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Goal

My goals for this talk are:
� Summarize the successes of CFS.
� Recall the structures available to us in the existing theories.
� Introduce the basic definitions of the theory.
� Sketch how to relate them to the structures we know and

love.
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What is a causal fermion system?

� A new candidate for a unifying theory.
� novel mathematical model of spacetime
� physical equations are formulated in generalized spacetimes

� Different limiting cases:
Continuum limit: Quantized fermionic fields interacting via
classical bosonic fields
QFT limit: fermionic and bosonic quantum fields
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Results from Theory of Causal Fermion Systems

� All physical structures are encoded in a single object.
� Standard Model gauge group and it’s classical field

equations in linear perturbation theory of Minkowski space.
� For that to work it requires at least three generations of

fermions thereby explaining one parameter of the Standard
Model.

� Quantum Field Theory in non-linear perturbation theory
of Minkowski space.

� Einstein equations as a third order effect
⇒ Explains weakness of gravity
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Which Structures Do We Have Available In Spacetime?
� Starting point: Consider wave functions in spacetime.

Canonically ψ describes quantum mechanical particle.
(only wave character, no point particle)
Dynamics as described in the simplest case by Schrödinger
equation (or Dirac equation, scalar wave equation, …).

� Vector ψ in a Hilbert space (H, 〈.|.〉H).� This is not quite the right description:
Phase has no significance: ψ → eiΛψ
instead of ψ consider ray generated by ψ
Local gauge invariance

ψ(t, x⃗) → eiΛ(t,⃗x) ψ(t, x⃗)

Therefore, only |ψ(t, x⃗)|2 is of physical significance;
interpretation: probability density
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Which Structures Do We Have Available In Spacetime?

� Thus: Consider |ψ(t, x⃗)|2 of all wave functions as the
starting point.

� General question: Suppose we know |ψ(t, x⃗)|2 for all the
wave functions of the system, what can we say about the
spacetime structures (causality, metric, fields, …)

� Try to probe spacetime by looking at |ψ(t, x⃗)|2.
Here “probing” should be thought of as a mathematical
operation; no collapse of the wave function involved.
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Which Structures Do We Have Available In Spacetime?

Begin in Minkowski space (usual spacetime structures)

x = (t, x⃗), t ∈ R, x⃗ ∈ R3

(later curved spacetime)
Consider scalar particle (no spin)

|ψ(x)|2 (local density)
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What Information Is Encoded In This Structure?
First step: Allow for preparation of the “initial state” at time t.
� Allows for detecting the causal structure of spacetime:

� Allows for recovering the full metric information:
consider massive situation
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Which spacetime structures are fundamental?

� Allows for detecting an electromagnetic field:

� …, …
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What Information Is Encoded In This Structure?

Second step: Do not allow for preparation of the “initial state”.
Instead: Get by with the wave function already present.
� Probing still works, provided that there are “sufficiently

many” wave functions around.

� The more wave functions there are, the more information
we have on spacetime (spacetime resolution).
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Formalize this idea: The local correlation operator
� Consider wave functions ψ1, . . . , ψf : M → C (with f <∞)
� Are vectors in a Hilbert space, orthonormalize,

〈ψk|ψl〉 = δkl ,

gives f-dim Hilbert space (H, 〈.|.〉H).
basic object: for any lattice point x introduce

local correlation operator F(x) : H → H

� define matrix elements by
(F(x))j

k = ψj(x)ψk(x)
basis invariant:

〈ψ,F(x)ϕ〉H = ψ(x)ϕ(x) for all ψ, ϕ ∈ H

� Hermitian matrix = symmetric operator
� Has rank at most one, is positive semi-definite

F(x) = e∗e with e : H → C , ψ 7→ ψ(x)
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The local correlation map

F(x) ∈ F :=
{

F rank at most one, positive semi-definite
}

We obtain mapping x 7→ F(x) ∈ F ⊂ L(H)

Ft

x⃗

F ⊂ L(H)

� The right side contains all the information which can be
retrieved from the ensemble of wave functions.

� We consider the objects on the right as the basic physical
objects.
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Key Idea:
Spacetime as the set of all local correlation operators

General strategy:
� Treat objects on the left as effective description

(spacetime, matter fields, …)
� Formulate a fundamental theory with the objects on the

right (only local correlation operators).

M := im F

F ⊂ L(H)
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A volume measure on spacetime

� Adding a key structure: Volume measure on spacetime.

