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I	will	tell	you	why	quantum	hydrodynamics		or	GPE		
are	not	good	enough	for	many	phenomena	in	fermionic	superfluids	
	
Anderson-Higgs	mode	
TDDFT	for	fermionic	superfluids	
Selfbound	superfluid	liquid	drops,	two	phase	trasitions	
Polarized	unitary	Fermi	gas	
Unitary	Fermi	Supersolid	
Generating	of	quantized	vortices,	their	crossing	and	recombination	
Quantum	Shock	waves	
Vortex	rings,	domain	walls,	solitonic	vortex,	etc.	
Quantum	turbulence	
Pinning	and	anti-pinning	of	vortices	in	neutron	star	crust	and	glitches	
Collisions	of	superfluid	nuclei	
Dynamics	of	fragmented	condensates	
Nuclear	fission	
Coulomb	excitation	of	nuclei	with	relativistic	heavy	ions	
Including	dissipation	and	fluctuations	into	TDDFT	
	
		
	



 
One option is the two-fluid hydrodynamics (here at T=0, only  
one fluid) 
N.B. There is no quantum statistics in two-fluid hydrodynamics 

Troubles:    
Ø  These are classical equations, no Planck’s constant,  thus 
no quantized vortices (unless one imposes by hand quantization) 
Ø  No physically clear physical mechanism to describe superfluid  
to normal transition (no role for the critical velocity) 
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Two-fluid hydrodynamics + vortex quantization  
is equivalent to a ``Bohr model” of a superfluid  



Another option is the phenomenological Ginzburg-Landau model   
or the Gross-Pitaevskii equation:  

   
i!eiγ ∂Ψ("r ,t)

∂t
= − !

2ΔΨ("r ,t)
2M

+U Ψ("r ,t)
2( )Ψ("r ,t)+Vext (

"r ,t)Ψ("r ,t)+ fluct.

Troubles: 
Ø GLE valid only for temperatures near and below the critical 

temperature  
Ø  Even though is a quantum approach, it describes only the 
superfluid phase. There is no Cooper pair breaking mechanism 
Ø  GPE was the only microscopic equation available until recently, 
valid for a superfluid of weakly interacting bosons at T=0 



There are a number of modes, such as the Anderson-Higgs mode, 
which cannot be describes in either of these phenomenological  
approaches. 

Other issues: 



Energy of a Fermi system as a function of the pairing gap: 
                         Anderson-Higgs mode 
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Ginzburg-Landau-like equation Landau’s two-fluid hydrodynamics 

Both	fail	



Bulgac	and	Yoon,	Phys.	Rev.	Lett.		102,	085302	(2009)	

Response	of	a	unitary	Fermi	system	to	changing		
the	scattering	length	with	time	

• 	All	these	modes	have	a	very	low	frequency	below	the	pairing	gap,	
a	very	large	amplitude	and	very	large	excitation	energy	
	
• 	None	of	these	modes	can	be	described	either	within	two-fluid	hydrodynamics	
or	Ginzburg-Landau	like	approaches	



Main	Theoretical	Tool	

1990	
2012	

A new local extension of DFT to superfluid systems and time-dependent  
phenomena was developed 
 
Review: A. Bulgac, Time-Dependent Density Functional Theory and Real-Time 
Dynamics of Fermi Superfluids, Ann. Rev. Nucl. Part. Sci. 63, 97 (2013) 

DFT	has	been	developed	and	used	mainly	to	describe	normal	(non-superfluid)	electron	
	systems	–	50	years	old	theory,	Kohn	and	Hohenberg,	1964	



Cray XK7, ranked at peak ≈ 27 Petaflops  (Peta – 1015) 
 
On Titan there are  18,688 GPUs  which provide 24.48 Petaflops !!!  
                        and 299,008 CPUs which provide only 2.94 Petaflops.  
 
A single GPU on Titan performs the same amount of FLOPs as approximately 134 CPUs. 
 
Jaguar, Titan, Piz Daint, Tsubame 3.0, and Summit in the future 

The Main Computational Tool 
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THEOREM:	There	exist	an	universal	functional	of	particle	
density	alone	independent	of	the	external	potential	

Kohn-Sham	theorem	(1965)	

Injective	map	
(one-to-one)	

Normal	Fermi	systems	only!	



			However,	not	everyone	is	normal!	



