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Effective String Theory
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Effective string theory

Effective string theory (EST) is a non-perturbative framework that provide an effective
description of the confining flux tube in term of vibrating string. In particular, the
correlator between two Polyakov loops is related to the full partition function of an EST.

⟨P(0)P†(R)⟩ =
∫

Dϕe−Seff ≡ Z(L,R, σ).

p(0) p†(R)

τ

ε

The EST is anomalous at the quantum level and thus must be considered only as an
effective, large-distance, description of Yang-Mills theories [Aharony and Komargodski;

2013].
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Nambu-Goto String

The most natural choice for Seff is the Nambu-Goto (NG) string [Nambu; 1974],[Goto;
1971].
The main observables we want to compute are:

▶ The free energy −logZ : directly associated with the interquark potential.

▶ The ”width” σw 2: measures the density of chromoelectric flux tube.

Several analytical studies of the free energy together with Monte Carlo simulations of the
interquark potential have proven that the NG theory is universal up to terms of order
R−5. Nowadays, the community has focused the research of theories ”beyond” the
Nambu-Goto string.

For recent reviews see [Aharony and Komargodski; 1302.6257][Brandt and Meineri;

1603.06969][Caselle; 2104.10486].
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Lack of numerical methods

However, few analytical studies have been provided for the NG width and the theories
beyond the NG string. Moreover, it still lacks an efficient numerical method that can be
used to study EST where analytical studies are not possible.

Problems:

▶ Non-linearity of the actions.

▶ Direct estimation of the partition functions.

→ Our proposal: Machine Learning (Normalizing Flows) + Lattice regularization of EST.
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Nambu-Goto String on the Lattice

In the d = 2 + 1 case, using a ”physical gauge” the NG action can be regularized on the
lattice as:

SNG [ϕ] = σ
∑
x∈Λ

[√
1 + (∂µϕ)2/σ − 1

]
where Λ is a square lattice of size L× R with step a = 1, ϕ(x) = ϕ(τ, ϵ) ∈ R and
boundary conditions: ϕ(τ + L, ϵ) = ϕ(τ, ϵ) and ϕ(τ, 0) = ϕ(τ,R) = 0.
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The width of the string can be computed as: σw 2 = ⟨ϕ2(τ,R/2)⟩τ,ϕ
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Free Boson expansion

In the limit σ → ∞ the Nambu-Goto action can be expanded in series:

SNG ∼ SFB + O(σ−1)

where:

SFB =
1

2

∑
x∈Λ

(∂µϕ)
2

The finite size analytical solutions of − logZFB can be found using a gaussian integration:

− logZFB = AFBRL+ CFBL+ log η(ξ)

where:
AFB = −0.3358177... CFB = 0.478252....

and:

η(ξ) = q
1
24

∞∏
n=1

(1− qn) ; q = e2πiξ ; ξ = i
L

2R
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Width of the flux tube

The analytical solution for σw 2 is well known only up to the order σ−1 [Lüscher et al.;

1981][Caselle and Allais; 2009][Gliozzi, Pepe and Wiese; 2010]:

▶ L ≫ R: σw 2 = 1
2π

log R
Rc

(
1− π

4σR2

)
+ 5

96
1

σR2 + ...

▶ R ≫ L: σw 2 = 1
2π

log L
Lc

+ R
4L

+ π
24

R
σL3

+ ...
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Normalizing Flows
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Normalizing Flows

Normalizing flows (NFs) [Rezende and Mohamed; 2015] are a class of deep learning
algorithm recently proposed to sample from Boltzmann distributions.

