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1. Cubical complexes and persistent homology



Cubical complexes

Cubical complex is collection of cubes of different dimensions, closed under taking boundaries.

For f: A — R some function on lattice A, sublevel sets M(v) :={x € A| f(x) < v} form a
filtration, i.e. a nested sequence of sets “interpolating” between () and A,

A,

My(v) C Ms(u) Vv <p
“Pixelization” leads to filtration of cubical complexes.
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Homology

Cubical complexes can contain holes of different dimensions (e.g., 0 to 2, from left to right):

¢ O @

Given complex €, homology groups can be computed in different dimensions, Hy(C) .
Their Betti numbers count independent /-dimensional holes:

Bo(C) := dim H,(C)



Persistent homology

Homology of the sublevel sets M (v) generically changes with v . Holes can be born at birth
parameter p and die again with death d, possibly deforming as filtration is swept through. Have
with persistence p = d — b a measure of dominance of a feature.

[Edelsbrunner, Letscher, Zomorodian 2000; Zomorodian, Carlsson 2005]

Example for superlevel sets of a function on a surface:

Dimension O Dimension 1



Persistent homology

Homology of the sublevel sets M (v) generically changes with v . Holes can be born at birth
parameter p and die again with death d, possibly deforming as filtration is swept through. Have
with persistence p = d — b a measure of dominance of a feature.

[Edelsbrunner, Letscher, Zomorodian 2000; Zomorodian, Carlsson 2005]

Important properties:

Persistent homology is stable: Small changes in f result in small changes of persistent
homology. [Cohen-Steiner et al. 2007 & 2010]

Well-defined large-volume asymptotics exist for suitable persistent homology descriptors such

as (smoothened) Betti numbers, including notions of ergodicity.
[Hiraoka, Shirai, Trinh 2018; DS, Wienhard 2020]

Can be efficiently computed with well-developed, versatile computational topology libraries
such as GUDHI. [Otter et al. 2017] .



2. Confinement via different filtrations



SU(2) lattice gauge theory simulations

Goal: Can we gauge-invariantly observe properties of the confining phase via persistent
homology-

Based on [Spitz, Urban, Pawlowski PRD 2023].

Carry out Monte Carlo simulations on 4d Euclidean 323 x 8 lattice with periodic boundary
conditions. [Duane et al., 1987]

No gauge fixing applied. Samples are SU(2)-valued links U,,(z), following Wilson action, 3 = 1/¢*:
S[U] — g ZQEEA Zu<y Tr[l o UMV(:U)]

Compare multiple times to cooled configurations (partially removed UV fluctuations), using
standard Wilson flow. [Luscher, JHEP 2010]



Common pheno of SU(2) confinement

Theory is confining at low 3 as signalled by zero Polyakov loop: 0.4 .
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Evidence for driving via topological excitations, require interactions with Polyakov loops.
Monopole constituents of calorons, instanton-dyons, yield non-trivial Polyakov loops at infinity.

[Kraan & van Baal 1998; Lee & Lu 1998]
Ensembles can account for confinement in theories with trivial gauge group center.

[Diakonov & Petrov 2011]
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Sublevel set filtration of P(x)
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Clear persistent homology evidence for spontaneously broken center symmetry, effects
pronounced by cooling.



Sublevel sets of Polyakov loop topological density

Usual topological density ¢ ~ Tr E - B often contains strong UV fluctuation signatures.

Can rewrite topological charge as integral over 3-torus with integrand the Polyakov loop

topological density: 0 (x) = ﬁgijkTr[(P_lﬁiP)(P‘lajP)(P_lakP)] [Ford et al. 1998]
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Thus, topological density governed by lecal lumps, reminiscent of monopoles (no cooling)!