The	SLDA	(DFT)	energy	density	functional	for	unitary	Fermi	gas	

Three	dimensionless	constants	α,	β,	and	γ	determining	the	functional	are		
extracted	from	QMC	for	homogeneous	systems	by	fixing	the	total	energy,		
the	pairing	gap	and	the	effective	mass	

Dimensional arguments, renormalizability, Galilean invariance, and 
 symmetries   determine the functional (energy density) 

   

ε(!r ) = "
2

m
α
τ

c
(
!
r )

2
+ γ

ν
c
(
!
r )

2

n1/3(
!
r )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
+ β 3(3π 2)2/3n5/3(

!
r )

5

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
-
"2

m
(α − 1)

!
j 2(
!
r )

2n(
!
r )

Δ(
!
r ) = "

2

m
#Δ(
!
r )

n(
!
r ) = 2 v

k
(
!
r )

0<Ek <Ec

∑ 2
,   τ

c
(
!
r ) = 2

!
∇v

k
(
!
r )

0<Ek <Ec

∑
2
,    

ν
c
(
!
r ) = u

k
(
!
r )v

k
*(
!
r )

0<E<Ec

∑    ⇐  divergent without a cutoff, need RG



Bulgac,	Forbes,	and	Magierski,	Lecture	Notes	in	Physics	(2012)	





Unitary	Fermi	Supersolid:	The	Larkin-Ovchinnikov	Phase	
Bulgac	and	Forbes,	Phys.	Rev.Lett.	101,	215301	(20108)	
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Formalism for Time-Dependent Phenomena  
“The time-dependent density functional theory is viewed in general as a 
reformulation of the exact quantum mechanical time evolution of a many-body 
system when only one-body properties are considered.”                

A.K. Rajagopal and J. Callaway, Phys. Rev. B 7, 1912 (1973) 
V. Peuckert, J. Phys. C 11, 4945 (1978)  
E. Runge and E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984) 
 
http://www.tddft.org	
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For time-dependent phenomena one has to add currents. 
Galilean invariance determines the dependence on currents. 



TDSLDA equations 
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•  The system is placed on a large 3D spatial lattice (adequate representation of continuum) 
•  Derivatives are computed with FFTW (this insures machine accuracy) and is very fast 
•  Fully self-consistent treatment with fundamental symmetries respected (isospin,  
      gauge, Galilean, rotation, translation) 
•  Adams-Bashforth-Milne fifth order predictor-corrector-modifier integrator 
       Effectively a sixth order method 
•  No symmetry restrictions 
•  Number of PDEs is of the order of the number of spatial lattice points  
   – from 10,000s to 1-2,000,000 
  
•  SLDA/TDSLDA  (DFT) is formally by construction like meanfield HFB/BdG 
•  The code was implemented on Jaguar, Titan,  Franklin, Hopper, Edison, Hyak, Athena 
•  Initially Fortran 90, 95, 2003 …, presently C, CUDA, and obviously MPI, threads, etc. 

 
∝ 4 2pcL

2π
⎛
⎝⎜

⎞
⎠⎟
3

= 4NxNyNz



A.	Bulgac,	Y.-L.	Luo,	P.	Magierski,	K.J.	Roche,	Y.	Yu	
Science,	332,	1288	(2011)	

Several	hours	of	videos		
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Movie	



A.	Bulgac,	Y.-L.	Luo,	P.	Magierski,	K.J.	Roche,	Y.	Yu	
Science,	332,	1288	(2011)	



Number	density	of	two	colliding	cold	Fermi	gases	in	TDSLDA	
Bulgac,	Luo,	and	Roche,	Phys.	Rev.	Lett.	108,	150401	(2012)	

Observation of shock waves in a strongly interacting Fermi gas 
J. Joseph, J.E. Thomas, M. Kulkarni, and A.G. Abanov PRL 106, 150401 (2011)  



Collision	of	clouds	with	larger	aspect	ratio	



Dark	solitons/domain	walls	and	shock	waves	in	the	collision	of	two	UFG	clouds	

Phase	of	the	pairing	gap	normalized	to	εF	 Local	velocity	normalized	to	Fermi	velocity	





