STATISTICAL MECHANICS OF DEEP LEARNING BEYOND THE INFINITE-WIDTH LIMIT

Pietro Rotondo — University of Parma

[arXiv:2209.04882 (2022)]

MACHINE LEARNING FOR LATTICE FIELD THEORY AND BEYOND — TRENTO 30/06/2023

Overparametrised DNNs / generalisation / Stat. phys. approaches

Overparametrised DNNs / generalisation / Stat. phys. approaches

Two important ideas for this work:

- Infinite-width limit

(2) Statistical mechanics of deep linear networks

Overparametrised DNNs / generalisation / Stat. phys. approaches

Two important ideas for this work:

- Infinite-width limit
- 2)

Results: an analytical framework to investigate the partition function of DNNs at "finite width"

Statistical mechanics of deep linear networks

OVERPARAMETRISATION IN DEEP NETS: A BLESS FOR PRACTITIONERS, A PROBLEM FOR THEORISTS

OVERPARAMETRISATION IN DEEP NETS: A BLESS FOR PRACTITIONERS, A PROBLEM FOR THEORISTS

 $f: \mathbb{R}^N \to \mathbb{R}$

N is typically large

OVERPARAMETRISATION IN DEEP NETS: A BLESS FOR PRACTITIONERS, A PROBLEM FOR THEORISTS

number of trainable parameters

 $L \times N^2$

H. Sompolinsky

STATISTICAL MECHANICS APPROACHES ARE LIMITED TO VERY SIMPLE ARCHITECTURES (FOR THE MOMENT)

E. Gardner

H. Sompolinsky

STATISTICAL MECHANICS APPROACHES ARE LIMITED TO VERY SIMPLE ARCHITECTURES (FOR THE MOMENT)

what we would like to investigate

Deep neural networks (fully-connected and/or convolutional)

what we know how to investigate

VS

Linear model (perceptron) Random feature model Kernel learning (SVMs) Committee machine

E. Gardner

H. Sompolinsky

STATISTICAL MECHANICS APPROACHES ARE LIMITED TO VERY SIMPLE ARCHITECTURES (FOR THE MOMENT)

what we would like to investigate

Deep neural networks (fully-connected and/or convolutional)

$$\mathcal{T} = \{ (\mathbf{x}^{\mu}, y^{\mu}) \}_{\mu=1}^{P} - - - P(\mathbf{z}) = P(\mathbf{z}) =$$

training set

 $Z = \int \mathcal{D}\theta \, e^{-\beta \sum_{\mu=1}^{P} \ell(y^{\mu}, f_{\theta}(\mathbf{x}^{\mu}))}$

partition function

what we know how to investigate

VS

Linear model (perceptron) Random feature model Kernel learning (SVMs) **Committee machine**

 \mathbf{X}, \mathcal{Y}) input-output probability distribution

$$\langle \log Z \rangle = \lim_{n \to 0} \frac{\langle Z^n \rangle - 1}{n}$$

replica trick

[R. M. Neal, "Bayesian Learning for Neural Networks", Springer (1996)][J. Lee et al., ICLR (2018)] [A. Jacot, F. Gabriel, C. Hongler, NeurIPS (2018)]

[R. M. Neal, "Bayesian Learning for Neural Networks", Springer (1996)][J. Lee et al., ICLR (2018)] [A. Jacot, F. Gabriel, C. Hongler, NeurIPS (2018)]

$$N_\ell \gg P \quad \forall \ell = 1, \dots$$

Infinite-width deep neural networks are equivalent to Gaussian processes

$$K_{\ell}(\mathbf{x}_{1}, \mathbf{x}_{2}) = \int dz_{1} dz_{2} \mathcal{N}\left(\begin{bmatrix}z_{1}\\z_{2}\end{bmatrix}, \begin{bmatrix}0\\0\end{bmatrix}, \begin{bmatrix}K_{\ell-1}(\mathbf{x}_{1}, \mathbf{x}_{1}) & K_{\ell-1}(\mathbf{x}_{2}, \mathbf{x}_{2})\\K_{\ell-1}(\mathbf{x}_{2}, \mathbf{x}_{1}) & K_{\ell-1}(\mathbf{x}_{2}, \mathbf{x}_{2})\end{bmatrix}\right) \sigma(z_{1})\sigma(z_{2}) \qquad K_{0}(\mathbf{x}_{1}, \mathbf{x}_{2}) = \frac{\mathbf{x}_{1}}{C}$$

[R. M. Neal, "Bayesian Learning for Neural Networks", Springer (1996)][J. Lee et al., ICLR (2018)] [A. Jacot, F. Gabriel, C. Hongler, NeurIPS (2018)]

$$N_\ell \gg P \quad \forall \ell = 1, \dots$$

Infinite-width deep neural networks are equivalent to Gaussian processes

$$K_{\ell}(\mathbf{x}_1, \mathbf{x}_2) = \int dz_1 dz_2 \,\mathcal{N}\left(\begin{bmatrix}z_1\\z_2\end{bmatrix}, \begin{bmatrix}0\\0\end{bmatrix}, \begin{bmatrix}K_{\ell-1}(\mathbf{x}_1, \mathbf{x}_2)\\K_{\ell-1}(\mathbf{x}_2, \mathbf{x}_2)\end{bmatrix}\right)$$

