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Outline

• BCS-BEC crossover and the unitary Fermi gas

• What is a pseudogap?

• Lattice Model 

• Canonical ensemble AFMC method

• Pseudogap regime in the unitary Fermi gas?



Randeria and Taylor (2014)

• Two-species up/down fermions (neutral cold atomic 
hyperfine states of 6Li and 40K) with contact 
interactions                                 .    

• Interaction can be tuned to describe the crossover 
from Cooper pairing in the BCS regime to weakly 
interacting dimers in the BEC regime.

• Strong correlations in the unitary limit of infinite 
scattering length                    .

Two-component homogeneous Fermi gas 
with contact interaction
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Pseudogap

Superfluid Pseudogap
Normal

• High transition temperature
(Ku et al Science 2012)

A pseudogap regime has been proposed to exist for 
the unitary Fermi gas, but is still debated both 
experimentally and theoretically.

• Spectral function
• Density of states
• Spin susceptibility
• Heat capacity
• Pairing gap

Observables for pseudogap
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Pseudogap spectral function 

0 0.5 1 1.5 2
−3

−2

−1

0

1

2

k (k
F
)

E
 (

E
F
)

 

 10
0

10
−1

10
−2

10
−3

10
−4

a

−2 −1 0 1

k = 0.37

0.52

0.66

0.81

0.96

1.1

1.25

1.4

1.55

E (E
F
)

b

FIG. S2. Gaussian fits to PES data at (kFa)�1
= 0.1. a, The white circles indicate the centers

from weighted gaussian fits to EDCs at fixed k. The white line shows the free-particle dispersion,

E = k2. b, Individual EDCs (blue points) are shown, along with the fitted gaussians (red lines).

Here, each EDC is individually normalized to have the same area, as in Ref. [12]. A solid black

line marks E = EF . Red stars show the center of each gaussian, and the dashed red line is a guide

to the eye.
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Finite temperature QMC calculations of the spectral func-
tion at unitarity by Bulgac et al. !67" indicate the presence of
a gapped particle excitation spectrum of form #4.1$ also

above the critical temperature, which is not found in our
approach. More generally, it is evident from the spectral
functions of the unitary gas above Tc which are shown in
Fig. 3 that a simple pseudogap ansatz for the spectral func-
tion !69" is not consistent with our results. As can be seen
from the lower three graphs in Fig. 3, our approach leads to
a single, broad, ungapped excitation peak with a quadratic
dispersion at temperatures T!Tc instead of two excitation
branches with a gapped BCS-like dispersion as expected
from the pseudogap approach. In particular we do not ob-
serve a strong suppression of spectral weight near the chemi-
cal potential.

Apart from the dominant peaks discussed above our spec-
tral functions show some additional structures that have
much smaller weight, however. Specifically, at unitarity and
temperatures above Tc a small second peak is visible for k
"kF in Fig. 3. At T=0.3TF this residual peak contains %17%
of the spectral weight. The situation is similar on the BEC
side of the Feshbach resonance at v=1, where above Tc a
second peak at negative energies is present for k"kF, with a
spectral weight of %22%.

Recent experiments by Stewart et al. !19" have succeeded
to perform rf spectroscopy in a momentum-resolved manner
from which one directly obtains the hole spectral function
A−#k ,#$ as a function of both momentum and energy. A

FIG. 3. #Color$ Density plots of the spectral function A#k ,#$ at unitarity !v=1 / #kFa$=0" for different temperatures. From top left to
bottom right: T /TF=0.01, 0.06, 0.14, 0.160#Tc$, 0.18, and 0.30. The white horizontal lines mark the chemical potential $. At temperatures
smaller than the superfluid transition temperature Tc two quasiparticle structures with a BCS-like dispersion can be seen. The width of the
spectral peaks is of the same order as the quasiparticle energy. With increasing temperature the two branches gradually merge into a single
quasiparticle structure with a quadratic dispersion above Tc. Note, however, that the quadratic dispersion is shifted to negative frequencies
compared to the bare fermion dispersion relation. This Hartree shift is of the order of U=−0.46#F and is essentially responsible for the
shifted rf spectra in the normal phase in Fig. 6.
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FIG. 4. #Color online$ The spectral function A#k ,#$ as a func-
tion of # for selected fixed values k at unitarity v=1 / #kFa$=0 and at
criticality T /TF=0.160#Tc$. The selected values of the wave number
k are represented by the colors of the lines corresponding to the
peaks from left to right: k /kF=0.00 #black$, 0.52 #red$, 0.77 #or-
ange$, 1.00 #green$, 1.26 #cyan$, 1.51 #blue$, and 2.02 #magenta$.
The different methods for calculating the spectral function are dis-
tinguished by the line styles: maximum-entropy method #solid
lines$ and Padé approximation #dashed lines$.

