

ECT

4 July 2023 Alessio Porcelli

COLMO

Quantum collapse models investigated with particle, nuclear, atomic and macro systems workshop

Why Pauli Exclusion Principle?

Why Pauli Exclusion Principle?

WE DON'T KNOW WHY Fermi-Dirac and Bose-Einstein are distinct

Reasons of Pauli's Exclusion Principle (PEP)

Particle nature? Green's general quantum field: paronic particles

- Order 1: fermionic/bosonic fields
- Order>1: parafermionic/parabosonic fileds
- Messiah-Greenberg Super-Selection: no fermion/boson decays into parafermion/ paraboson (and vice-versa)
- Paronic: a mixture of fermionic/bosonic and parefermionic/parabosonic states

Reasons of Pauli's Exclusion Principle (PEP)

Particle nature? Green's general quantum field: paronic particles

- Order 1: fermionic/bosonic fields
- Order>1: parafermionic/parabosonic fileds
- Messiah-Greenberg Super-Selection: no fermion/boson decays into parafermion/ paraboson (and vice-versa)
- Paronic: a mixture of fermionic/bosonic and parefermionic/parabosonic states
- Interactions result? Non-Commutative Quantum Gravity
 - **θ-Poincaré**: distortion of Lorentz symmetry (visible in a two identical particles system)

$$\left|\alpha,\alpha\right\rangle = \left\langle a^{\dagger},\alpha\right\rangle \left\langle a^{\dagger},\alpha\right\rangle \left|0\right\rangle = \int \frac{d^{d}p_{1}}{2p_{10}} \frac{d^{d}p_{2}}{2p_{20}} e^{-\frac{i}{2}p_{1\mu}\theta^{\mu\nu}p_{2\nu}}\alpha(p_{1})c^{\dagger}(p_{1})\alpha(p_{2})c^{\dagger}(p_{2})\right\rangle$$

Reasons of Pauli's Exclusion Principle (PEP)

Particle nature? Green's general quantum field: paronic particles

- Order 1: fermionic/bosonic fields
- Order>1: parafermionic/parabosonic fileds
- Messiah-Greenberg Super-Selection: no fermion/boson decays into parafermion/ paraboson (and vice-versa)
- Paronic: a mixture of fermionic/bosonic and parefermionic/parabosonic states
- Interactions result? Non-Commutative Quantum Gravity

θ-Ppincaré: distortion of Lorentz symmetry (visible in a two identical particles system)

$$\left|\alpha,\alpha\right\rangle = \left\langle a^{\dagger},\alpha\right\rangle \left\langle a^{\dagger},\alpha\right\rangle \left|0\right\rangle = \int \frac{d^{d}p_{1}}{2p_{10}} \frac{d^{d}p_{2}}{2p_{20}} e^{-\frac{i}{2}\mu_{\mu}\theta^{\mu\nu}p_{1}}\alpha(p_{1})c^{\dagger}(p_{1})\alpha(p_{2})c^{\dagger}(p_{2})\right\rangle$$

Reasons of Pauli's Exclusion Principle (PEP)

Particle nature? Green's general quantum field: paronic particles

- Order 1: fermionic/bosonic fields
- Order>1: parafermionic/parabosonic fileds
- Messiah-Greenberg Super-Selection: no fermion/boson decays into parafermion/ paraboson (and vice-versa)
- Paronic: a mixture of fermionic/bosonic and parefermionic/parabosonic states
- Interactions result? Non-Commutative Quantum Gravity