[R. M. Neal, "Bayesian Learning for Neural Networks", Springer (1996)] [J. Lee et al., ICLR (2018)] [A. Jacot, F. Gabriel, C. Hongler, NeurIPS (2018)]

$$N_\ell \gg P \quad \forall \ell = 1, \dots$$

Infinite-width deep neural networks are equivalent to Gaussian processes

$$K_{\ell}(\mathbf{x}_1, \mathbf{x}_2) = \int dz_1 dz_2 \,\mathcal{N}\left(\begin{bmatrix}z_1\\z_2\end{bmatrix}, \begin{bmatrix}0\\0\end{bmatrix}, \begin{bmatrix}K_{\ell-1}(\mathbf{x}_1, \mathbf{x}_2)\\K_{\ell-1}(\mathbf{x}_2, \mathbf{x}_2)\end{bmatrix}\right)$$

Data-averaged partition functions can be studied in this limit

[A. Canatar, B. Bordelon, C. Pehlevan, Nat. Comm. (2020)] [R. Dietrich, M. Opper, H. Sompolinsky, PRL (1999)]

WHAT DO WE KNOW? (2) STATISTICAL MECHANICS **OF DEEP LINEAR NETWORKS**

[Q. Li & H. Sompolinsky, PRX (2021)] [A. Saxe, J. McClelland, S. Ganguli, ICLR (2014)]

 $f_{\rm DLN}(\mathbf{x}) = v \circ \boldsymbol{\sigma} \circ W^{(L)} \circ \boldsymbol{\sigma} \circ$

$Z = \int \mathcal{D}\theta \, e^{-\beta \sum_{\mu=1}^{P} \ell(y^{\mu}, f_{\theta}(\mathbf{x}^{\mu}))}$

$$\circ W^{(L-1)} \circ \cdots \circ \sigma \circ W^{(1)}(\mathbf{x})$$

 $\ell(y^{\mu}, f_{\theta}(\mathbf{x}^{\mu})) = (y^{\mu} - f_{\theta}(\mathbf{x}^{\mu}))^{2}$

WHAT DO WE KNOW? (2) STATISTICAL MECHANICS **OF DEEP LINEAR NETWORKS**

[A. Saxe, J. McClelland, S. Ganguli, ICLR (2014)] [Q. Li & H. Sompolinsky, PRX (2021)]

$$f_{\mathrm{DLN}}(\mathbf{x}) = v \circ \boldsymbol{\sigma} \circ W^{(L)} \circ \boldsymbol{\sigma} \circ W^{(L-1)} \circ \cdots \circ \boldsymbol{\sigma} \circ W^{(1)}(\mathbf{x})$$

$$Z = \int \mathcal{D}\theta \, e^{-\beta \sum_{\mu=1}^{P} \ell(y^{\mu}, f_{\theta}(\mathbf{x}^{\mu}))} \quad \ell(y^{\mu}, f_{\theta}(\mathbf{x}^{\mu})) = (y^{\mu} - f_{\theta}(\mathbf{x}^{\mu}))$$

IDEA: integrate the weights backwards, starting from the output layer! (Backpropagating kernel renormalisation)

$$u_\ell$$
 $\ell = 1, \ldots, L$ determined self-consistently

$$P\,,N_\ell\to\infty\quad lpha_\ell=rac{P}{N_\ell}$$
 Thermodynamic limit

 \mathbf{T}

WHAT DO WE KNOW? (2) STATISTICAL MECHANICS **OF DEEP LINEAR NETWORKS**

[Q. Li & H. Sompolinsky, PRX (2021)] [A. Saxe, J. McClelland, S. Ganguli, ICLR (2014)]

$$\begin{aligned} f_{\text{DLN}}(\mathbf{x}) &= v \circ \sigma \circ W^{(L)} \circ \sigma \circ W^{(L-1)} \circ \cdots \circ \sigma \circ W^{(1)}(\mathbf{x}) \\ \text{average generalisation error} & \text{isotropic limit} & \text{linear kernel} \\ \text{over a new unseen example} & \alpha_{\ell} &= \alpha = \frac{P}{N} & (K_0)_{\mu\nu} = \frac{\mathbf{x}^{\mu} \cdot \mathbf{x}^{\nu}}{N_0} \\ \hline \langle \epsilon_{\text{g}}(\mathbf{x}^0, y^0) \rangle &= \left[y^0 - \sum_{\mu\nu} \kappa_{\mu}(\mathbf{x}^0)(K_0^{-1})_{\mu\nu} y_{\nu}, \right]^2 & r_0 = \frac{\sigma^{2L}}{P} y^T K_0^{-1} y \\ + u_0^L \left[\kappa_0(\mathbf{x}^0) - \sum_{\mu\nu} \kappa_{\mu}(\mathbf{x}^0)(K_0^{-1})_{\mu\nu} \kappa_{\nu}(\mathbf{x}^0) \right] & 1 - \frac{u_0}{\sigma^2} = \alpha \left(1 - \frac{r_0}{u_0^L} \right) \end{aligned}$$

