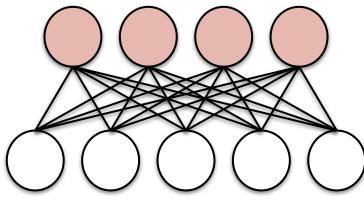
Inferring effective couplings with Restricted Boltzmann Machines



Alfonso Navas Predoctoral Researcher

Collaborators: Aurélien Decelle, Cyril Furtlehner and Beatriz Seoane

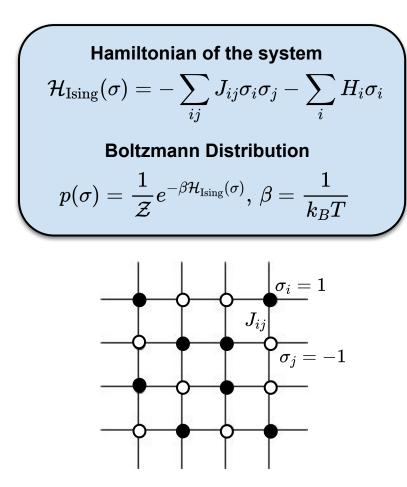
Complutense University of Madrid Department of Theoretical Physics

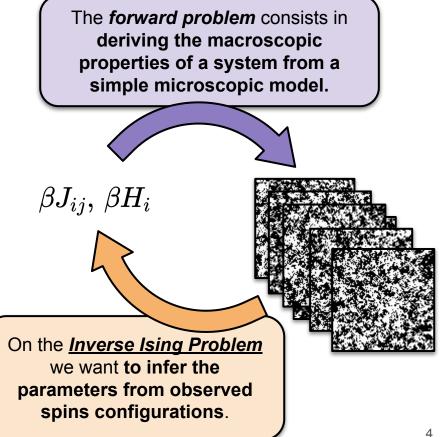
- 1. Introduction
- 2. ... From the RBM to the Ising Model
- 3. Results of Simple Numerical Experiments
- 4. Conclusion and further directions

1. Introduction

- 2. ... From the RBM to the Ising Model
- 3. Results of Simple Numerical Experiments
- 4. Conclusion and further directions

Introduction: The *inverse* Ising problem

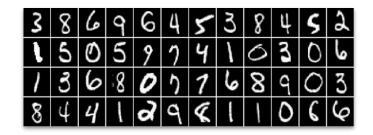




Introduction: Inverse problems in Machine Learning

Given a Data set,

$$X = \{x^{(1)}, \, x^{(2)}, \, \dots x^{(M)}\}$$



We adjust the parameters of a model such that the empirical distribution of the data set fits the distribution of the model:

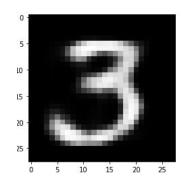
$$p_{ ext{data}}(x) \sim p_{ heta}(x) = rac{e^{-E_{ heta}(x)}}{\mathcal{Z}_{ heta}}$$

When the probability distribution of the model is given by a Boltzmann distribution, one has an Energy Based Model.

$$E_{\theta}(x) \Longrightarrow$$
 Energy function

Effective model of the data which can be used for: modelling, interpretability or generating.

Example: (Generating)



Which Energy function should we use?

We can try a solution such that **the magnetizations and correlations of the model match the corresponding values of the data** (i.e. *Boltzmann Learning*).

$$\langle x_i
angle_{ ext{model}} = \langle x_i
angle_{ ext{data}}, \, \langle x_i x_j
angle_{ ext{model}} = \langle x_j x_j
angle_{ ext{data}}$$

By imposing the above constraints and using *maximum entropy principles*, it is possible to obtain the following energy function

$$E_ heta(x) = -\sum_{ij} J_{ij} x_i x_j - \sum_i H_i x_i$$

Such an energy function is indeed the Ising model Hamiltonian!

