Disentangling Representations in Restricted Boltzmann Machines without Adversaries

J. Fernandez-de-Cossio-Diaz

PSL Junior Fellow Al Ecole Normale Supérieure, Paris

In collaboration with:

S. Cocco & R. Monasson

Trento 29/06/2023, ECT* Machine Learning for Lattice Field Theory and Beyond

JFdCD, S.Cocco, R.Monasson, PRX 13, 021003 (2023)

Representation learning

Representation learning

Not smiling

Example: B/W CelebA dataset of face images. Grouped by facial expression.

Smiling

Not smiling

Data — "pixel" space

Representation learning

Mapping: e.g. neural net,

. . .

Representation space

representation variable 1

Restricted Boltzmann machines

Simple generative model, implementing data / representation duality

- Energy function:

$$\mathbf{h}) = \sum_{\mu} \mathcal{V}_{i}(v_{i}) + \sum_{\mu} \mathcal{U}_{\mu}(h_{\mu}) - \sum_{i\mu} w_{i\mu}v_{i\mu}$$

Restricted Boltzmann machines

Simple generative model, implementing data / representation duality

- Energy function:

$$\mathbf{h}) = \sum_{\mu} \mathscr{V}_{i}(v_{i}) + \sum_{\mu} \mathscr{U}_{\mu}(h_{\mu}) - \sum_{i\mu} w_{i\mu}v$$

 $-E_{\text{eff}}(\mathbf{v})$

Encodes for (higherorder) interactions

Restricted Boltzmann machines

Simple generative model, implementing data / representation duality

Model trained by max. likelihood of the data

 $\partial \ln P(\text{data}) / \partial (-E_{\text{eff}}(\mathbf{v})) \setminus$ дω дω data

- Energy function:

$$\mathbf{h}) = \sum_{\mu} \mathscr{V}_{i}(v_{i}) + \sum_{\mu} \mathscr{U}_{\mu}(h_{\mu}) - \sum_{i\mu} w_{i\mu}v$$

 $-E_{\text{eff}}(\mathbf{v})$

$$\left\langle \frac{\partial (-E_{\text{eff}}(\mathbf{v}))}{\partial \omega} \right\rangle_{\text{model}}$$

RBM as generative models across diverse datasets

<u>Some examples</u>

Other recent applications (in biology) ...

Immunology: Bravi, et al. bioRxiv (2022): 2022-12; Cell systems 12.2 (2021): 195-202. **RNA:** Di Gioacchino, et al. PLoS CB 18.9 (2022): e1010561, JFdCD, et al. bioRxiv (2023): 2023-05 Proteins: Tubiana Elife 8 (2019): e39397.

RBM as generative models across diverse datasets Nature of the representations

Information about features is distributed across a large number of hidden units

Representations are generally *entangled*.

Adversarial formulation

Setup: Dataset $\mathbf{v}^1, \dots, \mathbf{v}^B$ with binary labels u^1, \dots, u^B e.g. faces smilling vs. or not

Uncorrelated to label

Mutual information (MI) is difficult to control ...

Lample, G, et al. "Fader networks:." NIPS 30 (2017).

Adversarial formulation

Setup: Dataset $\mathbf{v}^1, \ldots, \mathbf{v}^B$ with labels u^1, \ldots, u^B e.g. faces smiling vs. or not

Adversarial classifier $\mathscr{L}_{\mathscr{A}}$

Lample, G, et al. "Fader networks:." NIPS 30 (2017).

Adversarial formulation

Setup: Dataset $\mathbf{v}^1, \ldots, \mathbf{v}^B$ with labels u^1, \ldots, u^B e.g. faces smiling vs. or not

Adversarial classifier $\mathscr{L}_{\mathscr{A}}$

$$\mathcal{C}_{\mathscr{A}}(\mathsf{labels} \,|\, \mathsf{data})$$

Issues:

- Unstable training
- What constraints are imposed by the classifier?
- Likelihood cost?

If the best possible classifier $\mathscr{L}_{\mathscr{A}}$ is bad at predicting the label, then label information has been erased

A hierarchy of explicit constraints

Setup: Dataset $\mathbf{v}^1, \dots, \mathbf{v}^B$ with labels u^1, \dots, u^B e.g. faces smilling vs. or not

- 1) $MI(h, label) \leq MI(I = W^T v, label) data processing inequality$
- 2) $MI(I = W^{T}v, label) = 0$ implies that:
 - $\langle uI_{\mu} \rangle = 0, \langle uI_{\mu}I_{\nu} \rangle = 0, \langle uI_{\mu}I_{\nu}I_{\gamma} \rangle = 0, \dots$

$$\sum_{i} q_{i}^{(1)} w_{i\mu} = 0, \sum_{i} q_{ij}^{(2)} w_{i\mu} w_{j\nu} = 0, \text{ etc.}, \dots$$

(correlations between I_{μ} and label vanish at all orders)

