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Physics in the age of data science

 Astrophysical observations

 Particle physics experiments

Credit: iStock

Credit: CERN

 Large-scale classical simulations 

Credit: Cineca

 Quantum simulation

Credit: iStock



Physics in the age of data science

 Large-scale classical simulations 

Credit: Cineca

 Quantum simulation

Credit: iStock

In this talk: I’ll consider classical/
quantum simulation output of stat 
mech/many-body problems 

Nowadays, these approaches can 
grant us access to large volumes 
of “many-body snapshots” 
(though, )Nsnapshots ≪ 2N



What are many-body snapshots?

Example 1 (Stat Mech) Thermal and 
uncorrelated raw spin configurations 
sampled via Monte Carlo

Example 2 (Quantum simulation) 
Generalized projective measurements 
in a quantum simulator (e.g. local 
occupations)

Prüfer et al., Nat. Phys. ‘20



How do we extract relevant information 
from many-body snapshots?

“Traditional” approaches (stat mech / effective field theory): 
compute few-point correlators, for instance: 

C(2)
ij = ⟨xixj⟩ − ⟨xi⟩⟨xj⟩

Allows us to characterize classical/quantum phase transitions, 
determine “proper vertices” of the quantum effective action, etc.

However, it disregards part of the 
information content of many-body 

snapshots

In data science jargon: 
an “uncontrolled” 

dimensional reduction



Why we would like to go beyond?

 Lattice gauge theory and topological phases (non-local 
correlations) 

 Identifying the relevant degrees of freedom at play 

 Understanding the working of quantum computers (e.g. 
choosing best suited observations, cross-platform verification, 
noise tomography, etc.) 

 Quantifying the complexity of wave functions



Data-driven strategy

Use non-parametric statistical learning (unsupervised ML) to 
discover and extract relevant information in many-body physics 
problems by leveraging all available information

https://www.mathworks.com/discovery/reinforcement-learning.html
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Data-driven strategy

https://www.mathworks.com/discovery/reinforcement-learning.html

Today, I will focus on 
two tools: 

1) Intrinsic dimension 

2) PCA entropy 

Use non-parametric statistical learning (unsupervised ML) to 
discover and extract relevant information in many-body physics 
problems by leveraging all available information



Similar approaches

Hu et al. PRE ’17 
Wetzel PRE ‘17 

Wang & Zhai, PRB ’17 
Ch’ng et al., PRE ’18 

Mendes-Santos et al., PRX ’21 
Sale et al., PRE ’22; PRD ’23 
Sehayek & Melko, PRB ‘22 

Spitz, et al., PRD ’23 
Vitale et al., arXiv ’23 

Stat mech / lattice field theory: Quantum many-body:

Rodriguez-Nieva & Scheurer, Nat Phys ’19 
Lidiak & Gong, PRL ’20 

Mendes-Santos et al., PRX Quantum ’21 
Bohrdt et al., PRL ’21 

Spitz, et al., SciPost Phys ’21 
Tirelli & Costa, PRB ‘21 

Schmitt & Lenarčič, PRB ’22 
Miles et al., PRR ’23 

Mendes-Santos et al., arXiv ’23 

… and many more! 



Intrinsic dimension

•Basic tool in data mining with multiple applications in chemical 
and bimolecular science and image analysis 

•Quantifies the minimum number of variables needed to 
describe the data  

•Serves as a proxy of the Kolmogorov complexity

D = 3

Id = 2

Each point is, for 
example, a spin 

configuration

Mendes-Santos et al., PRX ‘21



Intrinsic dimension: TWO-NN
Facco et al., Sci. Rep. ‘17

Needs a metric (e.g. for spin systems: Hamming distance)

d(i, j) := ∑
r

| ⃗S i
r − ⃗S j

r |

 Uses statistics of distances between nearest-neighbor (NN) points



Intrinsic dimension: TWO-NN
Facco et al., Sci. Rep. ‘17

Needs a metric (e.g. for spin systems: Hamming distance)

d(i, j) := ∑
r

| ⃗S i
r − ⃗S j

r |

Example: 3-site system

⃗S 1 = (0,1,1)