Can this energy function encode any data set?

$$E_ heta(x) = -\sum_{ij} J_{ij} x_i x_j - \sum_i H_i x_i$$
 $p_ heta(x) = rac{e^{-E_ heta(x)}}{\mathcal{Z}_ heta}$

This energy function cannot includes beyond 2-body correlations!

Example:

... We could try to include higher order correlations by adding more parameters:

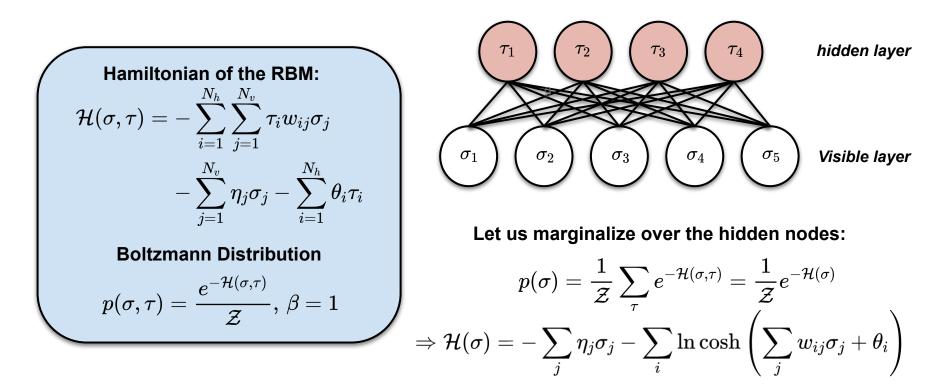
$$E_ heta(x) = -\sum_i h_i x_i - \sum_{ij} J^{(2)}_{ij} x_i x_j - \sum_{ijk} J^{(3)}_{ijk} x_i x_j x_k - \sum_{ijkl} J^{(4)}_{ijkl} x_i x_j x_k x_l + \dots$$

the number of parameters quickly diverges!

...Any solution? 7

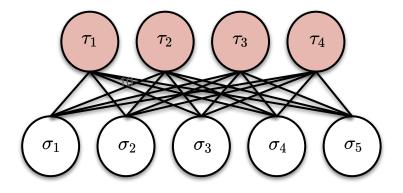
- 1. Introduction
- 2. ... From the RBM to the Ising Model
- 3. Results of Simple Numerical Experiments
- 4. Conclusion and further directions

The Restricted Boltzmann Machine



Adding latent variables (hidden layer) allows us to encode higher order correlations!

RBM for Inverse Problems?



As the relative importance of higher order couplings in inverse problems remains unexplored,

We can use the latent model learned by an RBM to fill this gap!

....

10

RBM effective Hamiltonian:

$$\mathcal{H}(\sigma) = -\sum_{j} \eta_{j} \sigma_{j} - \sum_{i} \ln \cosh \left(\sum_{j} w_{ij} \sigma_{j} + \theta_{i} \right)$$

Generalized Ising Hamiltonian:

$$\mathcal{H}(\sigma)=-\sum_j H_j\sigma_j-\sum_{j_1>j_2}J_{ij}\sigma_{j_1}\sigma_{j_2}-\sum_{j_1>j_2>j_3}J_{j_1j_2j_3}\sigma_{j_1}\sigma_{j_2}\sigma_{j_3}+\dots$$

... from the RBM to the Ising Model

<u>Step 1*:</u> Expansion of the Hamiltonian

$$egin{split} \mathcal{H}(\sigma) &= -\sum_j \eta_j \sigma_j - \sum_i \ln \cosh\left(\sum_j w_{ij} \sigma_j + heta_i
ight) \ &= -\sum_j \eta_j \sigma_j - \sum_{\sigma'} \prod_j \delta_{\sigma_j \sigma'_j} \sum_i \ln \cosh\left(\sum_j w_{ij} \sigma'_j + heta_i
ight) \ &\delta_{\sigma_j \sigma'_j} &= rac{1}{2}ig(1 + \sigma_j \sigma'_jig) o = -\sum_j \eta_j \sigma_j - rac{1}{2^{N_v}} \sum_{\sigma'} \prod_j ig(1 + \sigma_j \sigma'_jig) \sum_i \ln \cosh\left(\sum_j w_{ij} \sigma'_j + heta_iig) \end{split}$$

