Interpretable order parameters from persistent homology in non-Abelian lattice gauge theory

Daniel Spitz (University of Heidelberg) Machine learning for lattice field theory and beyond

June 29th, 2023, Trento

- 1. Cubical complexes and persistent homology
- 2. Confinement via different filtrations
- 3. Self-similarity far from equilibrium
- 4. Conclusions & outlook

- 1. Cubical complexes and persistent homology
- 2. Confinement via different filtrations
- 3. Self-similarity far from equilibrium
- 4. Conclusions & outlook

Cubical complexes

Cubical complex is collection of cubes of different dimensions, closed under taking boundaries.

For $f : \Lambda \to \mathbb{R}$ some function on lattice Λ , sublevel sets $M_f(\nu) := \{x \in \Lambda \mid f(x) \le \nu\}$ form a **filtration**, i.e. a nested sequence of sets "interpolating" between \emptyset and Λ ,

 $M_f(\nu) \subseteq M_f(\mu) \qquad \forall \nu \le \mu$

"Pixelization" leads to filtration of cubical complexes.

Homology

Cubical complexes can contain holes of different dimensions (e.g., 0 to 2, from left to right):

Given complex C, homology groups can be computed in different dimensions, $H_{\ell}(C)$. Their Betti numbers count independent ℓ -dimensional holes:

 $\beta_{\ell}(\mathcal{C}) := \dim H_{\ell}(\mathcal{C})$

Persistent homology

Homology of the sublevel sets $M_f(\nu)$ generically changes with ν . Holes can be born at **birth** parameter *b* and die again with **death** *d*, possibly deforming as filtration is swept through. Have with **persistence** p = d - b a measure of dominance of a feature.

[Edelsbrunner, Letscher, Zomorodian 2000; Zomorodian, Carlsson 2005]

Example for superlevel sets of a function on a surface:

Persistent homology

Homology of the sublevel sets $M_f(\nu)$ generically changes with ν . Holes can be born at **birth** parameter *b* and die again with **death** *d*, possibly deforming as filtration is swept through. Have with **persistence** p = d - b a measure of dominance of a feature.

[Edelsbrunner, Letscher, Zomorodian 2000; Zomorodian, Carlsson 2005]

Important properties:

Persistent homology is **stable**: Small changes in *f* result in small changes of persistent homology. [Cohen-Steiner *et al.* 2007 & 2010]

Well-defined large-volume asymptotics exist for suitable persistent homology descriptors such as (smoothened) Betti numbers, including notions of ergodicity.

[Hiraoka, Shirai, Trinh 2018; DS, Wienhard 2020]

7

Can be efficiently computed with well-developed, versatile computational topology libraries such as GUDHI.

1. Cubical complexes and persistent homology

2. Confinement via different filtrations

3. Self-similarity far from equilibrium

4. Conclusions & outlook

SU(2) lattice gauge theory simulations

Goal: Can we gauge-invariantly observe properties of the confining phase via persistent homology?

Based on [Spitz, Urban, Pawlowski PRD 2023].

Carry out Monte Carlo simulations on 4d Euclidean $32^3 \times 8$ lattice with periodic boundary [Duane *et al.*, 1987]

No gauge fixing applied. Samples are SU(2)-valued links $U_{\mu}(x)$, following Wilson action, $\beta = 1/g^2$:

$$S[U] = \frac{\beta}{2} \sum_{x \in \Lambda} \sum_{\mu < \nu} \operatorname{Tr}[1 - U_{\mu\nu}(x)]$$

Compare multiple times to cooled configurations (partially removed UV fluctuations), using standard Wilson flow.

Common pheno of SU(2) confinement

Theory is confining at low β as signalled by zero Polyakov loop:

 $P(\mathbf{x}) := \frac{1}{2} \operatorname{Tr} P \prod_{\tau=1}^{N_{\tau}} U_4(\mathbf{x}, \tau), \qquad L := \frac{1}{N_{\sigma}^3} \langle |\sum_{\mathbf{x} \in \Lambda_s} P(\mathbf{x})| \rangle$

Spontaneous center symmetry breaking in Polyakov loop traces above $\beta_c \simeq 2.3$:

Ensembles can account for confinement in theories with trivial gauge group center.

[Diakonov & Petrov 2011]

0.4

0.3

2.0

2.5

3.0

Sublevel set filtration of $P(\mathbf{x})$

Clear **persistent homology evidence** for spontaneously broken center symmetry, effects pronounced by cooling.

Sublevel sets of Polyakov loop topological density

Usual topological density $q \sim \text{Tr} \mathbf{E} \cdot \mathbf{B}$ often contains strong UV fluctuation signatures.

Can rewrite topological charge as integral over 3-torus with integrand the Polyakov loop topological density: $q_{\mathcal{P}}(\mathbf{x}) := \frac{1}{24\pi^2} \varepsilon_{ijk} \operatorname{Tr}[(\mathcal{P}^{-1}\partial_i \mathcal{P})(\mathcal{P}^{-1}\partial_j \mathcal{P})(\mathcal{P}^{-1}\partial_k \mathcal{P})] \qquad [\text{Ford et al. 1998}]$

Thus, topological density governed by local lumps, reminiscent of monopoles (no cooling)!