⃗S 2 = (1,1,1)

⃗S 3 = (1,0,1)

d( ⃗S 1, ⃗S 2) = |0 − 1 | + |1 − 1 | + |1 − 1 | = 1

d( ⃗S 1, ⃗S 3) = 2

⃗S 4 = (0,0,0)

…

 Uses statistics of distances between nearest-neighbor (NN) points



Intrinsic dimension: TWO-NN

 Uses statistics of distances between nearest-neighbor (NN) points

Facco et al., Sci. Rep. ‘17

Needs a metric (e.g. for spin systems: Hamming distance)

Main assumption: NN points are drawn uniformly from -dim 
hyperspheres

Id

μ =
r2

r1

f(μ) =
Id

μId+1

For each point, compute:

Distribution function of :μ



Intrinsic dimension: TWO-NN
Facco et al., Sci. Rep. ‘17

Needs a metric (e.g. for spin systems: Hamming distance)

Main assumption: NN points are drawn uniformly from -dim 
hyperspheres

Id

μ =
r2

r1
f(μ) =

Id

μId+1

Linear fit using 
cumulative dist. 

function

 Uses statistics of distances between nearest-neighbor (NN) points

Nr ∼ 104



Intrinsic dimension: toy example

Toy example: 3-site XY model

(θ1, θ2, θ3)

Mendes-Santos et al., PRX ‘21

Configurations (data points): 

Low temperature

Id = 1

High temperature

Id = D = 3

What about close to a transition point?

Hamiltonian: H = − ∑
⟨i,j⟩

cos(θi − θj)



Intrinsic dimension: 2D Ising

2D classical Ising model

Mendes-Santos et al., PRX ‘21

E = − J∑
⟨i,j⟩

SiSj

Second-order (conformal) phase 
transition 

Tc =
2

ln(1 + 2)
≈ 2.269

ν = 1

Divergent correlation length: do data 
structures are more complex?

Square lattice
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2D classical Ising model

Mendes-Santos et al., PRX ‘21

E = − J∑
⟨i,j⟩

SiSj

Second-order (conformal) phase 
transition 

Tc =
2

ln(1 + 2)
≈ 2.269

ν = 1

Divergent correlation length: do data 
structures are more complex?

Manifold simplifies at 
the transition! 

Intuition: universality

Square lattice



Intrinsic dimension: 2D Ising

2D classical Ising model

Mendes-Santos et al., PRX ‘21

E = − J∑
⟨i,j⟩

SiSj

Second-order (conformal) phase 
transition 

Tc =
2

ln(1 + 2)
≈ 2.269

ν = 1

Divergent correlation length: do data 
structures are more complex?

Square lattice



Role of the physical dimension

3D Ising model

Panda, RV, et al., in preparation

E = − J∑
⟨i,j⟩

SiSj

How does the physical dimension affects the data 
structure and the intrinsic dimension?

Rajat Panda

•  No analytical solution known so far 

•  Continuous phase transition at  (believed to be conformal) 

• Dual to a  lattice gauge theory 

• QCD critical point expected to belong to the 3D Ising universality class 
[Stephanov et al., PRL ’98; Gavin et al., PRD ’94; …]

Tc ≈ 4.51

ℤ2



Role of the physical dimension

3D Ising model

Panda, RV, et al., in preparation

E = − J∑
⟨i,j⟩

SiSj

How does the physical dimension affects the data 
structure and its intrinsic dimension?

Rajat Panda

 Very high  (results must be 
taken warily) 

 Minimum not so clear at the 
transition (TWO-NN estimator) 

 In general, harder to extract 
information through 

Id

Id



PCA entropy

Can we use complementary statistical tests to still be able to 
extract relevant information?



PCA entropy

Can we use complementary statistical tests to still be able to 
extract relevant information?

Principal Component Analysis (PCA)

Transformation of the coordinate 
system to find high-variance 

directions

It amounts to diagonalizing the 
covariance matrix  :Σ = XTX/(Nr − 1)

Σλn = λn ⃗w n

See e.g. Jolliffe (2005)



PCA entropy

Can we use complementary statistical tests to still be able to 
extract relevant information?