SPECTRAL FUNCTIONS AND RF RESPONSE OF… PHYSICAL REVIEW A 80, 063612 #2009$

063612-11

with an average total particle number of 50–55 on an 83

lattice with periodic boundary conditions [10]. We have
generated between 6000 and 10 000 uncorrelated samples
at each temperature and the statistical errors are typically
below 1%. The systematic errors, some due to finite lattice
effects, others due to finite range effects, are estimated at
about 10%–15%. Our T ¼ 0 extrapolation results [11] for
the energy per particle are systematically lower than pre-
vious fixed-node Monte Carlo results which are variational
[2,3,12]. We have not used the fixed-node approximation
and the value for ! ¼ 5E=3N"F " 0:40 that we extract at
unitarity is in agreement with the auxiliary field
Monte Carlo results of Ref. [13].

The numerical determination of Aðp; !Þ via inversion of
Eq. (2) is an ill-posed problem that requires special meth-
ods. We have used two, based on completely different
approaches. The first approach is the maximum entropy
method [14], which is based on Bayes’ theorem. Quantum
Monte Carlo (QMC) calculations provide us with a discrete

set of values ~Gðp; "iÞ, where i ¼ 1; 2; . . . , N " ¼ 50. We
treat them as normally distributed random numbers around
the true values Gðp; "iÞ. The Bayesian strategy consists in

maximizing the posterior probability PðAj ~GÞ /
Pð ~GjAÞPðAÞ of finding the right Aðp; !Þ under the condi-

tion that ~Gðp; "iÞ are known. Here, Pð ~GjAÞ / expð% 1
2#

2Þ
is the likelihood function, where #2 ¼ PN "

i¼1 ½~Gðp; "iÞ %
Gðp; "iÞ'2=$2. The quantity Gðp; "iÞ is determined by the
spectral weight function in the discretized form of Eq. (2)
at frequencies !k. The prior probability PðAÞ, describing

our ignorance about the spectral weight function, is defined
as PðAÞ / exp½%SðMÞ', where %> 0 and SðMÞ is the
relative information entropy with respect to the assumed
model M:

SðMÞ ¼
X

k

!!
!
Aðp; !kÞ %Mð!kÞ

% Aðp; !kÞ ln
"
Aðp; !kÞ
Mð!kÞ

#$
: (4)

Hence the maximization of PðAj ~GÞ leads in practice to the
minimization of the quantity 1

2#
2 % %SðMÞ with respect

to A. Note that the parameter % governs the relative im-
portance of the two terms. The entropy term prevents
excessive inclusion of unjustified structure into the shape
of the spectral weight function. The constraints (3) are
enforced by means of Lagrange multipliers.
The second approach is based on the singular value

decomposition of integral kernel K of Eq. (2), which
can be rewritten in operator form as

G ðp; "iÞ ¼ ðKAÞðp; "iÞ: (5)

The operator K possesses a singular system defined as

K ui ¼ &i ~vi; K( ~vi ¼ &iui; (6)

whereK( denotes the adjoint ofK, the &i are the singular
values, and the ui, ~vi are right-singular functions and left-
singular vectors, respectively. The singular system forms a
suitable basis for the expansion of the spectral weight

FIG. 1 (color online). Spectral weight function Aðp; !Þ for three temperatures: T ¼ 0:15"F " Tc (left upper panel), T ¼ 0:18"F
(right upper panel), and T ¼ 0:20"F (lower panel). The presence of a gap in clearly seen in the upper two panels.

PRL 103, 210403 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

20 NOVEMBER 2009

210403-2

Experiment
(Sagi et al, PRL 2015): 

Backbending in 
Photoemission 
spectroscopy 

Quantum Monte Carlo 
(Magierski et al, PRL 
2009):

Non-zero gap above Tc

Self-consistent field theory 
(Haussmann et al, PRA 2009):

Only weak suppression at Tc
and no pronounced 
pseudogap.
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Pseudogap Thermodynamics

Suppression of spin susceptibility above Tc

Equation of state is well 
described by normal Fermi 
liquid behavior

Heat capacity 
displays no 
pronounced dip 
above Tc
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Lattice Description

Hamiltonian:

8

Calculations performed for finite number of particles N and lattice 
size M=NL

3 using the complete first Brillouin zone of single-particle 
states in momentum space (no spherical cutoff).

Contact interaction:

Renormalization condition:

Single-particle dispersion:
Brillouin Zone

Scattering length

Lattice spacing

Lattice spacing:

Box length

F. Werner and Y. Castin (PRA 2012)



Auxiliary-field Monte Carlo method

Gaussian weight 

Name: Quiz #1

Phys 181 Summer 2012

Good luck!

1. (1 pt) A conducting sphere with initial charge Q is brought into contact with an identical, uncharged
sphere. After a long time, they are separated and one sphere is connected to ground for a short
time. The spheres are then placed into contact and separated a second time. During this process
the spheres were:

(a) charged by induction and the missing/excess charge went/came into/from the earth.