0-Poincaré: distortion of Lorentz symmetry (visible in a two identical particles system)

$$\left|\alpha,\alpha\right\rangle = \left\langle a^{\dagger},\alpha\right\rangle \left\langle a^{\dagger},\alpha\right\rangle \left|0\right\rangle = \int \frac{d^{d}p_{1}}{2p_{10}} \frac{d^{d}p_{2}}{2p_{20}} e^{-\frac{i}{2}\mu_{\mu}\theta^{\mu\nu}p_{\mu}}\alpha(p_{1})c^{\dagger}(p_{1})\alpha(p_{2})c^{\dagger}(p_{2})\right\rangle$$

$$\theta_{\mu\nu} = \begin{pmatrix} \theta_{00} & \theta_{0i} \\ \\ \theta_{j0} & \theta_{ji} \end{pmatrix}$$

Reasons of Pauli's Exclusion Principle (PEP)

Particle nature? Green's general quantum field: paronic particles

- Order 1: fermionic/bosonic fields
- Order>1: parafermionic/parabosonic fileds
- Messiah-Greenberg Super-Selection: no fermion/boson decays into parafermion/ paraboson (and vice-versa)
- Paronic: a mixture of fermionic/bosonic and parefermionic/parabosonic states
- Interactions result? Non-Commutative Quantum Gravity

0-Poincaré: distortion of Lorentz symmetry (visible in a two identical particles system)

$$\left|\alpha,\alpha\right\rangle = \left\langle a^{\dagger},\alpha\right\rangle \left\langle a^{\dagger},\alpha\right\rangle \left|0\right\rangle = \int \frac{d^{d}p_{1}}{2p_{10}} \frac{d^{d}p_{2}}{2p_{20}} e^{-\frac{i}{2}\mu_{\mu}\theta^{\mu\nu}p_{\mu}}\alpha(p_{1})c^{\dagger}(p_{1})\alpha(p_{2})c^{\dagger}(p_{2})\right\rangle$$

Time
$$\theta_{00}$$
 θ_{0i} $\theta_{\mu\nu} =$ θ_{j0} θ_{ji} Space distortion

Reasons of Pauli's Exclusion Principle (PEP)

Particle nature? Green's general quantum field: paronic particles

- Order 1: fermionic/bosonic fields
- Order>1: parafermionic/parabosonic fileds
- Messiah-Greenberg Super-Selection: no fermion/boson decays into parafermion/ paraboson (and vice-versa)
- Paronic: a mixture of fermionic/bosonic and parefermionic/parabosonic states
- Interactions result? Non-Commutative Quantum Gravity

0-Poincaré: distortion of Lorentz symmetry (visible in a two identical particles system)

$$\left|\alpha,\alpha\right\rangle = \left\langle a^{\dagger},\alpha\right\rangle \left\langle a^{\dagger},\alpha\right\rangle \left|0\right\rangle = \int \frac{d^{d}p_{1}}{2p_{10}} \frac{d^{d}p_{2}}{2p_{20}} e^{-\frac{i}{2}\mu_{\mu}\theta^{\mu\nu}p} \alpha(p_{1})c^{\dagger}(p_{1})\alpha(p_{2})c^{\dagger}(p_{2})\right\rangle$$

Time
$$\theta_{00}$$
 θ_{0i} Space-Time mix distortion
 $(\theta_{j0} = \theta_{0i})$ $\theta_{\mu\nu} =$ θ_{j0} θ_{ji} Space distortion

Reasons of Pauli's Exclusion Principle (PEP)

Particle nature? Green's general quantum field: paronic particles

- Order 1: fermionic/bosonic fields
- Order>1: parafermionic/parabosonic fileds
- Messiah-Greenberg Super-Selection: no fermion/boson decays into parafermion/ paraboson (and vice-versa)
- Paronic: a mixture of fermionic/bosonic and parefermionic/parabosonic states
- Interactions result? Non-Commutative Quantum Gravity

θ-Ppincaré: distortion of Lorentz symmetry (visible in a two identical particles system)

$$\left| \alpha, \alpha \right\rangle = \left\langle a^{\dagger}, \alpha \right\rangle \left\langle a^{\dagger}, \alpha \right\rangle \left| 0 \right\rangle = \int \frac{d^{d}p_{1}}{2p_{10}} \frac{d^{d}p_{2}}{2p_{20}} e^{-\frac{i}{2} I_{\mu} \theta^{\mu\nu} p} \alpha(p_{1}) c^{\dagger}(p_{1}) \alpha(p_{2}) c^{\dagger}(p_{2}) \right\rangle$$

