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The Restricted Boltzmann Machine:
- Phase diagram, generation and interpretability

Aurélien Decelle
Theoretical Physics, UCM Madrid

-Decelle, Fissore, Furtlehner J. of Stat. Physics 2018: themodynamics
-Decelle, Furtlehner Chinese physics B, 2021: RBM & Stat. Phys.
-Decelle, Furtlehner, Seoane ArXiv:2105.13889 (NeurIPS 2021) “Generation”
-Decelle, Furtlehner, Rosset, Seoane PRE 2023, Interpretability



  2 / 34

Seminar Outline 

● Introduction to the Restricted Boltzmann Machine (RBM)

● Training of RBMs

● Statistical physics  →

● Linear regime
● Phase diagram
● Mixing time and clustering
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What can Stat. Phys do for you
Two approaches are possible:
→ what Machine Learning can do for physics

→ what (statistical) physics can do for Machine Learning

Gradient 
descent 
behavior

Manelli et al. 2018
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Broad vision of Machine Learning
Machine Learning tasks are often categorized in three categories
● Supervised Learning
● Unsupervised Learning
● Reinforcement Learning

A dataset of M elements in dimension N, with labels (a class or real value)

“cats”

Example of 
classification

Example 
of 

regression

In both cases, we are looking to find the parameters of some function f that 
manage to predict the correct answer
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Broad vision of Machine Learning
Machine Learning tasks are often categorized in three categories
● Supervised Learning
● Unsupervised Learning
● Reinforcement Learning

A dataset of M elements in dimension N

Example of 
generative models

Then, in most settings we want to learn a probability distribution 
matching the empirical one

Examples of clustering
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Generative model

We can generate new “data”, after training a model on a given dataset

This person doesn’t exist
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Energy based models

● Dataset

Hinton, Hopfield, LeCun, Bengio

Empirical  Model   

Boltzmann distribution

Learning : adjust the parameters so that the dataset 
configurations are typical configurations of the model.
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Define the Energy function using latent 
variables

The Restricted Boltzmann Machine (RBM)

-Smolensky, P. (1986). Information 
processing in dynamical systems: 
Foundations of harmony theory.
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Define the Energy function using latent 
variables

The Restricted Boltzmann Machine (RBM)

-Smolensky, P. (1986). Information 
processing in dynamical systems: 
Foundations of harmony theory.

Effective model for the RBM can
 encode higher order correlations!

Le Roux and 
Bengio. Neural 
computation 
(2008)
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RBMs are simple, yet powerful
● It is basically an Ising model in its discrete version
● It can model complex dataset (e.g. images or other real dataset)
● It is simple enough to be analyzed theoretical and to be “interpreted”

 cf → Alfonso Navas
●  → Ideal playground for physicist:

- Monasson’s group: Tubiana, Roussel, Fernandez de Cossio, … Phase diagram, dynamics
- Tanaka, Yasuda, Belief Propagation
- H. Huang, one synapse RBM
- Barra, Agliara, Tantari et al, phase diagram and equivalent with Hopfield
- Other contributions see talks of thursday/friday
… 
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Training a RBM
Gibbs equilibrium distribution

Dataset
make them the typical samples of p 

We want to Maximize the log-likelihood

EASY!

HARD: Monte-Carlo Markov-Chain
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Training process
Given some data:

1. Compute the positive term
2. Compute the negative term using Mont-Carlo
3. Update the weights

When the training is done, what can you do ?
→ generate new (fake) data ! using Monte-Carlo.
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Gif time (on your own device)

CelebA

LinkCelebA

MNIST FacesBW

LinkFacesLinkMNIST

https://www.lri.fr/~adecelle/SamplingCelebA_100.gif
https://raw.githubusercontent.com/AurelienDecelle/TorchRBM/main/FacesBW.gif
https://raw.githubusercontent.com/AurelienDecelle/RoscoffAI2023/main/RBM/MNIST.gif
https://raw.githubusercontent.com/AurelienDecelle/TorchRBM/main/FacesBW.gif
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Phase Diagram of the model

● Before focusing on the learning we can try to understand the 
recall properties of the model

● It allows to understand the effect of the training on the mixing 
time of the chain

● And how the features are related to the dataset at the beginning 
of the learning.
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Preamble: dynamics of Gaussian model
● We can study the learning dynamics of the very simple case of the Gaussian-

Gaussian RBM.
● We first decompose the weight matrix to diagonalize the Gaussian measure