TDSLDA	

Construction	of	ground	state	(adiabatic	switching	with	quantum	friction),	generation	of	a		
domain	wall	using	an	optical	knife,	followed	by	the	spontaneous	formation	of	a	vortex	ring.	
Aproximately		1270	fermions	on	a	48x48x128	spatial	lattice,	≈	260,000	complex	PDEs,		
≈	309,000		time-steps,	2048	GPUs	on	Titan,	27.25	hours	of	wall	time	(initial	code)	
Wlazłowski	et	al,	Phys.	Rev.	Lett.	112,	025301	(2014)	



Vortex	rings	

E ≈ mnκ
2

2
R ln R

lcoh
,      κ  - circulation

p ≈ mnκπR2

v= dE
dp

≈ κ
4πR

ln R
lcoh

The	bigger	the	vortex	ring	is	the	slower	it	moves	
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Imaging	the	vortex	ring	in	experiment		(movie)	

Large	ring												 Small	ring	 Too	large	Bmin	



Large	ring	

Small	ring	

Insufficient	ramping	
of	magnetic	field	



Near	harmonic	motion	close	to	T=0		
(very	small	number	of	phonons)	

Anti-damping	of	the	motion	in	the	presence		
of	a	considerable	number	of	phonons	

TDSLDA		(movie)	





The	2014	MIT	experiment:	
	
Motion	of	a	Solitonic	Vortex	in	the	BEC-BCS	Crosover	
Ku,	Ji,	Mukherjee,	Guardado-Sanchez,	Cheuk,	Yefsah,	Zwierlein			
Phys.	Rev.	Lett.	113,	065301	(2014)		

Ø  In	this	case	the	trap	is	triaxial,	the	long		and	medium		
axes	horizontal	
Ø  The	excitation	in	this	case	has	the	width	of	a	vortex	line		
(it	is	not	wide	as	it	was	in	the	previous	experiment,		
different	imaging	procedure)		and	it	is	a	horizontal	vortex		
aligned	with	the	medium	axis	
Ø  The	period	is	again	much	larger	than	that	of	a	domain	wall	
Ø  Motion	is	again	almost	harmonic	and	the	trajectory	is		
very	similar	to	that	of	the	vortex	ring	



What	TDSLDA	tells	us	in	the	case	of	an	axially	non-symmetric	trap,	
similar	to	the	2014	MIT	experiment?		(movie)	

In	agreement	with	the	new	experiment,	when	axial	symmetry	is	broken	a	
domain	wall,	converts	to	a	vortex	ring,	which	shortly	becomes	a	vortex	line.	



View	along	the	long	axis	
(y-axis	vertical,	movie)	

In	a	slightly	different	geometry	
one	can	put	directly	in	evidence	
in	great	detail	the	crossing	and		
reconnection	of	vortex	lines,	the		
mechanism	envisioned		by	Feynman			
in	1955	as	the	route	to	Quantum		
Turbulence	(movie)	



Classical	Turbulence	



Exciting	quantum	turbulence	in	a	unitary	Fermi	gas	in	a	trap		

Wlazłowski	et	al,	arXiv:1404.1038	







Quantum	Turbulence	
Crossing	and	reconenctions	of	quantized	vortices	
Feynman	(1956)	





How	to	compute	the	pinning	energy	of	a	vortex	on	nucleus	
in	the	neutron	star	crust			

Bulgac,	Forbes,	and	Sharma,	Phys.	Rev.	Lett.	110,	241102	(2013)	

Attraction																																											 Repulsion	









Collisions	of	superfluid	nuclei	

Magierski,		et	al,	Phys.	Rev.	Lett.	119,	042501	(2017)		



Collisions	of	superfluid	nuclei	

Bulgac	and	Jin,	Phys.	Rev.	Lett.	119,052501	(2017)	



Bulgac	et	al,	arXiv:1806.00694	

Nuclear	Fission	



How	important	pairing	is?	

Normal	pairing	strength	
Saddle-to-scission	14,000	fm/c	

Enhanced	pairing	strength	
Saddle-to-scission	1,400	fm/c	!!!	
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Stetcu,	et	al.,	Phys.	Rev.	C	84,	051309(R)	(2011)			

Osmium	is	triaxial,	
and	both	protons	and		
neutrons	are	superfluid.	

Giant	Dipole	Resonance	
deformed	and	superfluid		
nuclei		



Including	dissipation	and	fluctuations	
Classically,	Langevin	equation:	
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Quantum	mechanically,	Lindblad	equation	
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A	much	better	and	simpler	solution:	
A	quantum	Hermitian	“Langevin”	equation	
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Quantum	friction	

“Stochastic	fields”	
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