Time
 θ_{00} θ_{0i} Space-Time mix distortion
 $(\theta_{j0} = \theta_{0i})$ $\theta_{\mu\nu} =$ θ_{j0} θ_{ji} Space distortion

Magnetic Scenario: $\theta_{0i} = 0$ only space-sector distortions

Electric Scenario: $\theta_{0i} \neq 0$ also space-time mixing

Anti-/symmetric commutativity with a coefficient β

$$a^{\dagger} |0\rangle = |1\rangle \quad a^{\dagger} |1\rangle = \beta |2\rangle \quad a^{\dagger} |2\rangle = 0$$
$$a |0\rangle = 0 \quad a |1\rangle = |0\rangle \quad a |2\rangle = \beta |1\rangle$$

In a system of two fermions (i.e., two electrons), PEP is violated with an amplitude probability of $\beta^2/2$

Anti-/symmetric commutativity with a coefficient m eta

$$a^{\dagger} |0\rangle = |1\rangle \quad a^{\dagger} |1\rangle = \beta |2\rangle \quad a^{\dagger} |2\rangle = 0$$
$$a |0\rangle = 0 \quad a |1\rangle = |0\rangle \quad a |2\rangle = \beta |1\rangle$$

In a system of two fermions (i.e., two electrons), PEP is violated with an amplitude probability of $\beta^2/2$

Anti-/symmetric commutativity with a coefficient m eta

$$\begin{aligned} a^{\dagger} \left| 0 \right\rangle &= \left| 1 \right\rangle \quad a^{\dagger} \left| 1 \right\rangle &= \beta \left| 2 \right\rangle \quad a^{\dagger} \left| 2 \right\rangle &= 0 \\ a \left| 0 \right\rangle &= 0 \quad a \left| 1 \right\rangle &= \left| 0 \right\rangle \quad a \left| 2 \right\rangle &= \beta \left| 1 \right\rangle \end{aligned}$$

In a system of two fermions (i.e., two electrons), PEP is violated with an amplitude probability of $\beta^2/2$

...but for NCQC and Quon algebra connection we use $\delta^2 = \beta^2/2$ instead: $a_i a_j^{\dagger} - q(E) a_j^{\dagger} a_i = \delta_{ij}$ with $q(E) = 2\delta(E)^2 - 1$

Anti-/symmetric commutativity with a coefficient β

$$a^{\dagger} |0\rangle = |1\rangle \quad a^{\dagger} |1\rangle = \beta |2\rangle \quad a^{\dagger} |2\rangle = 0$$
$$a |0\rangle = 0 \quad a |1\rangle = |0\rangle \quad a |2\rangle = \beta |1\rangle$$

In a system of two fermions (i.e., two electrons), PEP is violated with an amplitude probability of $\beta^2/2$

...but for NCQC and Quon algebra connection we use $\delta^2 = \delta^2/2$ instead: $a_i a_j^{\dagger} - q(E) a_j^{\dagger} a_i = \delta_{ij}$ with $q(E) = 2\delta(E)^2 - 1$

Anti-/symmetric commutativity with a coefficient m eta

$$a^{\dagger} |0\rangle = |1\rangle \quad a^{\dagger} |1\rangle = \beta |2\rangle \quad a^{\dagger} |2\rangle = 0$$
$$a |0\rangle = 0 \quad a |1\rangle = |0\rangle \quad a |2\rangle = \beta |1\rangle$$

In a system of two fermions (i.e., two electrons), PEP is violated with an amplitude probability of $\beta^2/2$