WHAT DO WE KNOW? (3) AN HEURISTIC THEORY FOR **RELU ACTIVATION**

[Q. Li & H. Sompolinsky, PRX (2021)]

IDEA! Replace the linear kernel with the nonlinear kernel for ReLU activation

1-hidden layer (ReLU)

L

L-hidden layer (ReLU)

MAIN GOAL: developing an analytical framework based on statistical mechanics to describe deep learning beyond the infinite-width limit

Fixed instance of the training set $\mathcal{T} = \{(\mathbf{x}^{\mu}, y^{\mu})\}_{\mu=1}^{P}$

SETTING OF THE LEARNING PROBLEM

$$\mathcal{L} = \frac{1}{2} \sum_{\mu=1}^{P} [y^{\mu} - f_{\text{DNN}}(\mathbf{x}^{\mu})]^{2} + \mathcal{L}_{\text{reg}} = \frac{\lambda_{L}}{2\beta} \sum_{i_{L}=1}^{N_{L}} v_{i_{L}}^{2} + \frac{1}{2\beta} \sum_{\ell=0}^{L-1} \lambda^{(\ell)}$$

pre-activations at each layer

$$f_{\text{DNN}}(\mathbf{x}) = \frac{1}{\sqrt{N_L}} \sum_{i_L=1}^{N_L} v_{i_L} \sigma \left[h_{i_L}^{(L)}(\mathbf{x}) \right]$$

readout layer

 $\mathcal{L}_{\mathrm{reg}}\,,$

 $\|W^{(\ell)}\|^2$

regression problem quadratic loss function

 $\mathcal{T} = \left\{ \left(\mathbf{x}^{\mu}, y^{\mu} \right) \right\}_{\mu=1}^{P}$

$Z = \int \mathcal{D}\theta \, e^{-\beta \mathcal{L}(\theta)}$

$$\mathcal{L} = \frac{1}{2} \sum_{\mu=1}^{P} [y^{\mu} - f_{\text{DNN}}(\mathbf{x}^{\mu})]^{2} + \mathcal{L}_{\text{reg}},$$
$$\mathcal{L}_{\text{reg}} = \frac{\lambda_{L}}{2\beta} \sum_{i_{L}=1}^{N_{L}} v_{i_{L}}^{2} + \frac{1}{2\beta} \sum_{\ell=0}^{L-1} \lambda^{(\ell)} ||W^{(\ell)}|$$

quadratic loss function

 $Z = \int \mathcal{D}\theta \, e^{-\beta \mathcal{L}(\theta)}$

linked to the posterior distribution of the weights after training

$$\mathcal{L} = \frac{1}{2} \sum_{\mu=1}^{P} [y^{\mu} - f_{\text{DNN}}(\mathbf{x}^{\mu})]^{2} + \mathcal{L}_{\text{reg}},$$
$$\mathcal{L}_{\text{reg}} = \frac{\lambda_{L}}{2\beta} \sum_{i_{L}=1}^{N_{L}} v_{i_{L}}^{2} + \frac{1}{2\beta} \sum_{\ell=0}^{L-1} \lambda^{(\ell)} ||W^{(\ell)}|$$

quadratic loss function

 $Z = \int \mathcal{D}\theta \, e^{-\beta \mathcal{L}(\theta)}$

linked to the posterior distribution of the weights after training

Regularisation should be interpreted as a Gaussian prior over the weights

$$\mathcal{L} = \frac{1}{2} \sum_{\mu=1}^{P} [y^{\mu} - f_{\text{DNN}}(\mathbf{x}^{\mu})]^{2} + \mathcal{L}_{\text{reg}},$$
$$\mathcal{L}_{\text{reg}} = \frac{\lambda_{L}}{2\beta} \sum_{i_{L}=1}^{N_{L}} v_{i_{L}}^{2} + \frac{1}{2\beta} \sum_{\ell=0}^{L-1} \lambda^{(\ell)} ||W^{(\ell)}|$$
quadratic loss function