Exponential fit yields Ps(p) ~ exp(—26.5p)

Potential of far-separated instanton dyon-antidyon pair yields 3d action

S3(r — o00) = 8mv =~ 25.1v with for both dyons A$(x — o0) — vr,  [e.9., Larsen & Shuryak 2016]

Clear persistence signal of dyons: 12



Angle-difference filtration of holonomy Lie algebra field

Polyakov loop in Lie algebra: log P(x) = i¢%(x)T*. Trace P(x) = cos ¢(x = /¢*(x)
Construct angle-difference filtration from differences of ¢(x) between nearest ne|ghbors on
lattice, m-periodic (center-symm.). [Sale, Giansiracusa, Lucini 2022]

[0 0000000,

Number of homology classes with large birth (cooled configs.):
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Thus, manifestation of instanton appearance probability

Number of hom. classes

7_‘_2 b . g-22/3
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2 x 10° 3 % 10°
with temperature dependence from one-loop beta function, b = 11N../3 ’

In addition: Differences between Tr E*(z) and Tr B*(z) filtrations due to electric (Debye)
screening outpacing magnetic screening.

All filtrations reveal kink in max. Betti number at critical inverse coupling!
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3. Self-similarity far from equilibrium



Generic evolution towards thermal equilibrium

Self-similarity in vicinity of a nonthermal fixed point:

Nonthermal

fixed point O(t,|p|) = (£)" O, (t/t')?|p|)

Far from

equilibriu

Initial
conditions

Nonthermal fixed points have been studied theoretically and
found experimentally.

[Berges, Rothkopf, Schmidt 2008; Berges et al., 2014; Orioli,
Boguslavski, Berges 2015; Erne et al., 2018; Prufer et al., 2018 & 2020]

Found self-similarity in persistent homology observables in
non-relativistic scalar theory  [DS, Berges, Oberthaler, Wienhard 2021]
and investigated mathematically. [DS, Wienhard 2020]

Thermal
equilibrium

Close to
equilibrium

Figure reprinted from Berges 2015.

Goal: Reveal self-similarity beyond fixed order correlation functions via persistent homology

Based on [Spitz, Boguslavski, Berges arXiv:2303:08618]. .



Local energy and topological densities

Study via pure SU(2) gauge theory on 5123 lattice using classical-statistical real-time
simulations. [Boguslavski et al., 2018]

Electric field: E;(t + A/2,x) := Up;(t,x) . Use temporal-axial gauge Uy(t,x) = 1. Solve
classical equations of motion for fluctuating initial conditions.

Energy densities: T (¢, x) ~ Tr[E?(t, x) + B2(t, x)], topological densities: ¢(z) ~ Tr E(z) - B(z)
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Correlations reveal self-similar scaling related to hard scaling (8 = —1/7) and energy-

momentum conservation Ward identity (DéToo = —1/7). [Kurkela, Moore 2012; Berges et al. 2014; Coriano, 16
Maglio, Mottola 2019]



Self-similarity in persistent homology

Study persistent homology of geometric (alpha) complexes
of energy and top. density sublevel sets.
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Find self-similarity in Betti numbers: §i(t,r) = (t/t)°" "6 (t', (t/t))~™r)
Exponents linked to energy cascade (m1 = —1/7) and packing relation (n2 = 5191 = —5/7).

[DS, Wienhard 2020]
Similarity of energy and top. density Betti numbers indicates vast suppression of defects. 17



4. Conclusions & outlook



Conclusions

* Persistent homology provides versatile new and interpretable order parameters
sensitive to a broad range of critical and scaling phenomena in non-Abelian gauge theories.

« Different filtrations allow for versatile investigations of non-perturbative effects.

« Confinement-deconfinement transition can be detected gauge-invariantly via persistent
homology observables with peculiar characteristics, including links to instanton(-dyons).

 Self-similarity at non-thermal fixed points is clearly visible in Yang-Mills theories via persistent
homology, i.e., persistent homology is sensitive to scale-dependent phenomena



Outlook

« How about higher-rank gauge groups different from SU(2) and suitable filtrations?

» With regard to neural network architectures designed to gauge equivariantly sample field
configurations: Can topological layers make use of the high sensitivity of persistent

homology to non-local structures-
[for survey see e.g. Hensel, Moor, Rieck 2021]

« How tight are links between correlation functions and persistent homology observables in
general?
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