Principal Component Analysis (PCA)

Transformation of the coordinate 
system to find high-variance 

directions

It amounts to diagonalizing the 
covariance matrix  :Σ = XTX/(Nr − 1)

Σλn = λn ⃗w n

See e.g. Jolliffe (2005)

Normalized eigenvalues:

λ̃n =
λn

∑m λm

By construction: λ̃n ≥ 0, ∑
n

λ̃n = 1

(“Shannon”) PCA entropy

SPCA = − ∑
n

λ̃n ln(λ̃n)

Alter et al., PNAS (2000), …



PCA entropy: 2D Ising

Panda, RV, et al., in preparation

Striking qualitative similarity to the thermodynamic entropy!

Flex very close to the transition point

Nr = 104



PCA entropy: 3D Ising

Panda, RV, et al., in preparation

Also works nicely for the 3D model!

Allows to estimate  with less than 1% errorTc



Experiments

In collaboration with M. 
Oberthaler’s group

What are the relevant operators to determine the proper vertices?

Oberthaler group



Experiments

In collaboration with M. 
Oberthaler’s group

See e.g. Kawaguchi & Ueda, 
Phys. Rep. ‘12

Obtained from irreducible 
parts of correlators of the 

transverse spin



Experiments

In collaboration with M. 
Oberthaler’s group

See e.g. Kawaguchi & Ueda, 
Phys. Rep. ‘12

Determined by particular 
combinations of populations

Obtained from irreducible 
parts of correlators of the 

transverse spin



Ranking of observables

RV, et al., in preparation (on arXiv soon!)

PCA entropy provides a metric to rank observables based on their 
relevance: the lower  the stronger the correlations within an 
observation

SPCA
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Agnostic bound on universal 
scaling regime

Correlation functions of the 
transverse spin exhibit 
self-similar dynamics

Theo: Berges et al., 
PRL ’08, …

Prüfer et al., Nat. Phys. ‘20

Intrinsic dimension features long, 
stable plateaus in strong agreement 

with universal behavior
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RV, et al., in preparation (on arXiv soon!)



Conclusions

 Non-parametric statistical learning provides powerful tools to 
enable assumption-free discoveries in many-body physics! 

 Widely applicable methods: classical/quantum, in and out of 
equilibrium (working with modest volumes of data) 

 Insights on lattice gauge theory and topological matter (on-going) 

 Interesting connections to the entropy and measures of complexity 
(e.g. Kolmogorov complexity, Shannon entropy)

Thank you!



Extra material



Further applications

q-clock models and BKT 
(“discretized” XY model)

S. Pedrielli

Pedrielli, RV, et al., in preparation
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H. Sun G. Bianconi

Sun, RV, et al., in preparation



More about intrinsic dimension

• Lower bound of complexity in data sets (e.g. relation to 
bottleneck in autoencoders [Ansuini et al., NearIPS 2019]) 

• Crucial dependence on the chosen scale 

•Related to the Kolmogorov complexity

How long shall a 
classical computer 

code be to reproduce 
a given string?

‘11111111…’ ‘10011010…’

print ‘1’ n times  
(lower complexity)

print ‘10011010…’ 
(higher complexity)

Mendes-Santos et al., PRX ‘21



 estimation: PCAId

Mendes-Santos et al., PRX ‘21

• Based on a ad-hoc cutoff parameter in the integrated spectrum of 

the covariance matrix  

• Bad estimate for curved manifolds

Id

∑
n=1

λ̃n ≈ ζ

See e.g. Jolliffe (2005)

2D Ising

3D Ising

Panda, RV, et al., in preparation



Ranking of observables: 
information imbalance

RV, et al., in preparation (on arXiv soon!)

Complementary metric of relevance used in unsupervised ML: 
information imbalance (based on rankings of NN distances)

Glielmo et al., PNAS Nexus ‘21
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Fully consistent with PCA entropy prediction 
(ask me later if interested in details)