 $Z = \int \mathcal{D}\theta \, e^{-\beta \mathcal{L}(\theta)}$

linked to the posterior distribution of the weights after training

Regularisation should be interpreted as a Gaussian prior over the weights

$$\langle O(\theta) \rangle = \frac{1}{Z} \int \mathcal{D}\theta \ O(\theta) e^{-\beta \mathcal{L}(\theta)}$$

average of a generic observable of the weights

$$\mathcal{L} = \frac{1}{2} \sum_{\mu=1}^{P} [y^{\mu} - f_{\text{DNN}}(\mathbf{x}^{\mu})]^{2} + \mathcal{L}_{\text{reg}},$$
$$\mathcal{L}_{\text{reg}} = \frac{\lambda_{L}}{2\beta} \sum_{i_{L}=1}^{N_{L}} v_{i_{L}}^{2} + \frac{1}{2\beta} \sum_{\ell=0}^{L-1} \lambda^{(\ell)} ||W^{(\ell)}|$$
quadratic loss function

$$\epsilon_{g}(\mathbf{x}^{0}, y^{0}; \theta) = \left(y^{0} - f_{\theta}(\mathbf{x}^{0})\right)^{2}$$

generalisation error

$$\frac{1}{2} \|w\|^2 - \frac{\beta}{2} \sum_{\mu}^{P} \left[y^{\mu} - \frac{1}{\sqrt{N_1}} \sum_{i_1}^{N_1} v_{i_1} \sigma \left(\sum_{i_0}^{N_0} \frac{w_{i_1,i_0} x_{i_0}^{\mu}}{\sqrt{N_0}} \right) \right]$$

I want to integrate over the weights of the network (I cannot do it for free) I introduce all possible deltas over the pre-activations $1 = \int \prod_{\mu} \prod_{i_1}^{\mu} dh_{i_1}^{\mu} \delta \left(h_{i_1}^{\mu} - \frac{1}{\sqrt{N_0}} \sum_{i_1}^{N_0} w_{i_1 i_0} \right)$

$$\frac{0}{2} \|w\|^2 - \frac{\beta}{2} \sum_{\mu}^{P} \left[y^{\mu} - \frac{1}{\sqrt{N_1}} \sum_{i_1}^{N_1} v_{i_1} \sigma \left(\sum_{i_0}^{N_0} \frac{w_{i_1,i_0} x_{i_0}^{\mu}}{\sqrt{N_0}} \right) \right]$$

$$_{i_0}x^{\mu}_{i_0}$$

I want to integrate over the weights of the network (I cannot do it for free) I introduce all possible deltas over the pre-activations $1 = \int \prod_{\mu}^{P} \prod_{i_1}^{N_1} dh_{i_1}^{\mu} \delta\left(h_{i_1}^{\mu} - \frac{1}{\sqrt{N_0}} \sum_{i_1}^{N_0} w_{i_1 i_0} x_{i_0}^{\mu}\right) \qquad \text{Once I employ an integration of the pre-sentation of the pre-sentati$

$$\frac{0}{2} \|w\|^2 - \frac{\beta}{2} \sum_{\mu}^{P} \left[y^{\mu} - \frac{1}{\sqrt{N_1}} \sum_{i_1}^{N_1} v_{i_1} \sigma \left(\sum_{i_0}^{N_0} \frac{w_{i_1,i_0} x_{i_0}^{\mu}}{\sqrt{N_0}} \right) \right]$$

Once I employ an integral representation of the deltas I realise all the integrals over the weights are Gaussian

PARTITION FUNCTION FOR ONE HIDDEN LAYER NN IN THE ASYMPTOTIC LIMIT (2): THE CRITICAL STEP

$$Z = \int \prod_{\mu}^{P} \frac{ds^{\mu} d\bar{s}^{\mu}}{2\pi} e^{-\frac{\beta}{2} \sum_{\mu} (y^{\mu} - s^{\mu})^{2} + i \sum_{\mu}^{P} s^{\mu} \bar{s}^{\mu}} \left\{ \int \frac{dq}{\sqrt{2\pi}} e^{-\frac{q^{2}}{2}} \int d^{P} h \left[P_{1}(\{h^{\mu}\}) \delta \left[q - \frac{1}{\sqrt{\lambda_{1} N_{1}}} \sum_{\mu} \bar{s}^{\mu} \sigma(h^{\mu}) \right] \right] \right\} d\mu$$

$$P(q) = \int d^P h P_1(\{h^\mu\}) \delta \left[q - \frac{1}{\sqrt{\lambda_1 N_1}} \sum_{\mu} \bar{s}^\mu \sigma(\bar{h}) \right]$$

$$n^{\mu})$$

PARTITION FUNCTION FOR ONE HIDDEN LAYER NN IN THE ASYMPTOTIC LIMIT (2): THE CRITICAL STEP

$$Z = \int \prod_{\mu}^{P} \frac{ds^{\mu} d\bar{s}^{\mu}}{2\pi} e^{-\frac{\beta}{2} \sum_{\mu} (y^{\mu} - s^{\mu})^{2} + i \sum_{\mu}^{P} s^{\mu} \bar{s}^{\mu}} \left\{ \int \frac{dq}{\sqrt{2\pi}} e^{-\frac{q^{2}}{2}} \int d^{P} h \left[P_{1}(\{h^{\mu}\}) \delta \left[q - \frac{1}{\sqrt{\lambda_{1} N_{1}}} \sum_{\mu} \bar{s}^{\mu} \sigma(h^{\mu}) \right] \right] \right\} dr$$