Step 1*: Expansion of the Hamiltonian

$$egin{aligned} \mathcal{H}(\sigma) &= -\sum_j \eta_j \sigma_j - rac{1}{2^{N_v}} \sum_{\sigma'} \prod_j ig(1+\sigma_j \sigma'_jig) \sum_i \ln \cosh\left(\sum_j w_{ij} \sigma'_j + heta_i
ight) \ &= -\sum_j H_j \sigma_j - \sum_{j_1>j_2} J_{ij} \sigma_{j_1} \sigma_{j_2} - \sum_{j_1>j_2>j_3} J_{j_1 j_2 j_3} \sigma_{j_1} \sigma_{j_2} \sigma_{j_3} + \dots \end{aligned}$$

By comparing term by term, we finally find

$$H_j = rac{1}{2^{N_v}}\sum_{\sigma'}\sum_i \sigma'_j \ln\cosh\left(\sum_j w_{ij}\sigma'_j+ heta_i
ight)+\eta_j
onumber \ J_{j_1\dots j_n} = rac{1}{2^{N_v}}\sum_{\sigma'}\sum_i \sigma'_{j_1}\dots \sigma'_{j_n}\ln\cosh\left(\sum_j w_{ij}\sigma'_j+ heta_i
ight)$$

.... These expressions cannot be exactly computed!

<u>Step 2*:</u> Numerical approximation of found expressions

Let us introduce the random variable

$$X_{i}^{(j_{1}\ldots j_{n})} = \sum_{\mu=n+1}^{N_{v}} w_{ij_{\mu}}s_{j_{\mu}}$$

Each s_{j_μ} is a random variable defined over the binary support $\{-1,1\}$

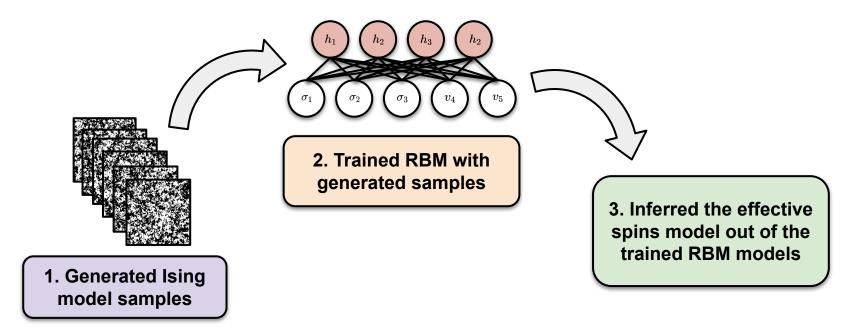
Then, we rewrite our expressions in terms of expected values of such variables

$$H_j = \eta_j + \sum_i \mathbb{E}_{X_i^{(j)}} \left[\ln rac{\cosh\left(heta_i + w_{ij} + X_i^{(j)}
ight)}{\cosh\left(heta_i - w_{ij} + X_i^{(j)}
ight)}
ight]$$
 $J_{j_1\dots j_n} = rac{1}{2^n} \sum_i \mathbb{E}_{X_i^{(j_1\dots j_n)}} \left[\sum_{\sigma'_{j_1}}\dots\sum_{\sigma'_{j_n}} \sigma'_{j_1}\dots\sigma'_{j_n}\ln\cosh\left(\sum_{\mu=1}^n w_{ij_\mu}\sigma'_{j_\mu} + X_i^{(j_1\dots j_n)} + heta_i
ight)
ight]$