● Then we can project the gradient on each element

Correlation matrix 
projected on the 
eigenmodes of W

Dynamics of the modes

Dynamics of the eigenvectors
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Preambule: dynamics of Gaussian model
● We can study the learning dynamics of the very simple case of the Gaussian-

Gaussian RBM.
● We first decompose the weight matrix to diagonalize the Gaussian measure

● Then we can project the gradient on each element

Correlation matrix 
projected on the 
eigenmodes of W

Dynamics of the modes

Dynamics of the eigenvectors

In the linear regime:

→ the eigenvectors of the weigth matrix aligned with those 
of the PCA of the dataset

→ the eigenmodes are expressed if the signal is higher than 
the intrinsic noise
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Rank-K signals

Instead of taking the “usual” path of studying the RBM in the independent weight 
approximation (quite unlikely for the learning pb).
 
→ We consider a rank-K decomposition of the matrix

Rank K decomposition plus random noise

Spectrum

noise signals
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Order parameters

The magnetization along a mode α

The overlap of the system

Self-consistent equations
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Phase Diagram

cr
iti

ca
l li

ne

Learning trajectory

SG= Spin Glass
Para= Paramagnetic
Ferro= Ferromagnetic

In the ferromagnetic phase, the 
magnetization of the system is 
polarized toward the eigenmodes of w!
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Application of the theory

The mean-field theory is in general not correct for long training time, still 
it is very useful:

1- to understand problems that occur in the training and 
2- to design new tools to investigate the trained machine
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I - Mixing time and training problem
It is in generally accepted that training RBM can be hard. The main problem is 
related to the Monte Carlo estimates when computing the gradient

Mixing time as a function of the training time (MNIST)

Huge jump !
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I - Mixing time and training problem
It is in generally accepted that training RBM can be hard. The main problem is 
related to the Monte Carlo estimate when computing the gradient

Mixing time as a function of the training time (MNIST)

It corresponds to the 2nd order phase transition of the Phase Diagram
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Consequence on the training

It is usual to use a very small number of Monte 
Carlo steps to train RBMs

→ the machine generally end up in a regime 
where the MC estimates do not coincide with the 
true thermodynamics one and thus the 
generated data can be quite bad.

Example on the right on a trained machine 
with 100 MC steps at each update. After many 
MC steps we find all ones !

Very biased samples
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Consequence on the training

It is usual to use a very small number of Monte 
Carlo steps to train RBMs

→ the machine generally end up in a regime 
where the MC estimate do not coincide with the 
true thermodynamics one and thus the 
generated data can be quite bad.

But there exists a sweet spot that correspond 
to reproducing exactly the same dynamics.

k = 100
Memory

Very biased samples
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II – Following the learning trajectory

● We have seen that the training undergoes 2nd order phase 
transition. The theory says that it can undergo severals.

● At each phase transition, the distribution splits into several modes.

 → by following the learning trajectory, we can follow the 
creation of modes!

How to follow the modes ? Using the mean-field theory - Plefka expansion

Plefka, J Phys A, 1982
Gabrié et al, NeurIps 2015
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II – Following the learning trajectory

How to follow the modes ? Using the mean-field theory - Plefka expansion

Plefka, J Phys A, 1982
Gabrié et al, NeurIps 2015

Example for the mean-field Ising model: the magnetization respect the self-consistent 
eq.

The solution correspond to minima of the free energy (modes of the distribution)
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II – Following the learning trajectory

For RBM: Mean field self-consistent equations

In the MF regime, it corresponds to local maximum of the probability distribution.

Case of Ising
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II – Following the learning trajectory

Mean field iterations

Gabrié et al 2015
Decelle et al 2023
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II – Following the learning trajectory

Mean field iterations (at second order)

Gabrié et al 2015
Decelle et al 2023
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II – Following the learning trajectory

Starting from older trained models:

1- we find the mean-field fixed points associated to 
the datapoint

2- we follow the evolution of these fps when going 
to “younger” models.
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II – Following the learning trajectory
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II – Following the learning trajectory
Population genetics dataset
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Summary

● RBM difficulties lie mainly in the misunderstood of Monte Carlo Markov Chain

● It can model real dataset with accuracy

● A perfect playground for physicists:
➢ Rich phase diagram
➢ Complex learning dynamics
➢ Yet it is simple enough for analytical computations

Main challenge:
→ understanding the learning behavior
→ understanding the relation between the learned features and the dataset
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