$$P_{1}(\{h^{\mu}\}) = \mathcal{N}(0, C) \qquad C_{\mu\nu} = \frac{1}{\lambda_{0} N_{0}} \sum_{i_{0}}^{N_{0}} \frac{1}{i_{0}} \left[\frac{1}{\sqrt{\lambda_{1} N_{1}}} \sum_{\mu} \bar{s}^{\mu} \sigma(h^{\mu}) \right] = \mathcal{N}(0, C) \qquad C_{\mu\nu} = \frac{1}{\lambda_{0} N_{0}} \sum_{i_{0}}^{N_{0}} \frac{1}{i_{0}} \left[\frac{1}{\sqrt{\lambda_{1} N_{1}}} \sum_{\mu} \bar{s}^{\mu} \sigma(h^{\mu}) \right] = \mathcal{N}(0, C) \qquad C_{\mu\nu} = \frac{1}{\lambda_{0} N_{0}} \sum_{i_{0}}^{N_{0}} \frac{1}{i_{0}} \left[\frac{1}{\sqrt{\lambda_{1} N_{1}}} \sum_{\mu} \bar{s}^{\mu} \sigma(h^{\mu}) \right] = \mathcal{N}(0, C) \qquad C_{\mu\nu} = \frac{1}{\lambda_{0} N_{0}} \sum_{i_{0}}^{N_{0}} \frac{1}{i_{0}} \left[\frac{1}{\sqrt{\lambda_{1} N_{1}}} \sum_{\mu} \bar{s}^{\mu} \sigma(h^{\mu}) \right] = \mathcal{N}(0, C) \qquad C_{\mu\nu} = \frac{1}{\lambda_{0} N_{0}} \sum_{i_{0}}^{N_{0}} \frac{1}{i_{0}} \left[\frac{1}{\sqrt{\lambda_{1} N_{1}}} \sum_{\mu} \bar{s}^{\mu} \sigma(h^{\mu}) \right] = \mathcal{N}(0, C) \qquad C_{\mu\nu} = \frac{1}{\lambda_{0} N_{0}} \sum_{i_{0}}^{N_{0}} \frac{1}{i_{0}} \sum_{\mu} \frac{1}{\sqrt{\lambda_{1} N_{1}}} \sum_{\mu} \frac{1}{\sqrt{\lambda_{1} N_{1$$

$$P(q) = \int d^P h P_1(\{h^\mu\}) \delta \left[q - \frac{1}{\sqrt{\lambda_1 N_1}} \sum_{\mu} \bar{s}^\mu \sigma(h^\mu) \right] \xrightarrow{} \mathcal{N}(0, Q)$$

$$Q = \frac{1}{\lambda_1 N_1} \sum_{\mu\nu}^{P} \bar{s}^{\mu} K_{\mu\nu} \bar{s}^{\nu} \qquad \qquad K_{\mu\nu}(C) = \int \frac{dt_1 dt_2}{\sqrt{(2\pi)^2 \det \tilde{C}}} e^{-\frac{1}{2} \mathbf{t}^T \tilde{C}^{-1} \mathbf{t}} \sigma(t_1) \sigma(t_2) \quad \tilde{C} = \begin{pmatrix} C_{\mu\mu} \\ C_{\mu\nu} \end{pmatrix}$$

This probability is Gaussian for the Breuer-Major Theorem (1983)!!

This is just the NNGP kernel that describes the infinite-width limit

PARTITION FUNCTION FOR ONE HIDDEN LAYER NN IN THE ASYMPTOTIC LIMIT (3): SADDLE-POINT ACTION

$$Z = \int dQ d\bar{Q} \exp\left[-\frac{N_1}{2}S(Q,\bar{Q})\right]$$

$$S = -Q\bar{Q} + \log(1+Q) + \frac{\alpha_1}{P} \operatorname{Tr}\log\beta \left[\frac{\mathbb{I}_P}{\beta} + \frac{\bar{Q}K}{\lambda_1}\right] + \frac{\alpha_1}{P}y^{\top} \left[\frac{\mathbb{I}_P}{\beta} + \frac{\bar{Q}K}{\lambda_1}\right]^{-\frac{1}{2}}$$

The model is "solved", in the sense that the partition function is now in a form suitable to saddle-point integration