...but for NCQC and Quon algebra connection we use $\delta^2 = \delta^2/2$ instead: $a_i a_i^{\dagger} - q(E) a_i^{\dagger} a_i = \delta_{ij}$

with
$$q(E) = 2\delta(E)^2 - 1$$

$$\delta^2 \propto \frac{1}{\Lambda^2}$$

(different for the two θ_{0i} scenarios)

Anti-/symmetric commutativity with a coefficient β

$$a^{\dagger} |0\rangle = |1\rangle \quad a^{\dagger} |1\rangle = \beta |2\rangle \quad a^{\dagger} |2\rangle = 0$$
$$a |0\rangle = 0 \quad a |1\rangle = |0\rangle \quad a |2\rangle = \beta |1\rangle$$

In a system of two fermions (i.e., two electrons), PEP is violated with an amplitude probability of $\beta^2/2$

...but for NCQC and Quon algebra connection we use $\delta^2 = \rho^2/2$ instead:

$$a_i a_j^{\dagger} - q(E) a_j^{\dagger} a_i = \delta_{ij}$$

with $q(E) = 2\delta(E)^2 - 1$

 $\delta^2 \propto \frac{1}{\Lambda^2}$ distortion Energy Scale (different for the two θ_{0i} scenarios)

Anti-/symmetric commutativity with a coefficient β

$$a^{\dagger} |0\rangle = |1\rangle \quad a^{\dagger} |1\rangle = \beta |2\rangle \quad a^{\dagger} |2\rangle = 0$$
$$a |0\rangle = 0 \quad a |1\rangle = |0\rangle \quad a |2\rangle = \beta |1\rangle$$

In a system of two fermions (i.e., two electrons), PEP is violated with an amplitude probability of $\beta^2/2$

...but for NCQC and Quon algebra connection we use $\delta^2 = \rho^2/2$ instead:

$$a_i a_j^{\dagger} - q(E) a_j^{\dagger} a_i = \delta_{ij}$$

with $q(E) = 2\delta(E)^2 - 1$

(different for the two θ_{0i} scenarios)

 $\delta^2 \propto \frac{1}{\Lambda^2}$

[Further details in Fabrizio Napolitano's Talk]

distortion Energy Scale

How about so far?

Amberg and Snow (1988): $β^2/2 ≤ 10^{-26}$ **★ DAMA (2009):** $β^2/2 ≤ 10^{-47}$ **★ Borexino (2011):** $β^2/2 ≤ 10^{-60}$

Models scenarios implications

Democratic scenario

all type of particles have the same degree of violation meta

How about so far?

^𝔅 **Ramberg and Snow (1988):** $\beta^2/2 \leq 10^{-26}$, lepton–lepton case ^𝔅 **DAMA (2009):** $\beta^2/2 \leq 10^{-47}$, hadron–lepton case ^𝔅 **Borexino (2011):** $\beta^2/2 \leq 10^{-60}$, hadron–hadron case

Models scenarios implications

all type of particles have the same degree of violation meta

Despotic scenario

each type of particle has its degree of violation β_i

How about so far?

***** Ramberg and Snow (1988): $\beta^2/2 \leq 10^{-26}$, lepton–lepton case ***** DAMA (2009): $\beta^2/2 \leq 10^{-47}$, hadron–lepton case ***** Borexino (2011): $\beta^2/2 \leq 10^{-60}$, hadron–hadron case

Models scenarios implications

Democratic scenario

all type of particles have the same degree of violation meta

Despotic scenario

each type of particle has its degree of violation β_i

SDDs

- Based on sideward depletion
- Charge particle or photon hits the silicon wafer
 - In the section of the section of
 - free electrons move to the anode following the lower potential due to the concentric electrodes
- The amount of charge collected by the anode is proportional to the energy of the radiation (X-Rays range)

VIP-2

- **SDD**: 32 detectors by SDDs, stably kept @
 - -170^{+1}_{-0} °C even with the current in Cu
- @LNGS Underground (beneath Gran Sasso Mountain – IT): ~1400 m of rock shielding

