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Why Pauli Exclusion Principle? 
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Why Pauli Exclusion Principle? 
 

WE DON’T KNOW WHY 
Fermi-Dirac and Bose-Einstein 

are distinct
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Beyond Standard Model…
Reasons of Pauli’s Exclusion Principle (PEP) 

Particle nature? Green’s general quantum field: paronic particles

Order 1: fermionic/bosonic fields

Order>1: parafermionic/parabosonic fileds

Messiah-Greenberg Super-Selection: no fermion/boson decays into parafermion/
paraboson (and vice-versa)

Paronic: a mixture of fermionic/bosonic and parefermionic/parabosonic states
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Magnetic Scenario:  
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also space-time mixing

θ0i ≠ 0
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Signature
Anti-/symmetric commutativity with a coefficient 





In a system of two fermions (i.e., two electrons),

PEP is violated with an amplitude probability of 

β

a† 0⟩ = 1⟩ a† 1⟩ = β 2⟩ a† 2⟩ = 0

a 0⟩ = 0 a 1⟩ = 0⟩ a 2⟩ = β 1⟩

β2 /2
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…but for NCQC and Quon algebra connection we use  instead:




with  


β

a† 0⟩ = 1⟩ a† 1⟩ = β 2⟩ a† 2⟩ = 0
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δ2 = β2/2
aia†

j − q(E)a†
j ai = δij

q(E) = 2δ(E)2 − 1
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with  





(different for the two  scenarios)

[Further details in Fabrizio Napolitano’s Talk]
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How about so far?
Ramberg and Snow (1988): 

DAMA (2009): 

Borexino (2011): 


Models scenarios implications 

Democratic scenario 
all type of particles have the same degree of violation 

β2/2 ≲ 10−26

β2/2 ≲ 10−47

β2/2 ≲ 10−60

β
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X-Rays
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X-Rays
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Silicon

Drift

Detector


(SDD)



SDDs
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Based on sideward depletion

Charge particle or photon hits the silicon wafer


electron-hole pairs are generated 

free electrons move to the anode following the lower potential due to the concentric 
electrodes 


The amount of charge collected by the anode is proportional to the energy of the 
radiation (X-Rays range)
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VIP group
VIolation of Pauli Exclusion Principle

Open Systems

testing newly injected 

electrons

Close System

testing spontaneous 

emissions

VIP-Lead BEGe
VIP

VIP-2

VIP-3 GATOR
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VIP group
VIolation of Pauli Exclusion Principle

Open Systems

testing newly injected 

electrons

Close System

testing spontaneous 

emissions

VIP-Lead BEGe
VIP

VIP-2

VIP-3
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+Wave Function Collapse (CSL, DP) 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VIP-2

Target: Copper strips

WITHOUT CURRENT configuration: regime 
case (stable states: background)

WITH CURRENT configuration (180 A): dynamic 
case (PEP violation through electron capture)


SDD: 32 detectors by SDDs, stably kept  @ 
 °C even with the current in Cu


@LNGS Underground (beneath Gran Sasso 
Mountain – IT): ~1400 m of rock shielding

−170+1
−0



Calibration
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Fe-55 source, with a 25 μm thick Titanium foil

[hyperbolic calibration]



Data model
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Data model
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ℱwc(θ, y, 𝒮) = y1 × Ni(θ1, θ2)+y2 × Cu(θ3, θ4)+y3 × pol1(θ5)+𝒮 × PEPV(θ4)

7729 eV

~ –300 eV with 
respect to Kα Cu 
(electron shielding)

Same Kα Cu 
resolution (i.e., σ 
of the detector)

ℱwoc(θ, y) = y1 × Ni(θ1, θ2)+y2 × Cu(θ3, θ4)+y3 × pol1(θ5)+𝒮 × PEPV(θ4)



26916404 s (~ 312 days)

27110263 s (~ 314 days)