PARTITION FUNCTION FOR ONE HIDDEN LAYER NN IN THE ASYMPTOTIC LIMIT (3): SADDLE-POINT ACTION

$$Z = \int dQ d\bar{Q} \exp\left[-\frac{N_1}{2}S(Q,\bar{Q})\right]$$

$$S = -Q\bar{Q} + \log(1+Q) + \frac{\alpha_1}{P} \operatorname{Tr}\log\beta \left[\frac{\mathbb{I}_P}{\beta} + \frac{\bar{Q}K}{\lambda_1}\right] + \frac{\alpha_1}{P}y^{\top} \left[\frac{\mathbb{I}_P}{\beta} + \frac{\bar{Q}K}{\lambda_1}\right]^{-\frac{1}{2}}$$

$$\langle \epsilon_{\rm g}(\mathbf{x}^0, y^0) \rangle = \left\langle \left(y^0 - f(\mathbf{x}^0) \right)^2 \right\rangle$$
 explicit i

$$= \left[y^{0} - \frac{\bar{Q}}{\lambda_{1}}\sum_{\mu\nu}\kappa_{\mu}(\mathbf{x}^{0})\left(\frac{\mathbb{I}_{P}}{\beta} + \frac{\bar{Q}K}{\lambda_{1}}\right)_{\mu\nu}^{-1}y_{\nu}\right]^{2} + \frac{\bar{Q}}{\lambda_{1}}\left[\kappa_{0}(\mathbf{x}^{0}) - \frac{\bar{Q}}{\lambda_{1}}\sum_{\mu\nu}\kappa_{\mu}(\mathbf{x}^{0})\left(\frac{\mathbb{I}_{P}}{\beta} + \frac{\bar{Q}K}{\lambda_{1}}\right)_{\mu\nu}^{-1}\kappa_{\nu}(\mathbf{x}^{0})\right]^{2}$$

The model is "solved", in the sense that the partition function is now in a form suitable to saddle-point integration

licit formula for the generalisation error

$$p(\{\bar{s}^{\mu}\}) \sim \left(1 + \frac{1}{\lambda N_1} \sum_{\mu,\nu}^{P} \bar{s}^{\mu} K_{\mu\nu}(C) \bar{s}^{\nu}\right)^{-\frac{N_1}{2}} \sim e^{-\frac{1}{2\lambda} \sum_{\mu,\nu}^{P} \bar{s}^{\mu} K_{\mu\nu}(C)} N_1 \gg P$$

$$p(\{\bar{s}^{\mu}\}) \sim \left(1 + \frac{1}{\lambda N_{1}} \sum_{\mu,\nu}^{P} \bar{s}^{\mu} K_{\mu\nu}(C) \bar{s}^{\nu}\right)^{-\frac{N_{1}}{2}} \sim e^{-\frac{1}{2\lambda} \sum_{\mu,\nu}^{P} \bar{s}^{\mu} K_{\mu\nu}(C)} N_{1} \gg P$$

This is a multivariate Student-t distribution!

$$p(\{\bar{s}^{\mu}\}) \sim \left(1 + \frac{1}{\lambda N_{1}} \sum_{\mu,\nu}^{P} \bar{s}^{\mu} K_{\mu\nu}(C) \bar{s}^{\nu}\right)^{-\frac{N_{1}}{2}} \sim e^{-\frac{1}{2\lambda} \sum_{\mu,\nu}^{P} \bar{s}^{\mu} K_{\mu\nu}(C)} N_{1} \gg P$$

This is a multivariate Student-t distribution!

Finite-width one hidden layer neural networks are related to Student-t stochastic processes

$$p(\{\bar{s}^{\mu}\}) \sim \left(1 + \frac{1}{\lambda N_{1}} \sum_{\mu,\nu}^{P} \bar{s}^{\mu} K_{\mu\nu}(C) \bar{s}^{\nu}\right)^{-\frac{N_{1}}{2}} \sim e^{-\frac{1}{2\lambda} \sum_{\mu,\nu}^{P} \bar{s}^{\mu} K_{\mu\nu}(C)} N_{1} \gg P$$

This is a multivariate Student-t distribution!

processes

Finite-width deep linear networks are also related to Student-t processes!

Finite-width one hidden layer neural networks are related to Student-t stochastic

VERIFYING THE PREDICTIONS OF THE THEORY AT 1HL USING A **DISCRETE LANGEVIN DYNAMICS (1)**

VERIFYING THE PREDICTIONS OF THE THEORY AT 1HL USING A **DISCRETE LANGEVIN DYNAMICS (1)**

Learning curves are **monotonically** increasing/decreasing in the range explored (smallest N = 50)

WHY?

analytical criterion $y^T K^{-1} y > P$

ANOTHER CONNECTION WITH STUDENT-T! [Tracey & Wolpert (2018)]

Best test accuracy on the binary classification problem achieved: 86% (CIFAR), 99.9% (MNIST)

VERIFYING THE PREDICTIONS OF THE THEORY AT 1HL USING A **DISCRETE LANGEVIN DYNAMICS (2)**

Datasets CIFAR10 planes cars

General observations

as $1/\sqrt{\lambda_1}$

Physical consequences

- (i) At T = 0 the bias in constant as a function of N_1 and of the Gaussian prior of the last layer λ_1
- (ii) At T = 0 the variance depends on N_1 and goes to zero