Calibration

Fe-55 source, with a 25 μ m thick Titanium foil

[hyperbolic calibration]

$\mathscr{F}^{woc}(\theta, y) = y_1 \times Ni(\theta_1, \theta_2) + y_2 \times Cu(\theta_3, \theta_4) + y_3 \times pol_1(\theta_5)$

 $\mathcal{F}^{woc}(\theta, y) = y_1 \times Ni(\theta_1, \theta_2) + y_2 \times Cu(\theta_3, \theta_4) + y_3 \times \text{pol}_1(\theta_5)$ $\mathcal{F}^{wc}(\theta, y, \mathcal{S}) = y_1 \times Ni(\theta_1, \theta_2) + y_2 \times Cu(\theta_3, \theta_4) + y_3 \times \text{pol}_1(\theta_5) + \mathcal{S} \times PEPV(\theta_4)$

Bayesian approach

 $p(\theta, y, \mathcal{S} \mid \mathscr{D}^{wc}, \mathscr{D}^{woc}) = \frac{\mathscr{L}(\mathscr{D}^{wc}, \mathscr{D}^{woc} \mid \theta, y, \mathcal{S}) p(\theta, y, \mathcal{S})}{\int d\theta dy \mathscr{L}(\mathscr{D}^{wc}, \mathscr{D}^{woc} \mid \theta, y, \mathcal{S}) p(\theta, y, \mathcal{S})} \qquad \text{Priors of } \theta \text{ and } y$ are Gaussians: $p(\mathcal{S} \mid \mathscr{D}^{wc}, \mathscr{D}^{woc}) = \int p(\theta, y, \mathcal{S} \mid \mathscr{D}^{wc}, \mathscr{D}^{woc}) d\theta dy$ $p(\mathcal{S} \mid \mathscr{D}^{wc}, \mathscr{D}^{woc}) = \int p(\theta, y, \mathcal{S} \mid \mathscr{D}^{wc}, \mathscr{D}^{woc}) d\theta dy$

- around known values Prior of S is flat, limited from previous
- experiments
 Systematic
 uncertainties
 included

Bayesian approach

$$p(\theta, y, \mathcal{S} \mid \mathcal{D}^{wc}, \mathcal{D}^{woc}) = \frac{\mathscr{L}(\mathcal{D}^{wc}, \mathcal{D}^{woc} \mid \theta, y, \mathcal{S}) p(\theta, y, \mathcal{S})}{\int d\theta dy \mathscr{L}(\mathcal{D}^{wc}, \mathcal{D}^{woc} \mid \theta, y, \mathcal{S}) p(\theta, y, \mathcal{S})} \qquad \text{Priors of } \theta$$
are Gaussi
statistical statistical fluctuation

Integrals with Markov Chain Monte Carlo method

Priors of θ and yare Gaussians: statistical fluctuations around known values

- Prior of S is flat, limited from previous experiments
- Systematic uncertainties included

Modified frequentist: CLs

$$\mathscr{L}(\boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S}) = \mathscr{L}(\mathcal{D}^{wc}, \mathcal{D}^{woc} | \boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S}) p(\boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S})$$

$$t_{\mathcal{S}} = -2\ln\Lambda(\mathcal{S}) = -2\ln\frac{\mathscr{L}(\hat{\hat{\theta}}, \hat{\hat{y}}, \mathcal{S})}{\mathscr{L}(\hat{\theta}, \hat{y}, \hat{\mathcal{S}})} \qquad p_{\mathcal{S}} = \int_{t_{obs}}^{\infty} f(t_{\mathcal{S}} \mid \mathcal{S}) dt_{\mathcal{S}} \qquad \mathsf{CL}_{\mathsf{S}} = \frac{p_{\mathcal{S}}}{1 - p_0} < 1 - \mathsf{C.L}.$$