Kα Cu

Kα Ni

Data model

34

ℱwc(θ, y, 𝒮) = y1 × Ni(θ1, θ2)+y2 × Cu(θ3, θ4)+y3 × pol1(θ5)+𝒮 × PEPV(θ4)

7729 eV

~ –300 eV with 
respect to Kα Cu 
(electron shielding)

Same Kα Cu 
resolution (i.e., σ 
of the detector)

ℱwoc(θ, y) = y1 × Ni(θ1, θ2)+y2 × Cu(θ3, θ4)+y3 × pol1(θ5)+𝒮 × PEPV(θ4)

ℒ(𝒟wc, 𝒟woc |θ, y, 𝒮) = Poiss(𝒟wc |ℱwc(θ, y, 𝒮)) × Poiss(𝒟woc |ℱwoc(θ, y × ℛ))

Ratio of data 
acquisition time



Bayesian approach

35

p(θ, y, 𝒮 |𝒟wc, 𝒟woc) =
ℒ(𝒟wc, 𝒟woc |θ, y, 𝒮)p(θ, y, 𝒮)

∫ dθdyℒ(𝒟wc, 𝒟woc |θ, y, 𝒮)p(θ, y, 𝒮)
Priors of  and  
are Gaussians: 
statistical 
fluctuations 
around known 
values

Prior of  is flat, 
limited from 
previous 
experiments

Systematic 
uncertainties 
included

θ y

𝒮

p(𝒮 |𝒟wc, 𝒟woc) = ∫ p(θ, y, 𝒮 |𝒟wc, 𝒟woc)dθdy



p(
S
|D

w
c ,

D
w
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)

S

Integrals with 
Markov Chain Monte Carlo method

Bayesian approach
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Modified frequentist: CLs

t𝒮 = − 2 ln Λ(𝒮) = − 2 ln
ℒ( ̂ ̂θ, ̂ŷ, 𝒮)
ℒ( ̂θ, ŷ, 𝒮̂)

p𝒮 = ∫
∞

tobs

f(t𝒮 |𝒮)dt𝒮 CLs =
p𝒮

1 − p0
< 1 − C.L.

one-sided Likelihood Test statistic

ℒ(θ, y, 𝒮) = ℒ(𝒟wc, 𝒟woc |θ, y, 𝒮)p(θ, y, 𝒮)



0 50 100 150 200 250 300 350 4000

0.2

0.4

0.6

0.8

1
Observed CLs

Expected CLs - Median

σ1 ±Expected CLs 

σ2 ±Expected CLs 

S

CL
S

38

Modified frequentist: CLs

Computation with RooFit

t𝒮 = − 2 ln Λ(𝒮) = − 2 ln
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∞
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}CLs expected in 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𝒮 = 0
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CLs expected with 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line of p-value = 0.1
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90% of C.L.
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Modified frequentist: CLs

Computation with RooFit

t𝒮 = − 2 ln Λ(𝒮) = − 2 ln
ℒ( ̂ ̂θ, ̂ŷ, 𝒮)
ℒ( ̂θ, ŷ, 𝒮̂)

p𝒮 = ∫
∞

tobs

f(t𝒮 |𝒮)dt𝒮 CLs =
p𝒮

1 − p0
< 1 − C.L.

}CLs expected in 
case of  
but measured 

𝒮 = 0
𝒮

CLs expected with 
measured 𝒮

line of p-value = 0.1

one-sided Likelihood Test statistic

90% of C.L.

ℒ(θ, y, 𝒮) = ℒ(𝒟wc, 𝒟woc |θ, y, 𝒮)p(θ, y, 𝒮)

Background Hypothesis 
as Asimov Dataset 

(generated ideal dataset most likely 
representing the model)



From  to 𝓢 β2/2
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𝒮 ≃
β2

2
⋅ Nnew ⋅

Nint
10

⋅ 7.25 × 10−2
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𝒮 ≃
β2

2
⋅ Nnew ⋅

Nint
10

⋅ 7.25 × 10−2

efficiency simulated: 
considered X-ray 
absorption + geometry 
acceptance + SDDs 
efficiency

Newly injected electrons! 