- (i) increasing the magnitude of the last layer Gaussian prior should lead to better generalisation at ANY N_1
- (ii) For large values of λ_1 the dependence on the size of the hidden layer in the learning curve should disappear

VERIFYING THE PREDICTIONS OF THE THEORY AT 1HL USING A **DISCRETE LANGEVIN DYNAMICS (2)**

$P_{\ell-1}(\{\mathbf{h}_{\ell-1}^{\mu}\}) \longrightarrow P_{\ell}(\{\mathbf{h}_{\ell}^{\mu}\}) \frown$

The goal would be to determine the distribution of the pre-activations at a given layer, given the one at the previous layer

$$P_{\ell-1}(\{\mathbf{h}_{\ell-1}^{\mu}\}) \longrightarrow P_{\ell}(\{\mathbf{h}_{\ell}^{\mu}\})$$

$$K_{\ell}^{(R)}(\{\bar{Q}_{\ell}\}) = \bar{Q}_{\ell}/\lambda_{\ell}K \circ \left[K_{\ell-1}^{(R)}(\{\bar{Q}_{\ell}\})\right] \quad K_{0}^{(R)} = C$$

The goal would be to determine the distribution of the pre-activations at a given layer, given the one at the previous layer

$$P_{\ell-1}(\{\mathbf{h}_{\ell-1}^{\mu}\}) \longrightarrow P_{\ell}(\{\mathbf{h}_{\ell}^{\mu}\})$$

$$K_{\ell}^{(R)}(\{\bar{Q}_{\ell}\}) = \bar{Q}_{\ell}/\lambda_{\ell}K \circ \left[K_{\ell-1}^{(R)}(\{\bar{Q}_{\ell}\})\right] \quad K_{0}^{(R)} = C$$

$$Z_{\rm DNN} = \int \prod_{\ell=1}^{L} dQ_{\ell} d\bar{Q}_{\ell} e^{-\frac{N_L}{2} S_{\rm DNN}(\{Q_{\ell}, \bar{Q}_{\ell}\}\}}$$

The goal would be to determine the distribution of the pre-activations at a given layer, given the one at the previous layer

$$P_{\ell-1}(\{\mathbf{h}_{\ell-1}^{\mu}\}) \longrightarrow P_{\ell}(\{\mathbf{h}_{\ell}^{\mu}\})$$

$$K_{\ell}^{(R)}(\{\bar{Q}_{\ell}\}) = \bar{Q}_{\ell}/\lambda_{\ell}K \circ \left[K_{\ell-1}^{(R)}(\{\bar{Q}_{\ell}\})\right] \quad K_{0}^{(R)} = C$$

$$Z_{\rm DNN} = \int \prod_{\ell=1}^{L} dQ_{\ell} d\bar{Q}_{\ell} e^{-\frac{N_L}{2} S_{\rm DNN}(\{Q_{\ell}, \bar{Q}_{\ell}\}\}}$$

$$S_{\text{DNN}} = \sum_{\ell=1}^{L} \frac{\alpha_L}{\alpha_\ell} \left[-Q_\ell \bar{Q}_\ell + \log(1+Q_\ell) \right] + \frac{\alpha_L}{P} \text{Tr} \log \beta \left(\frac{\mathbb{I}_P}{\beta} + K_L^{(R)}(\{\bar{Q}_\ell\}) \right) + \frac{\alpha_L}{P} y^T \left(\frac{\mathbb{I}_P}{\beta} + K_L^{(R)}(\{\bar{Q}_\ell\}) \right)^{-1} y$$

The goal would be to determine the distribution of the pre-activations at a given layer, given the one at the previous layer

Effective action for finite-width fully-connected architectures with L hidden layers

APPROXIMATE PARTITION FUNCTION FOR DEEP NEURAL NETWORKS: A RECURRENCE BASED ON STUDENT-T

IMPORTANT!

$$Z_{\rm DNN} = \int \prod_{\ell=1}^{L} dQ_{\ell} d\bar{Q}_{\ell} e^{-\frac{N_L}{2} S_{\rm DNN}(\{Q_{\ell}, \bar{Q}_{\ell}\}\}}$$

$$S_{\text{DNN}} = \sum_{\ell=1}^{L} \frac{\alpha_L}{\alpha_\ell} \left[-Q_\ell \bar{Q}_\ell + \log(1+Q_\ell) \right] + \frac{\alpha_L}{P} \text{Tr} \log \beta \left(\frac{\mathbb{I}_P}{\beta} + K_L^{(R)}(\{\bar{Q}_\ell\}) \right) + \frac{\alpha_L}{P} y^T \left(\frac{\mathbb{I}_P}{\beta} + K_L^{(R)}(\{\bar{Q}_\ell\}) \right)^{-1} y$$