A NF gθ is a parametric, invertible and differentiable function that maps an
easy-to-model prior distribution q0(z), z ∈ Rn, to an inferred distribution qθ which
approximate the target p(ϕ), ϕ ∈ Rn.

gθ : q0 → qθ ≃ p

ϕ = gθ(z)

qθ(ϕ) = q0(g
−1(ϕ))|Jg |−1
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Targetting Boltzmann distributions

NFs can be trained to qθ ≃ p(ϕ) with p(ϕ) = 1
Z
exp(−S [ϕ]) [Albergo et al.; 2019],[Noé et

al.; 2019] by minimizing the reverse Kullback-Leibler divergence:

DKL(qθ||p) =
∫

dϕqθ(ϕ) log
qθ(ϕ)

p(ϕ)
≥ 0.

Observables can be computed using a re-weighting procedure also called Importance
Sampling (IS) in machine learning field [Nicoli et al.; 2020]:

⟨O⟩ϕ∼p =

∫
Dϕp(ϕ)O(ϕ) =

∫
Dϕqθ(ϕ)

p(ϕ)

qθ(ϕ)
O(ϕ) ≃ 1

Ẑ
⟨Ow̃⟩ϕ∼qθ

where

w̃ =
e−S[ϕ]

qθ(ϕ)

and
Ẑ = ⟨w̃⟩ϕ∼qθ
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State-of-the-art

Main focus in the lattice community: improve on MCMC simulations by treating critical
slowing down

→ recent reviews [Abbott et al.; 2211.07541][Zhou et al.; 2303.15136] on the current
status of NFs for LFTs

→ successfully applied in LFTs in 2d: ϕ4 scalar field theory [Albergo et al.; 2019], [Kanwar

et al.; 2020], [Nicoli et al.; 2020], [Del Debbio et al.; 2021], SU(N) [Boyda et al.; 2020],
fermionic theories [Albergo et al.; 2021], U(1) and SU(N) with fermions [Abbott et al.;

2022], Schwinger model [Finkenrath et al.; 2022], [Albergo et al.; 2022] . . .

→ strongly related to the idea of trivializing maps [Lüscher; 2009], [Bacchio et al.; 2022],
[Albandea et al.; 2023]

→ can be connected to non-equilibrium thermodynamics: Stochastic NFs [Caselle et al.;

2022]

→ new architectures such as Continuous Normalizing Flows [Gerdes et al.; 2022],
used in this work!

Still several open issues (volume dependence, scalability, mode-collapse ...)
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Continuous normalizing flows

Exploiting Neural Ordinary Differential Equations (NODE) [Chen et al.; 2018] is possible
to build Continuous NFs (CNFs) in which gθ is the solution of an ODE parameterized by
a neural network Vθ:

dϕ(t)

dt
= Vθ(ϕ(t), t)

with
ϕ(t = 0) = z ∼ N (0,1/2) and ϕ(t = T ) = ϕ

Thus:
ϕ(T ) = ODESOLVER(Vθ, ϕ(0), [0,T ])

The density of the generated samples can be computed through the ODE:

d log qθ(ϕ(t))

dt
= −(∇ · Vθ)(ϕ(t), t)
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CNF: architectures

The architecture used is a continuous in time linear model inspired by [Gerdes et al.; 2022]:

Vθ(ϕ(t), t) =
∑
y,d

Wx,y,dK(t)dϕ(t)y

(∇ · Vθ)(ϕ(t), t) = Tr

[∑
d

WdK(t)d

]
Where K(t) ∈ RD is a temporal kernel of D Fourier coefficients, W ∈ RA×A×D is a linear
neuron with A = L× (R − 1).
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Numerical results



Goals of the numerical studies

The goal of our studies is to provide a proof of concept of the feasibility of the
application of NFs as sampler for EST.
To validate our results, we checked:

▶ Test of the performance of the algorithms using the Effective Sample Size:

ESS =
⟨w̃⟩2

⟨w̃ 2⟩

We accepted all the models with ESS > 0.1

▶ Benchmark of the Nambu-Goto numerical free energy using − logZFB .

▶ Study of the width σw 2.

▶ Direct comparison with Hybrid Monte Carlo methods (backup slides).

