

M := supp ρ , M̃ := supp ρ̃

� Goal: Compare ρ̃ and ρ at time t .

Interacting spacetime can be arbitrarily complicated

(interacting quantum fields, entanglement, collapse)
describe by objects in the vacuum spacetime:

free fields, wave functions, . . .
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General ideas for the construction of a quantum state

� Basic object: Nonlinear surface layer integral

identify Hilbert spaces by choosing V : H → H̃ unitary

γΩ̃,Ω(ρ̃, ρ) :=

ˆ

Ω̃
d ρ̃(x)

ˆ

M\Ω
dρ(y) L

(

x , y
)

−
ˆ

M̃\Ω̃
d ρ̃(x)

ˆ

Ω
dρ(y) L

(

x , y
)

M \ Ωt

Ωt

M̃ \ Ω̃t

Ω̃t
x

y

x

y
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Freedom in identifying the Hilbert spaces

� identification of Hilbert spaces:

Choose V : H → H̃ unitary

Work exclusively in H

But: identification is not canonical, gives freedom

ρ→ Uρ , (Uρ)(Ω) := ρ(U−1ΩU)

� This freedom can be treated by integrating over U

Let G ⊂ U(H) be compact subgroup

µG normalized Haar measure on G
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The localized refined partition function

Better: Consider a double integral over the unitary group,

because it contains more information on relative phases.

� localized refined partition function

Z t
(

γ,V , ρ̃
)

:=

 

G

dµG
(

U<

)

 

G

dµG
(

U>

)

exp
(

γTt
V

(

ρ̃,TU<,U>
ρ
)

)

Tt
V (ρ̃,TU<,U>

ρ)

:=

(
ˆ

Ω̃t∩Ṽ

d ρ̃(x)

ˆ

Ωt∩V

dρ(y) +

ˆ

(M̃\Ω̃t )∩Ṽ

d ρ̃(x)

ˆ

(M\Ωt )∩V

dρ(y)

)

×
∣

∣x U> y U−1
<

∣

∣

2
.

V is a bounded spacetime region and

γ is a free parameter (more later)
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The localized refined partition function

Tt
V (ρ̃,TU<,U>

ρ)

:=

(
ˆ

Ω̃t∩Ṽ

d ρ̃(x)

ˆ

Ωt∩V

dρ(y) +

ˆ

(M̃\Ω̃t )∩Ṽ

d ρ̃(x)

ˆ

(M\Ωt )∩V

dρ(y)

)

×
∣

∣x U> y U−1
<

∣

∣

2
.

� Localized: Consider finite spatial volume and finite time

(“laboratory”).

Ωt \ V Ωt \ V
Ωt ∩ V

(M \ Ωt) ∩ V

� Take infinite volume limit of surrounding region.
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The localized refined state

Quantum state ωt
V : A → C,

ωt
V (A) = Tr

(

σtA) = <Ψ|A|Ψ>

� Define with insertions in the partition function, symbolically

ωt
V

(

· · ·
)

:=
1

Z t
V

(

γ,V , ρ̃
)

 

G

dµG
(

U<

)

 

G

dµG
(

U>

)

× exp
(

γTt
V

(

ρ̃,TU<,U>
ρ
)

)

(

· · ·
)

Compute group integrals asymptotically with saddle point

methods.
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Application to the quantum state

� One gets families of saddle points (phase freedom)

� Each saddle point can be analyzed explicitly in the

asymptotics ℓPlanck ց 0 (ultraviolet regularization is taken

out; formalism of the continuum limit)

σt =
∑

a∈S

ca

∣

∣

∣

∑

α∈Ta

ΨF
aα

〉〈

∑

β∈Ta

ΨF
aβ

∣

∣

∣

� In particular: state is positive, i.e. ωt
V (A

∗A) ≥ 0.

� Possible to describe

macroscopic superpositions and general entangled states,

ωt(A) = 〈(Ψdead +Ψalive)
∣

∣A
∣

∣ (Ψdead +Ψalive)〉F
� F.F. and Kamran, N., “Fermionic Fock spaces and quantum states for

causal fermion systems,” arXiv:2101.10793 [math-ph],

Ann. Henri Poincaré 23 (2022) 1359–1398

� F.F., Kamran, N. and Reintjes, M., “Entangled quantum states of causal

fermion systems and unitary group integrals,” arXiv:2207.13157

[math-ph]
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Outlook: Dynamics of the quantum state

� Construction so far gives ωt for all t

� Next steps:

Construct time evolution for the density operator

L
t
t0

: σt0 → σt

Is there a unitary time evolution on the Fock space?

ωt = U t
t0
ωt0

(

U t
t0

)

−1

Answer: Yes. In this limiting case one gets QFT including
loop diagrams, but with intrinsic regularization on

scale ℓPlanck.

There are nonlinear corrections. Connection to collapse
phenomena?

� Is ongoing work with C. Dappiaggi, N. Kamran, M. Reintjes

and J. Kleiner.
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Underlying physical principles

� local gauge principle:

freedom to perform local unitary transformations of the

spinors

� Pauli exclusion principle:

Choose orthonormal basis ψ1, . . . , ψf of H. Set

Ψ = ψ1 ∧ · · · ∧ ψf ,

gives equivalent description by Hartree-Fock state.

� the “equivalence principle”:

symmetry under “diffeomorphisms” of M

(note: M merely is a topological measure space)

Spacetime and causal structure are emergent
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Interpretation in terms of spacetime events

� operators in F can be interpreted as

“possible local correlation operators”

or simply as possible events

� operators in M are the events realized in spacetime

� spacetime is made up of all the realized events

� the physical equations relate the events to each other

For details on this connection:

� F.F, J. Fröhlich, C. Paganini, C. and M. Oppio,

“Causal fermion systems and the ETH approach to quantum theory,”

arXiv:2004.11785 [math-ph] (2020)
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Thank you for your attention!

Felix Finster Causal fermion systems