(b) charged by induction and the final charge on each sphere is Q/4.

(c) charged by conduction and the charges on the spheres are opposite in sign.

(d) charged by conduction and the final charge on each sphere is Q/4.

(e) e��Ĥ where Ĥ = Ĥ1 + Ĥ2

(f) Ĥ = Ĥ1 + Ĥ2 =
P

a
✏an̂+ 1

2

P
↵
v↵⇢̂2↵

(g) e�a
2

= 1p
⇡

R
dxe�x

2+2iax

(h) Ĥ = ✏Ô + 1
2vÔ

2

(i) e��Ĥ =
q

�|v|
2⇡

R
d� e�

1
2�|v|�

2

| {z }
G�

e��ĥ

| {z }
Û�

(j) ĥ = ✏Ô + sv�Ô

(k) e��Ĥ =
R
D[�]G�Û�

(l) Tre��Ĥ =
R
D[�]G�TrÛ�

e��Ĥ=

Z
D[�]G�Û�.

2. (1 pt) The magnitude of the electric force between two point charged particles is proportional to:

(a) the square of the distance between them and the product of their charges.

(b) the square of the distance between them but does not depend on their relative charges.

(c) the inverse square of the distance between them and their relative charges.

(d) the inverse square of the distance between them and the product of their charges.

3. (1 pt) Which of the following statements is true:

(a) In the idealized case, the electrons inside insulators are free to move.

(b) It is possible to charge an insulator by induction.

(c) Charge quantization refers to the idea that the net amount of charge is conserved.

(d) Like charges attract.

(e) None of the above.

• Integrands can be calculated by matrix algebra in the single-particle space
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One-body propagator of non-interacting 
particles coupled to external auxiliary fields 

• Trotter decomposition
• Hubbard-Stratonovich

transformation 
• Gaussian quadratures
• Metropolis algorithm

is the inverse temperature

�

where 

Matrix in single-particle space 
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Particle-Number Projection

Projection Operator:

(C. Gilbreth, Y. Alhassid, Computer Physics Communications, 2015) 

• Two particle-number projection (on        
and       ) for heat capacity, ODLRO, and 
pairing gap

• One particle-number projection (on total 
N) for spin susceptibility 

• Chemical potential is a free parameter 
adjusted for numerical stability

• Algorithm O(M3) allows large lattice size 
simulations with the canonical ensemble

Projection on fixed numbers of protons and neutrons is crucial in nuclei
-- methods to optimize particle-number projection in cold atoms have been implemented in nuclear AFMC 
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Observables: (i) Heat Capacity

• First quantum Monte Carlo result for the 
heat capacity of the homogeneous unitary 
Fermi gas.

• Large reduction of statistical errors by 
taking derivative inside the HS integral 
using the same auxiliary fields, Liu and 
Alhassid (PRL 2001).

Heat capacity: C =
E(T +4T )� E(T �4T )

24 T

• Canonical ensemble 
• N=20,40,80,130 particles on lattices of size 

M=73,93,113,133, respectively,
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(ii) Condensate Fraction

Off-Diagonal Long-Range Order

Two-body density matrix:

Condensate Fraction:

Max eigenvalue
Particle number

C.N. Yang, Rev. Mod. Phys. 34, 694 (1962)

0

0.2

0.4

0.6

0.1 0.2 0.3 0.4

Co
nd
en
sa
te
Fr
ac
tio
n
n

T/TF

Ku et al (Science 2012)
Bulgac et al (PRA 2008), M=103

N=130, M=133
N=80, M=113
N=40, M=93



13

(iii) Pairing Gap
Model-independent pairing gap:
(no analytic continuation necessary!) 

Thermal energy

Number of spin up Fermions

• First calculation of the energy-staggering pairing 
gap for the unitary Fermi gas. 

• Requires the canonical ensemble.
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(iv) Spin Susceptibility

Spin susceptibility: 

Volume

• Spin-flip excitations require s-wave pair breaking 
leading to suppression of the spin susceptibility. 

• Spin susceptibility agrees well with Luttinger-
Ward approach, Enss and Haussmann  (PRL 
2012).

Moderate suppression 
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Summary
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• First auxiliary-field Monte Carlo (AFMC) calculation of the 
heat capacity and energy-staggering pairing gap for the 
unitary gas at finite temperature. 

• Thermodynamic observables in the canonical ensemble 
show clear signatures of the superfluid phase transition.

• No clear evidence of the pseudogap in AFMC simulations 
of the pairing gap at                         .

• Moderate suppression of the spin susceptibility above Tc
and below                  .



• Study larger number of particles and lattice sizes with lower filling 
factor for extrapolation to the dilute gas limit                  .                      

• Finite-size scaling with larger lattice sizes
• Pairing gap from spectral weight
• Momentum distribution and contact
• Pseudogap physics in lower spatial dimension
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Future Work