 (   for simplicity)
runs

∑
i

IiΔti /e = IΔt/e

Number of interactions; 
every ~10 interactions, 1 cascade
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efficiency simulated: 
considered X-ray 
absorption + geometry 
acceptance + SDDs 
efficiency

Newly injected electrons! 

 (   for simplicity)
runs

∑
i

IiΔti /e = IΔt/e

β2

2
≃ 𝒮 ⋅

10
Nint

⋅
e

IΔt
⋅

1
7.25 × 10−2

⇒

Number of interactions; 
every ~10 interactions, 1 cascade

𝒮 ≃
β2

2
⋅ Nnew ⋅

Nint
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From  to 𝓢 β2/2
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efficiency simulated: 
considered X-ray 
absorption + geometry 
acceptance + SDDs 
efficiency

Newly injected electrons! 

 (   for simplicity)
runs

∑
i

IiΔti /e = IΔt/e⇒

Number of interactions; 
every ~10 interactions, 1 cascade

𝒮 ≃
β2

2
⋅ Nnew ⋅

Nint
10

⋅ 7.25 × 10−2

β2

2
≃ 𝒮 ⋅

10
Nint

⋅
e

IΔt
⋅

1
7.25 × 10−2

 is the normalization that decides the order of magnitude of 

Let’s discuss –atoms interaction Models!

Nint β2/2
e



Nint
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D

e

1μ 2μ 3μ 4μ 5μ 6μ

Through Copper Resistance, 
we know the average 
interaction length μ

Nint = D/μ ≃ 1.95 × 106

⇒
β2

2
⪅ 10−31

Linear Scattering



Nint
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D

e

1μ 2μ 3μ 4μ 5μ 6μ

Through Copper Resistance, 
we know the average 
interaction length μ

Nint = D/μ ≃ 1.95 × 106

⇒
β2

2
⪅ 10−31

Through Diffusion-Transport theory 
and Copper atomic density:


• the average time  on atomic 
encounter for a diffused electron


• the average time  of target 
crossing by an electron

τE

T

T

e

DiffusionReservoir

τE

Nint = T/τE ≃ 4.29 × 1017

⇒
β2

2
⪅ 10−43

Linear Scattering Close Encounters



TO DO: a quantum ?Nint
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e ⟩

Cui ⟩

How many interactions between Cu atomic and electron fields occur?



Outlook
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How to finely measure a Pauli Exclusion Principle Violation? 
VIP (past), VIP-2 (current), and VIP-3 and GATOR (future)  

X-Rays emissions: 
SDDs well versed for this measurement 
Accurate calibration 

Rigorous Data Analysis 
Bayesian Approach: well established and reliable

Modified Frequenstist CLs: optimal test (sensible to small parameters fluctuations)

…use other observables (i.e., Time) to further refine the measurement


Electron-atoms interaction modelling ( ) 
Linear Scattering: due to phonons and lattice irregularities


Safest hypothesis

Largely underestimation of how many interactions an electron does 


Close Encounters: a more realistic model of -atom encounters, but still approximated

12 order of magnitudes larger than Linear Scattering!


This is the key element to improve the measurement! 

Nint

e
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How to finely measure a Pauli Exclusion Principle Violation? 
VIP (past), VIP-2 (current), and VIP-3 and GATOR (future)  

X-Rays emissions: 
SDDs well versed for this measurement 
Accurate calibration 

Rigorous Data Analysis 
Bayesian Approach: well established and reliable

Modified Frequenstist CLs: optimal test (sensible to small parameters fluctuations)

…use other observables (i.e., Time) to further refine the measurement


Electron-atoms interaction modelling ( ) 
Linear Scattering: due to phonons and lattice irregularities


Safest hypothesis

Largely underestimation of how many interactions an electron does 


Close Encounters: a more realistic model of -atom encounters, but still approximated

12 order of magnitudes larger than Linear Scattering!


This is the key element to improve the measurement! 

THANK YOU

Nint

e