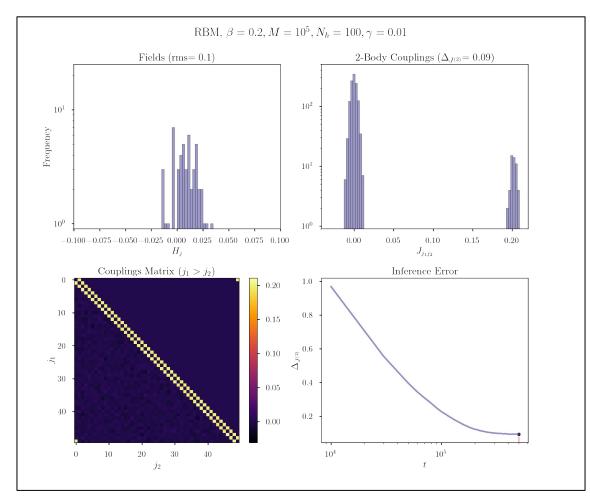
These expressions can be easily implemented as numeric integrals using the Central Limit Theorem :)

- 1. Introduction
- 2. ... From the RBM to the Ising Model
- 3. Results of Simple Numerical Experiments
- 4. Conclusion and further directions

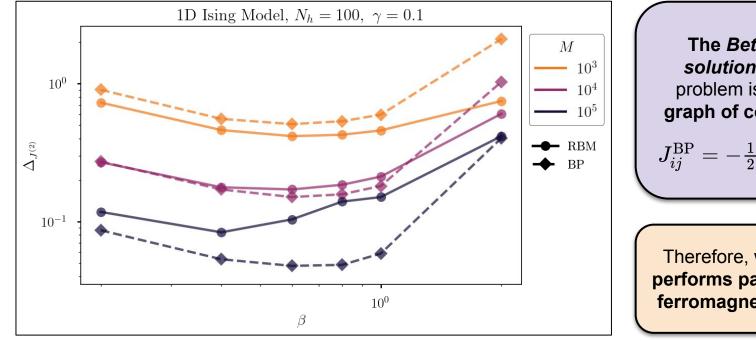
What did we do?



Learning the 1D Ising Model



Temperature dependence for 1D Inference



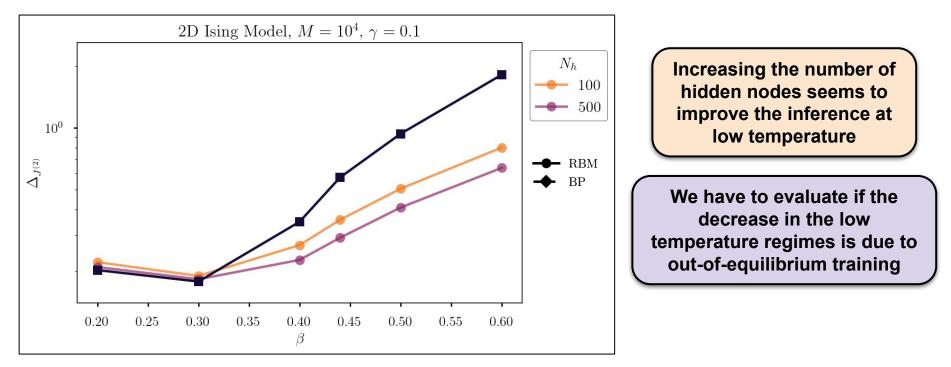
The Bethe-Peierls (BP) solution for inverse Ising problem is exact when the graph of couplings is a tree.

$$J^{ ext{BP}}_{ij} = -rac{1}{2} ext{arcsin} \left[2ig(C^{-1}ig)_{ij}
ight]$$

Therefore, we expect that BP performs particularly well for a ferromagnetic 1D Ising model

RBMs can outperform state-of-the-art methods at **low temperature regimes** and **when training data set is small**.

Temperature dependence for 2D Inference



Conclusions and Perspectives

• We introduced a method that allows us to extract the effective model learned by an RBM trained with Ising Model (i.e., we solve an Ising inverse problem using RBMs).

• The next steps to be considered:

- Development of efficient training methods for RBMs.
- Extension of a such inference method to other models (e.g., Potts Model)