We run the models on NVIDIA Tesla V100 GPU of the Marconi100 (CINECA).
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Scaling

low-temperature, R ≪ L = 90
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Decrease in performance towards smaller σ → better architecture are being tested
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Scaling

high-temperature, R ≫ L = 10
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Partition function at low-temperature

global fit in (σ, L)

− logZ =

(
a
(0)
LT (R) +

a
(1)
LT (R)

σ
+

a
(2)
LT (R)

σ2
+

a
(3)
LT (R)

σ3

)
L

and then

a
(0)
LT (R) = A

(0)
LTR +

B
(0)
LT

R
+ C

(0)
LT

and we found:

A
(0)
LT B

(0)
LT C

(0)
LT χ2/d .o.f .

CNFs −0.335820(2) −0.1309(2) 0.47822(4) 0.93

Theory −0.3358177... −0, 13089969... 0.478252...
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Partition function at low-temperature

Plot of the Dedekind prediction − π
24R

(Lüscher term) compared to the numerical
simulations:
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Partition function at high-temperature

global fit in (σ,R)

− logZ − 1

2
log

(
2R

L

)
=

=

(
a
(0)
HT (L) +

a
(1)
HT (L)

σ
+

a
(2)
HT (L)

σ2
+

a
(3)
HT (L)

σ3

)
R + c

(0)
HT (L) +

c
(1)
HT (L)

σ

then fit in L

a
(0)
HT = A

(0)
HTL+

B
(0)
HT

L
+

B1
(0)
HT

L3
+

B2
(0)
HT

L5

and
c
(0)
HT (L) = C

(0)
HTL+ D

(0)
HT

and we found:

A
(0)
HT B

(0)
HT C

(0)
HT χ2/d .o.f .

CNFs −0.335823(2) −0.5234(2) 0.47827(3) 1.89, 1.50

Theory −0.3358177... −0.523598... 0.478252...
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Partition function at high-temperature

Plot of the Dedekind prediction − π
6L

compared to the numerical simulations:
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Width at low-temperature

global fit in (σ, L,R) - plot for σ = 100.0
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−π/4

1

σR2

)(
fLT︸︷︷︸
1/2π

log(R) + gLT

)
+

h
(0)
LT

R2
+ h

(1)
LT︸︷︷︸

5/96

1
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Width at high-temperature

global fit in (σ, L,R)

σw 2(σ, L,R) =

(
1 +

i
(0)
HT

σ
+ i

(1)
HT︸︷︷︸
π/6

1

σL2

)(
jHT︸︷︷︸
1/4

R

L
+ kHT + lHT︸︷︷︸

1/2π

log(L)

)
plot for σ = 100.0
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Width at high-temperature: next to leading correction

Plot of:

⟨σw 2
2nd⟩R(σ, L) = ⟨ σw 2(σ, L,R)(

jHT
R
L
+ kHT + lHT log(L)

) − 1−
i
(0)
HT

σ
⟩R ,

compared to the analytical solution π
6σL2

. First numerical observation of this term!

0.00

0.01

L = 4

0.000

0.005

〈σ
w

2 N
L
O
〉 R

L = 5

0 50 100 150 200 250 300
σ

0.000

0.005
L = 6

π
6σL2

Elia Cellini (UniTo/INFN) NFs for EST 06/26/2022 22



Outlook



Outlook

▶ We showed that CNFs are able to sample efficiently from the probability distribution
of the Nambu-Goto EST.

▶ More work is put into better architectures → ”Physics-Informed” Stochastic NFs
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▶ Toward the study of the theories beyond the Nambu-Goto string using flows-based
sampler as leading numerical method!
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Thank you for your attention!
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Comparison with HMC: Bias
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Comparison with HMC: Sampling time

20 40 60 80 100
σ

0.002

0.004

0.006

0.008

∆
σ
w

2
√
τ s
a
m
p
li
n
g

CNF

HMC

Elia Cellini (UniTo/INFN) NFs for EST 06/26/2022 26


	Effective String Theory
	Normalizing Flows
	Numerical results
	Outlook
	Back-up