Ft

x⃗

F ⊂ L(H)

Take push-forward measure of F : M → F,

ρ := F∗(µM) (i.e. ρ(Ω) := µM
(
F−1(Ω)

)
)

Claudio Paganini Causal Fermion Systems



Results from Causal Fermion Systems
Basic Ideas

Definition of a Causal Fermion System
Inherent Structures

Minkowski Space as a CFS

Spacetime

M := suppρ

F ⊂ L(H)

� image of F recovered as the support of the measure,
M := supp ρ =

{
F ∈ F | ρ(Ω) 6= 0

for every open neighborhood Ω of x
}

Claudio Paganini Causal Fermion Systems



Results from Causal Fermion Systems
Basic Ideas

Definition of a Causal Fermion System
Inherent Structures

Minkowski Space as a CFS

Let’s Introduce One More Spin

Let (M, g) be a Lorentzian space-time,
for simplicity 4-dimensional, globally hyperbolic,
then automatically spin,

(SM,≺.|.�) spinor bundle

SxM ' C4

spin scalar product

≺.|.�x : SxM × SxM → C

is indefinite of signature (2,2)
(D − m)ψm = 0 Dirac equation
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Let’s Introduce One More Spin

� Cauchy problem well-posed, global smooth solutions
(for example symmetric hyperbolic systems)

� finite propagation speed

C∞
sc (M, SM) spatially compact solutions

(ψm|ϕm)m := 2π
ˆ

N
≺ψm|/νϕm�x dµN(x) scalar product

completion gives Hilbert space (Hm, (.|.)m)
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Let’s Introduce One More Spin

� Choose H as a subspace of the solution space,

H = span(ψ1, . . . , ψf)

� To x ∈ R4 associate a local correlation operator

〈ψ|F(x)ϕ〉 = −≺ψ(x)|ϕ(x)�x ∀ψ, ϕ ∈ H

Is symmetric, rank ≤ 4
at most two positive and at most two negative eigenvalues
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Let’s Introduce One More Spin

� Thus F(x) ∈ F where
F :=

{
F ∈ L(H) with the properties:

▷ F is symmetric and has rank ≤ 4
▷ F has at most 2 positive

and at most 2 negative eigenvalues
}
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Let’s Introduce One More Spin

We obtain mapping x 7→ F(x) ∈ F ⊂ L(H)

Ft

x⃗

F ⊂ L(H)

Take push-forward measure

ρ := F∗(µM) (i.e. ρ(Ω) := µM
(
F−1(Ω)

)
)
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Causal Fermion Systems

Definition (Causal fermion system)
Let (H, 〈.|.〉H) be Hilbert space
Given parameter n ∈ N (“spin dimension”)
F :=

{
x ∈ L(H) with the properties:� x is symmetric and has finite rank

� x has at most n positive
and at most n negative eigenvalues

}
ρ a measure on F
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Comparison
Classical even dimensional tangent bundle:

smooth 2n - dimensional manifold
canonical projection that ”assigns” an n-dimensional vector
space to every point. These vector spaces are all
isomorphic but independent.
metric defines: 1) causal structure 2) connection
3) measure supported on entire manifold.

Properties of F
(infinite dimensional) operator manifold
every spacetime point comes with a 2n-dimensional vector
space. These vector spaces are not independent.
The measure is the central actor, supported on a low
dimensional subset.
Causal structure and a connection can be defined through
the properties of operator products.

Claudio Paganini Causal Fermion Systems



Results from Causal Fermion Systems
Basic Ideas

Definition of a Causal Fermion System
Inherent Structures

Minkowski Space as a CFS

Inherent Structures
Let (ρ,F,H) be a causal fermion system,
Then a space-time can be defined by M := suppρ.

Space-time points are linear operators on H

� For x ∈ M, consider eigenspaces of x.
� For x, y ∈ M consider

consider operator products xy
project eigenspaces of x to eigenspaces of y
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Inherent structures of a causal fermion system

� Spinors

SxM := x(H) ⊂ H “spin space”, dim SxM ≤ 2n

Hilbert space H

SxMSyM
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Inherent structures in spacetime

� Physical wave functions

ψu(x) = πx u with u ∈ H physical wave function
πx : H → H orthogonal projection on x(H)

SxMSyM u

ψu(x)ψu(y)
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Inherent structures in spacetime
� The kernel of the fermionic projector:

P(y, x) = πy x|SxM : SxM → SyM

SxMSyM

ϕ ∈ SxM

P(y, x)ϕ

P(y, x) = −
f∑

i=1
|ψei(y)�≺ψei(x)| where (ei) ONB of H
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Inherent structures in spacetime

� Geometric structures
P(x, y) : SyM → SxM yields relations between spin spaces.
Using a polar decomposition (…, …) one gets:

Dx,y : SyM → SxM unitary “spin connection”

tangent space Tx, carries Lorentzian metric,

∇x,y : Ty → Tx corresponding “metric connection”

holonomy of connection gives curvature

R(x, y, z) = ∇x,y ∇y,z ∇z,x : Tx → Tx
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Causal structure

Let x, y ∈ F. Then
x·y ∈ L(H) has non-trivial complex eigenvalues λxy

1 , . . . , λxy
2n

Definition (causal structure)
The points x, y ∈ F are called

spacelike separated if |λxy
j | = |λxy

k | for all j, k = 1, . . . , 2n
timelike separated if λxy

1 , . . . , λxy
2n are all real

and |λxy
j | 6= |λxy

k | for some j, k
lightlike separated otherwise
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Remarks

For points x, y ∈ F their product x·y is not necessarily in F but
it still has finite rank ≤ 2n

For arbitrary points x, y ∈ F we have in general that x·y 6= y·x.
So spacetime points do not necessarily commute.