one-sided Likelihood Test statistic

Modified frequentist: CLs

$$\mathscr{L}(\boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S}) = \mathscr{L}(\mathcal{D}^{wc}, \mathcal{D}^{woc} | \boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S}) p(\boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S})$$

$$t_{\mathcal{S}} = -2\ln\Lambda(\mathcal{S}) = -2\ln\frac{\mathscr{L}(\hat{\hat{\theta}}, \hat{\hat{y}}, \mathcal{S})}{\mathscr{L}(\hat{\theta}, \hat{y}, \hat{\mathcal{S}})} \qquad p_{\mathcal{S}} = \int_{t_{obs}}^{\infty} f(t_{\mathcal{S}} \mid \mathcal{S}) dt_{\mathcal{S}} \qquad \mathsf{CL}_{\mathsf{S}} = \frac{p_{\mathcal{S}}}{1 - p_0} < 1 - \mathsf{C.L}.$$

one-sided Likelihood Test statistic

Modified frequentist: CLs

 $\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S}) = \mathcal{L}(\mathcal{D}^{wc}, \mathcal{D}^{woc} | \boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S}) p(\boldsymbol{\theta}, \boldsymbol{y}, \mathcal{S})$

S

90% of C.L.

0,0

From $\delta to \beta^2/2$

 $\mathcal{S} \simeq \frac{\beta^2}{2} \cdot N_{\text{new}} \cdot \frac{N_{\text{int}}}{10} \cdot 7.25 \times 10^{-2}$

From $\delta to \beta^2/2$

From $\delta to \beta^2/2$

From
$$\delta to \beta^2/2$$

 N_{int} is the normalization that decides the order of magnitude of $\beta^2/2$ Let's discuss *e*-atoms interaction Models!

Linear Scattering

Through Copper Resistance, we know the average interaction length μ

Nint

45

Linear Scattering

Through Copper Resistance, we know the average interaction length μ

Close Encounters

Through Diffusion-Transport theory and Copper atomic density:

- the average time τ_E on atomic encounter for a diffused electron
- the average time *T* of target crossing by an electron

TO DO: a quantum N_{int}?

How many interactions between Cu atomic and electron fields occur?

Outlook

How to finely measure a Pauli Exclusion Principle Violation?

VIP (past), VIP-2 (current), and VIP-3 and GATOR (future)

X-Rays emissions:

- SDDs well versed for this measurement
- Accurate calibration

Markov Rigorous Data Analysis

- **Bayesian** Approach: well established and reliable
- Modified Frequenstist **CL**_s: optimal test (sensible to small parameters fluctuations)
- …use other observables (i.e., Time) to further refine the measurement

Electron-atoms interaction modelling (N_{int})

- Linear Scattering: due to phonons and lattice irregularities
 Safest hypothesis
 - X Largely underestimation of how many interactions an electron does
- Close Encounters: a more realistic model of *e*-atom encounters, but still approximated 12 order of magnitudes larger than Linear Scattering!
- This is the key element to improve the measurement!

Outlook

How to finely measure a Pauli Exclusion Principle Violation?

VIP (past), VIP-2 (current), and VIP-3 and GATOR (future)

X-Rays emissions:

- SDDs well versed for this measurement
- Accurate calibration

Markov Rigorous Data Analysis

- Bayesian Approach: well established and reliable
- Modified Frequenstist **CL**_s: optimal test (sensible to small parameters fluctuations)
- …use other observables (i.e., Time) to further refine the measurement

Electron-atoms interaction modelling (N_{int})

- Linear Scattering: due to phonons and lattice irregularities Safest hypothesis
 - X Largely underestimation of how many interactions an electron does
- Close Encounters: a more realistic model of *e*-atom encounters, but still approximated 12 order of magnitudes larger than Linear Scattering!
- This is the key element to improve the measurement!

THANK YOU