Exponential fit yields $\mathcal{P}_2(p) \sim \exp(-26.5p)$

Potential of far-separated instanton dyon-antidyon pair yields 3d action $S_3(r \to \infty) = 8\pi v \simeq 25.1v$ with for both dyons $A_4^a(x \to \infty) \to v\hat{r}_a$ [e.g., Larsen & Shuryak 2016]

Clear persistence signal of dyons!

Angle-difference filtration of holonomy Lie algebra field

Polyakov loop in Lie algebra: $\log \mathcal{P}(\mathbf{x}) = i\phi^a(\mathbf{x})T^a$. Trace $P(\mathbf{x}) = \cos \phi(\mathbf{x})$, $\phi(\mathbf{x}) = \sqrt{\phi^a(\mathbf{x})\phi^a(\mathbf{x})}/2$

Construct angle-difference filtration from differences of $\phi(\mathbf{x})$ between nearest neighbors on lattice, π -periodic (center-symm.). [Sale, Giansiracusa, Lucini 2022]

Number of homology classes with large birth (cooled configs.):

Thus, manifestation of instanton appearance probability

$$\exp(-S) = \exp(-\frac{8\pi^2}{g^2(T)}) \sim \left(\frac{\Lambda_{\rm UV}}{T}\right)^b$$

with temperature dependence from one-loop beta function, $b = 11 N_c/3$

In addition: Differences between $\operatorname{Tr} \mathbf{E}^2(x)$ and $\operatorname{Tr} \mathbf{B}^2(x)$ filtrations due to electric (Debye) screening outpacing magnetic screening.

All filtrations reveal kink in max. Betti number at critical inverse coupling!

1. Cubical complexes and persistent homology

2. Confinement via different filtrations

3. Self-similarity far from equilibrium

4. Conclusions & outlook

Generic evolution towards thermal equilibrium

Figure reprinted from Berges 2015.

Self-similarity in vicinity of a nonthermal fixed point:

 $O(t, |\mathbf{p}|) = \left(\frac{t}{t'}\right)^{\alpha} O(t', (t/t')^{\beta} |\mathbf{p}|)$

Nonthermal fixed points have been studied theoretically and found experimentally.

[Berges, Rothkopf, Schmidt 2008; Berges et al., 2014; Orioli, Boguslavski, Berges 2015; Erne et al., 2018; Prüfer et al., 2018 & 2020]

Found self-similarity in persistent homology observables in non-relativistic scalar theory [DS, Berges, Oberthaler, Wienhard 2021] and investigated mathematically. [DS, Wienhard 2020]

Goal: Reveal self-similarity beyond fixed order correlation functions via persistent homology

Based on [Spitz, Boguslavski, Berges arXiv:2303:08618].

Local energy and topological densities

Study via pure SU(2) gauge theory on 512^3 lattice using classical-statistical real-time [Boguslavski *et al.*, 2018]

Electric field: $E_i(t + \Delta/2, \mathbf{x}) := U_{0i}(t, \mathbf{x})$. Use temporal-axial gauge $U_0(t, \mathbf{x}) \equiv 1$. Solve classical equations of motion for fluctuating initial conditions.

Energy densities: $T^{00}(t, \mathbf{x}) \sim \text{Tr}[\mathbf{E}^2(t, \mathbf{x}) + \mathbf{B}^2(t, \mathbf{x})]$, topological densities: $q(x) \sim \text{Tr} \mathbf{E}(x) \cdot \mathbf{B}(x)$

Correlations reveal self-similar scaling related to hard scaling ($\beta = -1/7$) and energymomentum conservation Ward identity ($\alpha_{T^{00}} = -1/7$). [Kurkela, Moore 2012; Berges *et al.* 2014; Coriano, 16 Maglio, Mottola 2019]

Self-similarity in persistent homology

Study persistent homology of geometric (alpha) complexes of energy and top. density sublevel sets.

Find **self-similarity in Betti numbers**: $\beta_k(t,r) = (t/t')^{2\eta_1 - \eta_2} \beta_k(t', (t/t')^{-\eta_1} r)$ Exponents linked to energy cascade ($\eta_1 = -1/7$) and packing relation ($\eta_2 = 5\eta_1 = -5/7$). [DS, Wienhard 2020]

Similarity of energy and top. density Betti numbers indicates vast suppression of defects.

1. Cubical complexes and persistent homology

2. Confinement via different filtrations

3. Self-similarity far from equilibrium

4. Conclusions & outlook

Conclusions

- Persistent homology provides versatile new and interpretable order parameters sensitive to a broad range of critical and scaling phenomena in non-Abelian gauge theories.
- Different filtrations allow for versatile investigations of non-perturbative effects.
- Confinement-deconfinement transition can be detected gauge-invariantly via persistent homology observables with peculiar characteristics, including **links to instanton(-dyons)**.
- Self-similarity at non-thermal fixed points is clearly visible in Yang-Mills theories via persistent homology, i.e., **persistent homology is sensitive to scale-dependent phenomena**

Outlook

- How about higher-rank gauge groups different from SU(2) and suitable filtrations?
- With regard to neural network architectures designed to gauge equivariantly sample field configurations: Can topological layers make use of the high sensitivity of persistent homology to non-local structures?

[for survey see e.g. Hensel, Moor, Rieck 2021]

• How tight are links between correlation functions and persistent homology observables in general?