A point x is timelike separated from itself.
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Causal action principle

Lagrangian L[Axy] =
1
4n

2n∑
i,j=1

(
|λxy

i | − |λxy
j |

)2 ≥ 0

Action S =
x
F×F

L[Axy] dρ(x) dρ(y) ∈ [0,∞]

Minimize S under variations of ρ, with constraints

volume constraint: ρ(F) = const

trace constraint:
ˆ
F

tr(x) dρ(x) = const

boundedness constraint:
x
F×F

2n∑
i=1

|λxy
i |2 dρ(x) dρ(y) ≤ C
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Minimizer
Definition (Minimizer)
ρ is a minimizer if

S[ρ̃]− S[ρ] ≥ 0

for all ρ̃ with

|ρ̃− ρ| <∞ (ρ̃− ρ)F = 0.

ℓ(x) =
ˆ

M
L(x, y) dρ(y)

Lemma (Euler-Lagrange equations)

ℓ|M = inf
F
ℓ =: c
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Local Correlation Map
We can define a mapping

F[gµν ,Aµ, . . . ] : M 7→ F ⊂ L(H)

x 7→ F[gµν ,Aµ, . . . ](x)

Concept:
� Left side: (approximate) effective description
� Right side: fundamental description of the physical system.
� Map allows us to work with familiar structures on the left.
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Local Correlation Map
One more thing: The space-time volume

ρ(Ω) :=

ˆ
F−1(Ω)

d4x = µ
(
F−1(Ω)

)
� push-forward measure, is measure on F.
� image of F recovered as the support of the measure,

M := supp ρ =
{

x ∈ F | ρ(Ω) 6= 0
for every open neighborhood Ω of x

}
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Realization of the Hilbertspace in Spacetime

Apriori H is an abstract Hilbert space.
Physical wave functions

ψ(x) = πx ψ with ψ ∈ H

plus local correlation map

F[gµν ,Aµ, . . . ] : M 7→ F ⊂ L(H)

x 7→ F[gµν ,Aµ, . . . ](x)

allow to work with suitable function spaces in M.
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How To Work With CFS (Wish)

Find a minimizing measure of the causal action
⇓

Determine all physical wave functions for a basis of H
⇓

Find a spacetime and matter configuration that gives an
approximate effective description for the causal structure of the
minimizer and gives rise to equations satisfied by the physical

wave functions.
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How To Work With CFS (Reality)
Choose a spacetime and matter fields configuration of interest

(which do not need to obey the usual physical equations).
⇓

Select a set of functions in the spacetime at hand (obeying
certain interesting conditions) as a physical wave function

representation of a basis of H
⇓

Find a way to represent this configuration as a CFS
⇓

Verify whether this system is a minimizer of the causal action
principle in a suitable sense

⇓
Obtain restrictions on your spacetime and matter fields from

the requirement that the configuration has to be a minimizer of
the causal action principle
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Dirac spinors in Minkowski space

Space-time is Minkowski space, signature (+−−−)

Space-time point x ∈ R4, need to associate operator F(x)
Physical wave function representation of H allows us to work
with functions in R4.
� free Dirac equation (iγk∂k − m)ψ = 0
� probability density ψ†ψ = ψγ0ψ,

gives rise to a scalar product:

〈ψ|ϕ〉 =
ˆ

t=const
(ψγ0ϕ)(t, x⃗) dx⃗

time independent due to current conservation
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Dirac spinors in Minkowski space
� Consider a collection of one-particle wave functions

H := <ψ1, . . . , ψf> Hilbert space

bx(ψ, ϕ) = −ψ(x)ϕ(x)

〈ψ|F(x)ϕ〉 = −ψ(x)ϕ(x) ∀ψ, ϕ ∈ H

local correlation operator, is self-adjoint operator in L(H)

� Thus F(x) ∈ F where
F :=

{
F(x) ∈ L(H) with the properties:

▷ F(x) is self-adjoint and has rank 4
▷ F(x) has 2 positive

and 2 negative eigenvalues
}
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The causal action principle in the continuum limit

Specify vacuum:
� Choose H as the space of all negative-energy solutions,

hence “Dirac sea”

� Introduce regularization:
Fixes length scale ε
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Summary
spacetime and matter described by a single object:

a measure ρ on F, the universal measure
� space-time M := supp ρ

� causal relations given by spectrum of x·y for x, y ∈ M
dynamics described by causal action principle:
� minimize S by varying ρ
� implicitly varies space-time and all structures therein

applications:
� describes fundamental forces of nature
� approach for unification of gravitation and the standard

model.
� Potentially gives rise to new mechanism for fermiogenesis.
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Thank You

Thank you for your attention.

For a more in depth introduction see the website
causal-fermion-system.com

Claudio Paganini Causal Fermion Systems


	Results from Causal Fermion Systems
	Basic Ideas
	Definition of a Causal Fermion System
	Inherent Structures
	Minkowski Space as a CFS

