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Why Pauli Exclusion Principle?

WE DON’T KNOW WHY
Fermi-Dirac and Bose-Einstein
are distinct
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Beyond Standard Model...

Reasons of Pauli’s Exclusion Principle (PEP)

4r Particle nature? Green’s general quantum field: paronic particles
4 Order 1: fermionic/bosonic fields
4 Order>1: parafermionic/parabosonic fileds

4 Messiah-Greenberg Super-Selection: no fermion/boson decays into parafermion/
paraboson (and vice-versa)

4 Paronic: a mixture of fermionic/bosonic and parefermionic/parabosonic states
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Magnetic Scenario: §,, = ()
only space-sector distortions also space-time mixing X
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Signature

Anti-/symmetric commutativity with a coefficient f§

a"|0y=[1) a'|1)=p]2) da'|2)=0
al0y=0 a|l)=1]0) a|2)=p]|1)

In a system of two fermions (i.e., two electrons),
PEP is violated with an amplitude probability ofﬂ2/2
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Anti-/symmetric commutativity with a coefficient f§

a"|0y=[1) a'|1)=p]2) da'|2)=0
al0y=0 a|l)=1]0) a|2)=p]|1)

In a system of two fermions (i.e., two electropé),

PEP is violated with an amplitude probability 6f #%/2

aia; —q(E )a;ai = 0;;
with g(E) = 256(E)? — 1

(different for the two 6,; scenarios)
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Signature

Anti-/symmetric commutativity with a coefficient f§

a"|0y=[1) a'|1)=p]2) da'|2)=0
al0y=0 a|l)=1]0) a|2)=p]|1)

In a system of two fermions (i.e., two electropé),

PEP is violated with an amplitude probability 6f #%/2

aia; —q(E )a;ai = 0;;
with g(E) = 256(E)? — 1

A? 44— distortion Energy Scale
(different for the two 6,; scenarios)
[Further details in Fabrizio Napolitano’s Talk] Y \
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How about so far?

“» Ramberg and Snow (1988): ,B2/ 2 <1072
 DAMA (2009): 5°/2 < 107
# Borexino (2011): #2/2 < 107

Models scenarios implications

[J Democratic scenario

all type of particles have the same degree of violation f
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X-Rays

Ejected K-shell electron Incident radiation

M-shell electron
fills vacancy

L-shell electron

K, x-ray emitted fills vacancy

K. X-ray emitted

Shells
(orbits)
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X-Rays

Ejected K-shell electron Incident radiation
9
Silicon
M-shell electron Drift

fills vacancy
‘ﬂ\ Detector
’ ‘!} | L-shell electron (SDD)
K. x-ray emitted % (N fills vacancy B

Shells
(orbits)

22



SDDs

anode

field strips

integrated FET

\ path of
@
n- silicon 5= electrons
S\

p-+

oQOw

~» =V —»

back contact

4 Based on sideward depletion
4 Charge particle or photon hits the silicon wafer
4 electron-hole pairs are generated
4 free electrons move to the anode following the lower potential due to the concentric
electrodes
4 The amount of charge collected by the anode is proportional to the energy of the
radiation (X-Rays range)

N\
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VIP group

Violation of Pauli Exclusion Principle

Open Systems Close System
testing newly injected testing spontaneous
electrons emissions
VIP
VIP-Lead BEGe
VIP-2

VIP-3 GATOR
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testing newly injected testing spontaneous
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Ramberg and Snow (1988)
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212 <47 107 VIP
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[publishing soon] VIP-2

[Future] VIP-3 GATOR
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VIP group

Violation of Pauli Exclusion Principle

Open Systems Close System
testing newly injected testing spontaneous
electrons emissions

Ramberg and Snow (1988)
[%/2 < 10726

212 <47 107 VIP

[THIS WORK] VIP-2

[Future] VIP-3 GATOR




X-ray tube
Veto scintillators
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‘trlgger Iog;c copper conductor SDDs
‘ [ i .« modules : 5 10 cm —
‘X Qh\é'mb‘er ‘ e ) .
G N\EET ~ 4 Target: Copper strips
chiller for | | e i configuration: regime
Np=iee , case (stable states: background)
~ 4 WITH CURRENT configuration (180 A): dynamic
DAQ case (PEP violation through electron capture)

il © SDD: 32 detectors by SDDs, stably kept @
—1707"! °C even with the current in Cu