From this effective theory I am able to recover the Li-Sompolinsky heuristic theory valid for ReLU activation found in the isotropic limit

Effective action for finite-width fully-connected architectures with L hidden layers

GENERALISING THE APPROACH TO NON-ODD ACTIVATION FUNCTION: BEYOND LI-SOMPOLINSKY HEURISTIC THEORY

Let us go back to the derivation of the one hidden layer effective action...

$$P(q) = \int d^P h P_1(\{h^{\mu}\}) \delta \left[q\right]$$

This random variable has zero mean **ONLY** if the activation function is odd

$$\frac{1}{\sqrt{\lambda N_1}} \sum_{\mu} \bar{s}^{\mu} \sigma \left(h^{\mu} \right) \right] \to \mathcal{N}(0, Q)$$

GENERALISING THE APPROACH TO NON-ODD ACTIVATION FUNCTION: BEYOND LI-SOMPOLINSKY HEURISTIC THEORY

Let us go back to the derivation of the one hidden layer effective action...

$$P(q) = \int d^P h P_1(\{h^\mu\}) \delta \left[q\right]$$

This random variable has zero mean **ONLY** if the activation function is odd

$$\langle q \rangle = \frac{1}{\sqrt{N_1 \lambda}} \sum_{\mu=1}^{P} \bar{s}^{\mu} m^{\mu} \qquad m^{\mu} = \int \frac{dt}{\sqrt{2\pi C_{\mu\mu}}} e^{-t^2/(2C_{\mu\mu})} \sigma(t)$$

$$\frac{1}{\sqrt{\lambda N_1}} \sum_{\mu} \bar{s}^{\mu} \sigma \left(h^{\mu} \right) \right] \to \mathcal{N}(0, Q)$$

GENERALISING THE APPROACH TO NON-ODD ACTIVATION FUNCTION: BEYOND LI-SOMPOLINSKY HEURISTIC THEORY

Let us go back to the derivation of the one hidden layer effective action...

$$P(q) = \int d^P h P_1(\{h^{\mu}\}) \delta \left[q\right]$$

This random variable has zero mean **ONLY** if the activation function is odd

$$\langle q \rangle = \frac{1}{\sqrt{N_1 \lambda}} \sum_{\mu=1}^{P} \bar{s}^{\mu} m^{\mu} \qquad m^{\mu} = \int \frac{dt}{\sqrt{2\pi C_{\mu\mu}}} e^{-t^2/(2C_{\mu\mu})} \sigma(t)$$

$$\bar{Q}K \to \bar{Q}K - \left(\bar{Q} + \frac{1}{1+Q}\right)$$

$$\frac{1}{\sqrt{\lambda N_1}} \sum_{\mu} \bar{s}^{\mu} \sigma \left(h^{\mu} \right) \right] \to \mathcal{N}(0, Q)$$

PRELIMINARY VERIFICATION OF THE THEORY AT L LAYERS

a criterion to establish if finite-width networks will outperform their infinitewidth counterpart holds for ReLU

PRELIMINARY VERIFICATION OF THE THEORY AT L LAYERS

a criterion to establish if finite-width networks will outperform their infinitewidth counterpart holds for ReLU

The same reasoning on the Gaussian prior of the last layer holds, but for L layer the bias is not constant as a function of N!

PRELIMINARY VERIFICATION OF THE THEORY AT L LAYERS

a criterion to establish if finite-width networks will outperform their infinitewidth counterpart holds for ReLU

The same reasoning on the Gaussian prior of the last layer holds, but for L layer the bias is not constant as a function of N!

For ReLU, after a certain critical L, infinite-width outperforms finite width, since the NNGP kernel develops at least one almost singular eigenvalue

CONCLUSIONS AND FUTURE PERSPECTIVES

CONCLUSIONS AND FUTURE PERSPECTIVES

An approach to investigate the statistical physics of neural networks with L fully-connected hidden layers beyond the infinite-width limit

CONCLUSIONS AND FUTURE PERSPECTIVES

Student-t stochastic processes

 $P, N_{\ell} \rightarrow 0$

- An approach to investigate the statistical physics of neural networks with L fully-connected hidden layers beyond the infinite-width limit
- An intriguing connection between finite-width deep neural networks and

$$\infty \quad \alpha_{\ell} = \frac{P}{N_{\ell}}$$

Student-t stochastic processes

$$P, N_{\ell} \to \infty \quad \alpha_{\ell} = \frac{P}{N_{\ell}}$$

Role of skip connections (residual networks)?

- An approach to investigate the statistical physics of neural networks with L fully-connected hidden layers beyond the infinite-width limit
- An intriguing connection between finite-width deep neural networks and

Effective theory for gradient descent dynamics? Convolutions? Feature learning? Generalisation performance at finite-width and edge of chaos?

Sebastiano Ariosto

Rosalba Pacelli

[arXiv:2209.04882 (2022)]

Mauro Pastore

Marco Gherardi

Francesco Ginelli