Explicit conditions on the weights — No "adversary"

A hierarchy of explicit constraints

1st-order: $\langle uI_{\mu} \rangle = 0$

- Learning algorithm Gradient ascent of likelihood
- Projection to satisfy constraints

2nd-order:
$$\langle u I_{\mu} I_{\nu} \rangle = 0$$

Explicit conditions on the weights – No "adversary"

$$\sum_{i} q_{ij}^{(2)} w_{i\mu} w_{j\nu} = 0$$
$$q_{i}^{(2)} = \langle u v_{i} v_{j} \rangle - \langle u \rangle \langle v_{i} v_{j} \rangle$$

Trained RBM concentrates label information

Constraint imposed on ALL hidden units: Partial Erasure of label information

Constraint imposed on a subset of hidden units: Concentrates label information

Application to 2D-Ising model

2-Dimensional Ising model

N = 32x32 and 64x64

Application to 2D-Ising model

2-Dimensional Ising model

N = 32x32 and 64x64 RBM captures behaviour of observables

Application to 2D-Ising model Label = sign(m)

2-Dimensional Ising model

N = 32x32 and 64x64

RBM captures behaviour of observables 1st-order constrained RBM has m = 0 but heat capacity has correct behavior.

Application to 2D-Ising model Label = sign(m)

1st-order constrained **RBM** has m = 0 but heat capacity has correct behavior.

2nd-order constraint -> no correlations

Application to 2D-Ising model Label = sign(m)

1/T

Releasing one hidden unit recovers behavior of all observables

Manipulating data through representation learning Representation space Not smiling

Not smiling

Model J & Book

Data space

Likelihood cost in a Gaussian setting $LL_{\text{Gauss}} = \frac{1}{2} \sum_{\mu} (\lambda_{\mu} - 1 - \ln \lambda_{\mu})$

 λ_{μ} eigenvalues of correlation matrix of data

Likelihood cost in a Gaussian setting $LL_{\text{Gauss}} = \frac{1}{2} \sum_{\mu} (\lambda_{\mu} - 1 - \ln \lambda_{\mu})$

 λ_{μ} eigenvalues of correlation matrix of data

Constraint: $\tilde{C}^{\perp} = P\tilde{C}P$

Likelihood cost in a Gaussian setting $LL_{\text{Gauss}} = \frac{1}{2} \sum_{\mu} (\lambda_{\mu} - 1 - \ln \lambda_{\mu})$

 λ_{μ} eigenvalues of correlation matrix of data

Constraint: $\tilde{\mathbf{C}}^{\perp} = \mathbf{P}\tilde{\mathbf{C}}\mathbf{P}$ $\lambda_1 \ge \lambda_1^{\perp} \ge \lambda_2 \ge \lambda_2^{\perp} \ge \dots \ge \lambda_N \ge \lambda_N^{\perp} = 0$ (*)

(*) Poincaré separation theorem

Likelihood cost in a Gaussian setting $LL_{\text{Gauss}} = \frac{1}{2} \sum \left(\lambda_{\mu} - 1 - \ln \lambda_{\mu}\right)$

 λ_{μ} eigenvalues of correlation matrix of data

Constraint: $\tilde{C}^{\perp} = P\tilde{C}P$

Spectral gaps account for log-likelihood cost of erasure / disentanglement

 $LL_{constr.} = LL_{Gauss} - cost$

(*) Poincaré separation theorem

Likelihood cost in a Gaussian setting

Binary RBM

Gaussian+Spin RBM MNIST0/1

Ising Model

Approximate "erasure" of information $\mathsf{MI}(I = \mathbb{W}^{\mathsf{T}}\mathbf{v}, \mathsf{label}) = 0 \quad \longleftrightarrow \quad \langle uI_{\mu} \rangle = 0, \, \langle uI_{\mu}I_{\nu} \rangle = 0, \, \langle uI_{\mu}I_{\nu}I_{\gamma} \rangle = 0, \dots$

Approximate "erasure" of information

 $\mathsf{MI}(I = \mathbb{W}^{\mathsf{T}}\mathbf{v}, \mathsf{label}) = 0 \quad \longleftarrow \quad \langle uI_{\mu} \rangle = 0, \, \langle uI_{\mu}I_{\nu} \rangle = 0, \, \langle uI_{\mu}I_{\nu}I_{\gamma} \rangle = 0, \dots$

Summary:

- Semi-supervised approach
- Concentrate information about attribute on small subset of latent variables
- Transfer attributes from one data-point to another

Perspectives:

 Application to biological sequences. Transfer useful properties between natural sequences (specificity, stability, ...). Ex.: WW, HSP.

... other?

https://github.com/cossio/RestrictedBoltzmannMachines.jl

JFdCD, S.Cocco, R.Monasson, PRX 13, 021003 (2023)

Acknowledgements

Simona Cocco

ENS, Paris

Rémi Monasson

Thanks