Spin transport and quantum bounds for unitary fermions

dimensionality, scale invariance and strong interaction

Tilman Enss (University of Heidelberg)

with

Thywissen group (Toronto, expt) Alessio Recati (Trento, theory) Roati group (Florence, expt)

ECT* workshop Trento, 21 June 2018

Spin diffusion for unitary fermions

total + momentum conserved: particle current conserved
 relative + momentum not conserved: spin current decays

How slowly can spins diffuse?

experimental parameters: $D_s = \frac{\text{area}}{\text{time}} \approx \frac{(100 \,\mu\text{m})^2}{(1 \,\text{second})} \approx \frac{\hbar}{m_{\text{Li}}}$

Luttinger-Ward approach

• repeated particle-particle scattering dominant in dilute gas:

self-consistent T-matrix

Haussmann 1993, 1994; Haussmann et al. 2007

self-consistent fermion propagator (300 momenta / 300 Matsubara frequencies)

spectral function A(k,ε) at Tc

works above and below Tc; directly in continuum limit

Tc=0.16(1) and ξ =0.36(1) agree with experiment

conserving: exactly fulfills scale invariance and Tan relations Enss PRA 2012

Dynamical spin conductivity

$$\sigma_s(\omega) = \frac{1}{\omega} \operatorname{Re} \int_0^\infty dt \, e^{i\omega t} \int d^3 x \, \left\langle \left[j_s^z(\boldsymbol{x}, t), j_s^z(0, 0) \right] \right\rangle$$

with spin current operator $j_s(\boldsymbol{x}, t) = j_{\uparrow}(\boldsymbol{x}, t) - j_{\downarrow}(\boldsymbol{x}, t)$

exact high-frequency tail Hofmann PRA 2011; Enss & Haussmann PRL 2012

$$\sigma_s(\omega \to \infty) = \frac{C}{3\pi (m\omega)^{3/2}}$$

Dynamical spin conductivity

Spin diffusivity

• obtain diffusivity from Einstein relation, $D_s = \frac{\sigma_s}{\chi_s}$

Enss & Haussmann PRL 2012 see also: Wlazlowski, Magierski, Drut, Bulgac & Roche PRL 2013

Spin drag rate

Valtolina, Scazza, Amico, Burchianti, Recati, Enss, Inguscio, Zaccanti & Roati, Nat. Phys. 2017

Transverse spin diffusion

Longitudinal vs transverse spin diffusion

Demagnetization dynamics by spin transport

transverse spin current precesses around local magnetization

$$oldsymbol{J}_j^\perp = -D_{ ext{eff}}^\perp
abla_j M - \gamma M imes D_{ ext{eff}}^\perp
abla_j M$$

diffusive reactive (Leggett-Rice)

• imprint local perturbation on fluid:

Transverse diffusion coefficient

$$D_{\rm eff}^{\perp} = \frac{D_0^{\perp}}{1 + \gamma^2 M^2}$$

interaction dependence: minimum near unitarity

20 15 mD_0^\perp , $mD_0^{\perp/\hbar}$ 10 5 0 -8 -2 -6 2 6 8 -4 0 4 1/k_Fa

temperature dependence:

quantum limited diffusion at unitarity

Trotzky et al., PRL 114, 015301 (2015)

Enss, PRA 91, 023614 (2015)

Effective interaction

• precession of spin current around local magnetization m:

Ramsey phase
$$\phi$$
 $\gamma M = -Wm\frac{\tau_{\perp}}{\hbar}$
molecular field
$$D_0^{\perp} = \frac{2\varepsilon_F\tau_{\perp}}{3m^*}$$

$$\lambda = -\frac{\hbar\gamma}{2m^*D_0^{\perp}} = \frac{3n}{4\varepsilon_F}W$$

Effective interaction

• precession of spin current around local magnetization m:

Ramsey phase
$$\phi$$
 $\gamma M = -Wm \frac{\tau_1}{\hbar}$
molecular field
 $D_0^{\perp} = \frac{2\varepsilon_F(\tau_1)}{3m^*}$
 $\lambda = -\frac{\hbar\gamma}{2m^*D_0^{\perp}} = \frac{3n}{4\varepsilon_F}W$
1. interaction dependence:
sign change near unitarity
2. Fermi-liquid theory:
 $\lambda = \frac{1}{1+F_0^a} - \frac{1}{1+F_1^a/3}$
first measurement of
F1^a \simeq 0.5 at unitarity

Transport bounds

Transport bounds in solids

Bruin et al. Science 2013

Transport regimes

• conserved particle current: $\sigma(\omega) = \delta(\omega)$

 almost conserved current: σ(ω)=τ/(1+ω²τ²)

 by extrinsic processes
 (Umklapp, impurities):
 nonuniversal

 nonconserved spin current: quantum limited width τ⁻¹ ~ T incoherent transport, universal, Planckian dissipation

Enss & Thywissen, 1805.05354, Annu. Rev. CMP (2019)

 $\sigma(\omega)$

0

-1

-2

2

Incoherent transport by Scale invariance?

- Unitary Fermi gas (UFG) quantum limited
- lower D / viscosity away from unitarity X

Enss & Thywissen, 1805.05354, Annu. Rev. CMP (2019)

Elliott, Joseph & Thomas PRL 2014

Incoherent transport by Scale invariance?

• 2D: scale invariance most strongly broken in crossover, still lowest D

Luciuk, Smale, Böttcher, Sharum, Olsen, Trotzky, Enss & Thywissen, PRL 118, 130405 (2017)

Bounds by Quantum critical transport?

incoherent metals not always quantum critical (Cu, Au) X

Enss & Thywissen, 1805.05354, Annu. Rev. CMP (2019)

Incoherent transport

absence of quasiparticles:

incoherent "metallic" transport:

$$\frac{1}{\tau} \lesssim \frac{k_B T}{\hbar}$$

• can violate MIR bound parametrically if, e.g., number of carriers decreases

Hartnoll, Nat. Phys. 2015; Enss & Thywissen, 1805.05354, Annu. Rev. CMP (2019)

Conclusions

 universal quantum bounds for incoherent spin transport for strong scattering, but not necessarily scale invariance/quantum criticality Enss & Thywissen, 1805.05354, Annu. Rev. CMP (2019)

$$D_{\parallel,\perp}\gtrsim \frac{\hbar}{m}$$

• map global (trap) dynamics to local transport: hydrodynamics and beyond

(dense core/dilute corona, quench dynamics, small systems; box potential)

- transport theory:
 - efficient computation for strong coupling
 - superfluid fluctuations near Tc (need vertex corrections)
 - bounds in nonmetallic states (ferromagnet, superfluid)?

Additional material

Transport equations

• Single-particle Green functions:

Response to shear perturbations:

- transport via fermionic and bosonic modes: very efficient description, satisfies conservation laws (exact scale invariance and Tan relations)[Enss 2012]
- assumes no quasiparticles: beyond Boltzmann