% @LNGS Underground (beneath Gran Sasso
Mountain — IT): ~1400 m of rock shielding <>
AN
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Calibration

Fe-55 source, with a 25 pm thick Titanium foill
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Bayesian approach

CACZ 0.y, ©)p©.y. ) >4 Priors of @ and y

p@,y,

P(
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uncertainties
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Bayesian approach

p@,y, |

p(&|

0.y, ©)p©.y. ) >4 Priors of @ and y

Integrals with

_
[dody (2, 0.y, )p@,y,
) = [pw,y, |, )dody

Markov Chain Monte Carlo method

0.025 | J

p(S | DWC,DWOC)
o
o
N
o

0.015 |

0.010 |

0.005

0.000 [

B smallest 95 interval(s)
smallest 90 interval(s)
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------ global mode

----------------------- local mode
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Modified frequentist: CLs

Z@0,y, ) =L, 10,y, 5)p,y, )

Z@.5.
fo=—2InA(S) = —21n 28 )

— Ps <1-cL
l g(eay’ )

1 —pg

Ps = [ S| Sdtg Cls =
Lobs

one-sided Likelihood Test statistic
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Modified frequentist: CLs

Z@0,y, ) =L, 10,y, 5)p,y, )
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Modified frequentist: CLs
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Expected CLs +2 o but measured
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Background Hypothesis
as Asimov Dataset
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From & to #%/2




From & to #%/2

/ efficiency simulated:

e Nint . considered X-ray
~— - Nnew 0 - 7.25 %10 absorption + geometry
4 acceptance + SDDs
T efficiency

Number of interactions;
every ~10 interactions, 1 cascade

|
Newly injected electrons!

Z [.At./e (= [At/e for simplicity)
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/ efficiency simulated:

e Nint . considered X-ray
~— - Nnew 0 - 7.25 %10 absorption + geometry
4 acceptance + SDDs
T efficiency

Number of interactions;
every ~10 interactions, 1 cascade

|
Newly injected electrons!

Z LAt/e (= IAt/e for simplicity)

| U
[? 10 e 1
2 Nint 1At 7.25x1072
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From & to #%/2

/ efficiency simulated:

e Nint . considered X-ray
~— - Nnew 0 - 7.25 % 10 absorption + geometry
4 acceptance + SDDs
T efficiency

Number of interactions;
every ~10 interactions, 1 cascade

|
Newly injected electrons!

Z LAt/e (= IAt/e for simplicity)

| 4
(2 10 e 1
2 Nint 1At 7.25x 1072

Nt is the normalization that decides the order of magnitude of 3%/2
Let’s discuss e—atoms interaction Models!
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Linear Scattering

Through Copper Resistance,
we know the average

interaction length u

lu 2u 3u 4u 5Su 6u

— -
. o

.
D

Nipt = Dlp ~ 1.95 X 100

Nint
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Linear Scattering

Through Copper Resistance,

we know the average
interaction length u

lu 2u 3u 4u 5Su 6u

D
Nipt = Dlp ~ 1.95 X 100
,52

= 5107
2 Ny

Nint

Close Encounters

Through Diffusion-Transport theory
and Copper atomic density:

e the average time 7, on atomic
encounter for a diffused electron

e the average time 1 of target
crossing by an electron

Reservoir Diffusion

Nt = Tltg =~ 4.29 x 10"
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TO DO: a quantum N;n+?

f\.‘i)

How many interactions between Cu atomic and electron fields occur?
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Outlook

How to finely measure a Pauli Exclusion Principle Violation?
VIP (past), VIP-2 (current), and VIP-3 and GATOR (future)

4 X-Rays emissions:
> SDDs well versed for this measurement
Accurate calibration
4 Rigorous Data Analysis
2 Bayesian Approach: well established and reliable
Modified Frequenstist CLs: optimal test (sensible to small parameters fluctuations)

2 ...use other observables (i.e., Time) to further refine the measurement
¥ Electron-atoms interaction modelling (Nint)

Linear Scattering: due to phonons and lattice irregularities
Safest hypothesis
0 Largely underestimation of how many interactions an electron does

? Close Encounters: a more realistic model of e-atom encounters, but still approximated
S{12 order of magnitudes larger than Linear Scattering!
4 This is the key element to improve the measurement!
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